
Type Systems of Programming Languages

Programming Languages
A Journey into Abstraction and Composition

Prof. Dr. Guido Salvaneschi

Errors in Programs

We write and execute programs.
We expect certain behaviors.
But programs can go wrong! you know?

Typfehler in der Praxis

Compiler

type systems prevent programs from
misbehaving

Text
parser

lexer

type system

Robin Milner

“Well-typed programs cannot go wrong”
-- Robin Milner, 1978

Robin Milner received Turing award 1991 for
– Logic for computable functions (LCF)
– Programming language ML
– Calculus of communicating systems (CCS), pi-calculus

Autor

1934 - 2010

Let’s Look at a Few Existing Type Systems

What kind of type systems do you know?

Which guarantees do the provide?

Autor

Let’s Look at a Few Existing Type Systems

class Marker {
int position = 0;
public void move() { position += 1; }

}

Marker m = new Marker();
m.move();
m.move();
m.move();
m.pause();

Autor

class types

Let’s Look at a Few Existing Type Systems

length :: [a] -> Int
length [] = 0
length (x : xs) = 1 + length xs

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs

length [1,2,3,4]
length [“a”, “b”]

map int-to-string [1,2,3,4]
map int-to-string [“a”, “b”]

Autor

function types

Let’s Look at a Few Existing Type Systems

data Tree a =
| Leaf a
| Node (Tree a) (Tree a)

t = Node (Leaf 3) (Node (Leaf 4) (Leaf 19))

treesum :: Tree Int -> Int
treesum t = case t of

Leaf a => a
Node t1 t2 => treesum t1 + treesum t2

t2 = Node (Leaf 3) (Node “leaf” (Leaf 5))

Autor

algebraic data types

Let’s Look at a Few Existing Type Systems

class FastMarker extends Marker {
public void moveFast(int steps) {

for (int i = 0; i < steps; i++) move();
– }

}

FastMarker m1 = new FastMarker();
m1.move(); m1.moveFast();

Marker m2 = new FastMarker();
m2.move();
m2.moveFast();

Autor

subtyping

Let’s Look at a Few Existing Type Systems

String[] strings = new String {“a”, “b”, “c”};
Object[] objects = strings; // ‘objects’ and ‘strings’ are exactly the same

// Some legitimate operations
Object o = strings[0];
objects[0] = “abc”; // strings[0] equals “abc”

objects[0] = new Integer(5);

int size = 0;
for (String s : strings)

size += s.length();

Autor

run-time error

Let’s Look at a Few Existing Type Systems

String[] strings = new String {“a”, “b”, “c”};
Object[] objects = strings; // ‘objects’ and ‘strings’ are exactly the same

Object o = strings[0];
objects[0] = “abc”; // strings[0] == “abc”

objects[0] = new Integer(5);

Autor

The type system accepts the program but program does go wrong at run time!

Types

Program behavior defined
by language semantics

Distinguish:
dynamic semantics = run time
static semantics = compile time

Run time

static semantics

dynamic semantics

What is a Type?

A type is a collection of computable values that share some structural property

Examples
Integers
Strings
int bool
(int -> int) ->bool

“Non-examples”
3, true, x.x
Even integers
{f:int -> int | if x>3 then f(x) > x*(x+1)}

Distinction between sets that are types and
sets that are not types is language-dependent

Strong vs. Weak Typing

A language is strongly typed if its type system allows all type errors in a
program to be detected either at compile time or at run time.

– A strongly typed language can be statically or dynamically typed!

Compile vs. run-time checking

Type-checking at compile time: C, ML
Type-checking at run time: Perl, JavaScript

Java does both
– Widening conversions always valid: performed implicitly.
– Narrowing conversions. Validity cannot be determined at compile time; they require an

explicit cast and may throw ClassCastException.
– Conversions between incompatible types are compile-time errors.

