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Errors in Programs

We write and execute programs.
We expect certain behaviors.
But programs can go wrong! you know?
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Name
ntoskrnl .exe
atapi.sys
aic?78xx.sys
CLASS2 .SY¥S
Floppy .S¥S
Fs_Rec .S¥S
KSecDD.SY¥S
i8842p»t .s5ys
kbdclass .sys
mga_mil .sys
Msfs .SYS

ND IS .S¥S
mga.dll
TDI.S¥S
tcpip.sys
el59x.sys
netbios .sys
Parallel .S¥YS
Sexrial .S¥S
Mup .sys

Build [1381]

143e808 861440080
144808 ffdffeee
883fef fB30eeen
88823c AHBBHB34

SYSUVER 8xf8888565

Do

he recovery options
G system start option.

f£fdf£08
8386860b
133c4b
8806008

D11 Base
806166060
80886000
8862cdBBn
88637cB88
fc6a80080
fc9c90808808
fc9cabfng
fc86cBBH
fc6f0000
fc896808080
fc4bbhooo
afdvsnneeen
fec3100606
feafbfnnn
feab388686
fco560000
fc8580080
£fc9540800
feadcBnn
fe9danng

LOD®

DateStmp
3leebcdH2
3lec6c?4
31ed237c
3leedBa?
3lecé6ecal
3lec6c99
3lec6c?8
3lec6c9?
31£f58722
3lecbectd
3lecbecc?
31£954£f7
3leeddB?
31edB8?754
31£f58a65
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3lec6c9b
3lec6c9d
31£f56830b
32831 abe

in the system control

Bx880080019 (BxPBABBVB0,