Basic tradeoffs
– Both prevent type errors
– Run-time checking slows down execution
– Compile-time checking restricts program flexibility

• JavaScript array: elements can have different types
• ML list: all elements must have same type

Typing

Static: type checking by analysis of program
– Compiler/interpreter verifies that type errors cannot occur
– C, C++, F#, Haskell, Java, OCaml

Dynamic: type checking done at run-time
– Runtime detects type errors and reports them.
– Usually requires extra tag information for values in memory.
– JavaScript, LISP, Matlab, PHP, Python, Ruby

Some mixed features, e.g., Java instanceof: most checking done at compile
time, but also checking at run time

Typing

Manifest: type information supplied in source code
– C, C++, Java (Do not confuse with Scala Manifests)

Implicit: type information not supplied in source code
– Dynamic typing: LISP, Python, Ruby, PHP
– Type inference: Haskell, OCaml, ML, Scala

Usually a spectrum
No reasonable language requires to write the type of 5 in x: int = 5

Type Inference: Examples in Java

Type inference and instantiation of Generic classes

You can substitute the parameterized type of the constructor with an empty set of
type parameters (<>):

Type Inference and Generic Methods

Map<String, List<String>> myMap =
new HashMap<String, List<String>>();

public static <U> void addBox(U u,
java.util.List<Box<U>> boxes) {

Box<U> box = new Box<>();
box.set(u);
boxes.add(box);

}

BoxDemo.<Integer>addBox(Integer.valueOf(10), listOfIntegerBoxes);
BoxDemo.addBox(Integer.valueOf(20), listOfIntegerBoxes);

Map<String, List<String>> myMap = new HashMap<>();

http://docs.oracle.com/javase/tutorial/java/generics/genTypeInference.html

Type Inference

Best known in functional languages
– Especially useful in managing the types of higher-order functions
– But starting to appear in mainstream languages, e.g., C++11:

auto x = e;
declares variable x, initialized with expression e, and type of x is automatically inferred

Invented by Robin Milner for SML
(Hindley–Milner inference algorithm)

Type Inference

ML: Global Type inference

Scala: Local type inference

fun fac (0 : int) : int = 1
| fac (n : int) : int = n * fac (n - 1)

fun fac 0 = 1
| fac n = n * fac (n - 1)

def factorial(n: Int): Int = {
if (n == 0)

return 1
else

return n * factorial(n-1)

A Type Checker: First Steps

For arithmetic expressions AE.

For arithmetic expressions and functions FAE.

Where are we?

There is a conceptual difference:
– Interpreters model the execution semantics
– Type checking belongs to the compilation phase

Compilation Execution

Lexer Parser Code Gen… Runtime GC…
Compile Time Run Time

InterpreterType Checker

A Type Checker: First Steps

An interpreter is a function, e.g., Expr -> Value

What about a type checker?

A Type Checker: First Steps

An interpreter is a function
– From a and expression to a value, e.g., FAE -> Value

What about a type checker?
– Conceptually: Expr -> Type, for example FAE -> Int or FAE -> Bool
– The type checker gets a program and returns its type.
– If the type checker cannot type the program i.e., the program is not correct (for what typing

concerns) it throws an error.

In practice the type checker throws an Exception
if the type checking does not succeed.

A Type Checker for AE

What can go wrong in the typing of such programs?

def typeOf (e: FE): Type = e match {

case Num(n) => TNum()

case Add(lhs, rhs)
if typeOf(lhs) == TNum() &&

typeOf(rhs) == TNum() => TNum()
…
}

See the
Interpreter

A Type Checker for BAE

Let’s add Booleans

Now type errors can occur:

assert(typeOf(And(Num(1),Bool(false))) == TBool())
See the
Interpreter

sealed abstract class FE
case class Num(n: Int) extends FE
case class Bool(b: Boolean) extends FE
case class Add(lhs: FE, rhs: FE) extends FE
case class Sub(lhs: FE, rhs: FE) extends FE
case class And(lhs: FE, rhs: FE) extends FE
case class Or(lhs: FE, rhs: FE) extends FE
case class Not(x: FE) extends FE
case class If(c: FE, ib: FE, eb: FE) extends FE

sealed abstract class Type
case class TNum() extends Type
case class TBool() extends Type

A Type Checker for FAE

How do we type functions?

The problem: how to give a type to the subexpression

The type of the Id identifier is not known at the time the type checking of such
expression is performed.

App(
Fun('n, Add(Id('n),Id('n))),

Num(10)
))

Add(Id('n),Id('n))

A Type Checker for FAE

Ask the user to provide a type annotation for the identifiers in the function
signature.

Propagate type information down in the expression tree using a typing context
– The typing context captures an assumption on the type of an identifier
– Use the typing context when typing subexpressions with identifiers

case class Add(lhs: FAE, rhs: FAE) extends FAE
case class App(funExpr: FAE, arg: FAE) extends FAE
case class Fun(param: Symbol, typ: Type, body: FAE) extends FAE
case class Id(id: Symbol) extends FAE

type Ctx = Map[Symbol, Type]

case Id(x) => ctx(x)

App(
Fun(’n, TNum(), Add(Id('n),Id('n))),
Num(10)

))

Add(Id('n),Id('n))

Acknowledgments

Partially based on content from

Vitaly Shmatikov, Types and Parametric Polymorphism, CS 345

Introduction to Programming Language Formalization

Programming Languages
A Journey into Abstraction and Composition

Prof. Dr. Guido Salvaneschi

Based on material by Benyamin Pierce
CIS 500, Software Foundations

Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic expressions:

Terminology: t here is a metavariable (or a nonterminal)

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

Terms, concretely

Define an infinite sequence of sets, S0, S1, S2, . . . , as follows:

S0 = ∅
Si +1 = {true, false, 0}

∪ {succ t1, pred t1, iszero t1 | t1 ∈ Si }
∪ {if t1 then t2 else t3 | t1, t2, t3 ∈ Si }

Now let

S = Ui S i

INDUCTION ON SYNTAX

Inductive Function Definitions

The set of constants appearing in a term t, written Consts (t), is defined as follows:

Simple, right?

Consts (true)
Consts (false)
Consts (0)
Consts (succ t1)
Consts (pred t1)
Consts (iszero t1)
Consts (i f t1 then t2 else t3)

= {true}
= {false}
= { 0 }
= Consts (t1)
= Consts (t1)
= Consts (t1)
= Consts (t1) ∪ Consts (t2) ∪ Consts (t 3)

Another Inductive Definition

size(true) = 1
size(false) = 1
size(0) = 1
size(succ t1) = size(t1) + 1
size(pred t1) = size(t1) + 1
size(iszero t1) = size(t1) + 1
size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1

A proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. I.e., |Consts (t)| ≤ size(t).

Proof:

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. I.e., |Consts (t)| ≤ size(t).

Proof: By induction on t.

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. I.e., |Consts (t)| ≤ size(t).

Proof: By induction on t.
Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. I.e., |Consts (t)| ≤ size(t).

Proof: By induction on t.
Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:
Case: t is a constant
Immediate: |Consts(t)| = |{t}| = 1 = size(t).

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. I.e., |Consts (t)| ≤ size(t).

Proof: By induction on t.
Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:
Case: t is a constant
Immediate: |Consts(t)| = |{t}| = 1 = size(t).
Case: t = succ t1, pred t1, or iszero t1
By the induction hypothesis, |Consts (t)| ≤ size(t). We now
calculate as follows:
|Consts (t)| = |Consts (t1)| ≤ size(t1) < size(t).

Case: t = if t1 then t2 else t3

By the induction hypothesis, |Consts (t1)| ≤ size(t1),
|Consts (t2)| ≤ size(t2), and |Consts (t3)| ≤ size(t3). We now
calculate as follows:

|Consts (t)| = |Consts (t1) ∪ Consts (t2) ∪ Consts (t3)|

≤ |Consts (t1)| + |Consts (t2)| + |Consts (t3)|

≤ size(t1) + size(t2) + size(t3)

< size(t).

Operational Semantics

Programming Languages
A Journey into Abstraction and Composition

Prof. Dr. Guido Salvaneschi

Based on material by Benyamin Pierce
CIS 500, Software Foundations

Abstract Machines

An abstract machine consists of:
– a set of states
– a transition relation on states, written ⟶

We read “t ⟶ t’” as “t evaluates to t’ in one step”

A state records all the information in the machine at a given moment.

For example, an abstract-machine-style description of a conventional
microprocessor would include the program counter, the contents of the registers,
the contents of main memory, and the machine code program being executed.

Abstract Machines

For the very simple languages we are considering at the moment, however, the
term being evaluated is the whole state of the abstract machine.

NB. Often, the transition relation is actually a partial function i.e., from a given
state, there is at most one possible next state.

But in general, there may be many.

Operational semantics for Booleans

Syntax of terms and values

t ::= terms
true constant true
false constant false
if t then t else t conditional

v ::= values
true true value
false false value

Evaluation relation for Booleans

The evaluation relation t ⟶ t’ is the smallest relation closed
under the following rules:

if true then t2 else t3 ⟶ t2 (E-IFTRUE)

if false then t2 else t3 ⟶ t3 (E-IFFALSE)

(E-IF)
t1 ⟶ t’1

if t1 then t2 else t3 ⟶ if t’1 then t2 else t3

Terminology

Computation rules:

if true then t2 else t3 ⟶ t2 (E-IFTRUE)

if false then t2 else t3 ⟶ t3 (E-IFFALSE)

Congruence rule:

t1 ⟶ t1’
if t1 then t2 else t3 ⟶ if t1’ then t2 else t3

(E-IF)

Computation rules perform “real” computation steps.
Congruence rules determine where computation rules can be applied next.

Evaluation, more explicitly

⟶ is the smallest two-place relation closed under the following rules:

The notation t ⟶ t’ is short-hand for (t, t’) ∈ ⟶.

((if true then t2 else t3), t2) ∈ ⟶

((if false then t2 else t3), t3) ∈ ⟶

(t1, t’1) ∈ ⟶ _
((if t1 then t2 else t3), (if t’1 then t2 else t3)) ∈ ⟶

Simple Arithmetic Expressions

The set T of terms is defined by the following abstract grammar:

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t Successor
pred t predecessor
iszero t zero test

Inference Rule Notation

\More explicitly: The set T is the smallest set closed under the following rules.

𝑡1 ∈ T
𝑠𝑢𝑐𝑐 𝑡1 ∈ T

𝑡1 ∈ T
𝑠𝑢𝑐𝑐 𝑡1 ∈ T

𝑡1 ∈ T
𝑠𝑢𝑐𝑐 𝑡1 ∈ T

true ∈ T false ∈ T 0 ∈ T

𝑡1 ∈ T 𝑡2 ∈ T 𝑡3 ∈ T
𝑖𝑓 𝑡1 𝑡ℎ𝑒𝑛 𝑡2 𝑒𝑙𝑠𝑒 𝑡3 ∈ T

Recap: Operational Semantics

Computation rules:

if true then t2 else t3 ⟶ t2 (E-IFTRUE)

if false then t2 else t3 ⟶ t3 (E-IFFALSE)

Congruence rule:

t1 ⟶ t1’
if t1 then t2 else t3 ⟶ if t1’ then t2 else t3

(E-IF)

Digression

Suppose we wanted to change our evaluation strategy so that the then and else
branches of an if get evaluated (in that order) before the guard.

How would we need to change the rules?

Digression

Computation rules:

if true then v2 else v3 ⟶ v2 (E-IFTRUE)

if false then v2 else v3 ⟶ v3 (E-IFFALSE)

Congruence rule:
t2 ⟶ t2’

if t1 then t2 else t3 ⟶ if t1 then t2’ else t3

t3 ⟶ t3’
if t1 then v2 else t3 ⟶ if t1 then v2 else t3’

t1 ⟶ t1’
if t1 then v2 else v3 ⟶ if t1’ then v2 else v3

Digression

Suppose, that if the evaluation of the then and else branches leads to the same
value, we want to immediately produce that value (“short-circuiting” the
evaluation of the guard).

How would we need to change the rules?

Of the rules we just invented, which are computation rules and which are
congruence rules?

Digression

Computation rules:

if true then v2 else v3 ⟶ v2 (E-IFTRUE)

if false then v2 else v3 ⟶ v3 (E-IFFALSE)

Congruence rule:
t2 ⟶ t2’

if t1 then t2 else t3 ⟶ if t1 then t2’ else t3

t3 ⟶ t3’
if t1 then v2 else t3 ⟶ if t1 then v2 else t3’

t1 ⟶ t1’ v2 != v3
if t1 then v2 else v3 ⟶ if t1’ then v2 else v3

v = v2 = v3
if t1 then v2 else v3 ⟶ v

REASONING ABOUT EVALUATION

Simple Arithmetic Expressions

The set T of terms is defined by the following abstract grammar:

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t Successor
pred t predecessor
iszero t zero test

Normal forms

A normal form is a term that cannot be evaluated any further
i.e., a term t is a normal form (or “is in normal form”) if there is no t′ s.t. t ⟶ t′.

A normal form is a state where the abstract machine is halted
i.e., it can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants true and false)
to be exactly the possible “results of evaluation.”
Did we get this definition right?

Recap: Language with Booleans

Syntax of terms and values

t ::= terms
true constant true
false constant false
if t then t else t conditional

v ::= values
true true value
false false value

Values = normal forms (Language with Booleans)

Theorem: A term t is a value iff it is in normal form.

Numbers

New syntactic forms

t ::= ... terms
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= ... Values
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

Let’s extend the language.
Will the results about values
and normal forms still hold?

Numbers

New evaluation rules

t1 ⟶ t′1
succ t1 ⟶ succ t′1

pred 0 ⟶ 0
pred (succ nv1)⟶ nv1

t1 ⟶ t′1
pred t1 ⟶ pred t′1
iszero 0 ⟶ true

iszero (succ nv1) ⟶ false

t1 ⟶ t′1
iszero t1 ⟶ iszero t′1

t1 ⟶ t′1

(E-Succ)

(E-PredZero)

(E-PredSucc)

(E-Pred)

(E-IszeroZero)

(E-IszeroSucc)

(E-IsZero)

Values are normal forms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

Values are normal forms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.
What are some examples?

Stuck terms model run-time errors.

Multi-step evaluation.

The multi-step evaluation relation, ⟶∗ , is the reflexive, transitive closure of
single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

t ⟶ t′
t ⟶∗ t′

t ⟶∗ t

t ⟶∗ t′ t′⟶∗ t′′
t ⟶∗ t′′

Termination of evaluation

Theorem: For every t there is some normal form t such that t ⟶* tʹ.

Proof:

Termination of evaluation

Theorem: For every t there is some normal form t’ such that t ⟶* tʹ.

Proof:
Ø First, recall that single-step evaluation strictly reduces the size of the term:

if t ⟶ t’, then size(t) > size(t’)
Ø Now, assume (for a contradiction) that

t0, t1, t2, t3, t4, . . .
is an infinite-length sequence such that

t0 ⟶ t1 ⟶ t2 ⟶ t3 ⟶ t4 ⟶ · · · .
Ø Then

size(t0) > size(t1) > size(t2) > size(t3) > . . .
Ø But such a sequence cannot exist — contradiction!

Type Systems, Formally

Programming Languages
A Journey into Abstraction and Composition

Prof. Dr. Guido Salvaneschi

Based on material by Benyamin Pierce
CIS 500, Software Foundations

Outline

1. begin with a set of terms, a set of values, and an evaluation relation

2. define a set of types classifying values according to their “shapes”

3. define a typing relation t : T that classifies terms according to the shape of
the values that result from evaluating them

4. check that the typing relation is sound in the sense that,
a. if t : T and t ⟶* v, then v : T
b. if t : T, then evaluation of t will not get stuck

Review: Arithmetic Expressions – Syntax

t ::= terms
true constant true
false constant false

if t then t else t conditional
0 constant zero

succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value

nv numeric value
nv ::= numeric values

0 zero value
succ nv successor value

Evaluation Rules

if true then t2 else t3 ⟶ t2

if false then t2 else t3 ⟶ t3

t1 ⟶ t′1
if t1 then t2 else t3 ⟶ if t′1 then t2 else t3

(E-IFTRUE)

(E-IFFALSE)

(E-IF)

t1 ⟶ t′1
succ t1 ⟶ succ t′1

pred 0 ⟶ 0

pred (succ nv1)⟶ nv1

t1 ⟶ t′1
pred t1 ⟶ pred t′1

iszero 0 ⟶ true

iszero (succ nv1) ⟶ false

t1 ⟶ t′1
iszero t1 ⟶ iszero t′1

(E-PREDZERO)

(E-SUCC)

(E-PREDSUCC)

(E-PRED)

(E-ISZEROZERO)

(E-ISZEROSUCC)

(E-ISZERO)

Types

In this language, values have two possible “shapes”: they are either booleans or
numbers.

T ::= types
Bool type of booleans
Nat type of numbers

Typing Rules

true : Bool

false : Bool

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

0 : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

t1 : Nat
iszero t1 : Bool

(T-TRUE)

(T-FALSE)

(T-IF)

(T-ZERO)

(T-SUCC)

(T-PRED)

(T-ISZERO)

0 : Nat 0 : Nat

iszero 0 : Bool 0 : Nat pred 0 : Nat
if iszero 0 then 0 else pred 0 : Nat

Typing Derivations

Every pair (t, T) in the typing relation can be justified by a derivation tree built
from instances of the inference rules.

Proofs of properties about the typing relation often proceed by induction on
typing derivations.

T-ISZERO T-ZERO T-PRED
T-IF

T-ZERO T-ZERO

Imprecision of Typing

Like other static program analyses, type systems are generally imprecise: they
do not predict exactly what kind of value will be returned by every program, but
just a conservative (safe) approximation.

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

Using this rule, we cannot assign a type to

if true then 0 else false

even though this term will certainly evaluate to a number.

(T-IF)

Type Safety

The safety (or soundness) of this type system can be expressed by two
properties:

Progress: A well-typed term is not stuck
If t : T, then either t is a value or else t ⟶ t′ for some t′.

Preservation: Types are preserved by one-step evaluation
If t : T and t ⟶ t′, then t′ : T.

Recap: Type Systems

Very successful example of a lightweight formal method

Big topic in PL research

Enabling technology for all sorts of other things, e.g. language-based security

The skeleton around which modern programming languages are designed

A Type System for The Lambda Calculus

Based on material by Benyamin Pierce
CIS 500, Software Foundations

Syntax

Terminology:
Ø terms in the pure 𝜆-calculus are often called 𝜆–terms
Ø terms of the form 𝜆x. t are called 𝜆-abstractions or just abstractions

t ::= terms
x variable
𝜆x.t abstraction
t t application

Syntactic conventions

Since 𝜆-calculus provides only one-argument functions, all multi-argument
functions must be written in curried style.

The following conventions make the linear forms of terms easier to read:

Application associates to the left
E.g., t u v means (t u) v, not t (u v)

Bodies of 𝜆-abstractions extend as far to the right as possible
E.g., 𝜆x.𝜆y.xy means 𝜆x.(𝜆y.xy), not 𝜆x.(𝜆y.x)y

Scope

The 𝜆-abstraction term 𝜆x.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction binding x are
said to be free.

𝜆x. 𝜆y. x y z
𝜆x. (𝜆y. z y) y

Values

v ::= values
𝜆x.t abstraction value

Operational Semantics

Computation rule:

(𝜆 x.t12) v2 ⟶ [x ⟼ v2]t12 (E-APPABS)

Notation: [x ⟼ v2]t12 is “the term that results from substituting free occurrences of x in
t12 with v12.”

Congruence rules:

t1 ⟶ t′1
t1 t2 ⟶ t′1 t2

t2 ⟶ t′2
v1 t2 ⟶ v1 t′2

(E-APP1)

(E-APP2)

Normal forms

Recall:

Ø A normal form is a term that cannot take an evaluation step.
Ø A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure 𝜆-calculus?
Prove it.

Normal forms

Recall:

Ø A normal form is a term that cannot take an evaluation step.
Ø A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure 𝜆-calculus?
Prove it.
Does every term evaluate to a normal form?
Prove it.

The simply typed lambda-calculus

The system we are about to define is commonly called the simply typed lambda-
calculus, or 𝜆⟶ for short.

Unlike the untyped lambda-calculus, the “pure” form of 𝜆⟶ (with no primitive
values or operations) is not very interesting; to talk about 𝜆⟶, we always begin
with some set of “base types.”
Ø So, strictly speaking, there are many variants of 𝜆⟶, depending on the choice

of base types.
Ø For now, we’ll work with a variant constructed over the booleans.

Untyped lambda-calculus with booleans
t ::= terms

x variable
𝜆x.t abstraction
t t application
true constant true

false constant false
if t then t else t conditional

v ::= values
𝜆x.t abstraction value
true true value
false false value

“Simple Types”

T ::= types

Bool type of booleans

T ⟶ T types of functions

Type Annotations

We now have a choice to make. Do we...

Ø annotate lambda-abstractions with the expected type of the argument
𝜆x:T1. t2

(as in most mainstream programming languages), or

Ø continue to write lambda-abstractions as before
𝜆x. t2

and ask the typing rules to “guess” an appropriate annotation (as in OCaml)?

Both are reasonable choices, but the first makes the job of defining the typin
rules simpler. Let’s take this choice for now.

Typing rules

true : Bool

false : Bool

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

(T-TRUE)

(T-FALSE)

(T-IF)

Typing rules

true : Bool

false : Bool

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

???
𝜆x:T1.t2 : T1 ⟶ T2

(T-TRUE)

(T-FALSE)

(T-IF)

(T-ABS)

Typing rules

true : Bool

false : Bool

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

⎾ , x:T1 ├ t2 : T2
⎾ ⊢ 𝜆x:T1.t2 : T1 ⟶ T2

x:T ∈ ⎾
⎾ ⊢ x:T

(T-TRUE)

(T-FALSE)

(T-IF)

(T-ABS)

(T-VAR)

Typing rules

⎾ ⊢ true	:	Bool

⎾ ⊢ false	:	Bool

⎾ ⊢ t1 : Bool ⎾ ⊢ t2 : T ⎾ ⊢ t3 : T
⎾ ⊢ if t1 then t2 else t3 : T

⎾ , x:T1 ├ t2 : T2
⎾ ⊢ 𝜆x:T1.t2 : T1 ⟶ T2

x:T ∈ ⎾
⎾ ⊢ x:T

⎾ ⊢ t1 : T11 ⟶ T12 ⎾ ⊢ t2 : T11
⎾ ⊢ t1 t2 : T12

(T-TRUE)

(T-FALSE)

(T-IF)

(T-ABS)

(T-VAR)

(T-APP)

Typing Derivations

What derivations justify the following typing statements?

⊢ (𝜆x:Bool.x)	true	:	Bool

f:Bool⟶ Bool	⊢ f	(if	false	then	true	else	false)	:	Bool

f:Bool⟶ Bool	⊢ 𝜆x:Bool.	f	(if	x	then	false	else	x)	:	Bool	⟶ Bool

Properties of 𝜆⟶

The fundamental property of the type system we have just defined is soundness
with respect to the operational semantics.

Progress: A closed, well-typed term is not stuck
If ⊢ t	:	T, then either t	is a value or else t	⟶ t ′ for some t ′.

Preservation: Types are preserved by one-step evaluation
If ⎾⊢ t	:	T	and t	⟶ t ′, then ⎾⊢ t ′ :	T.

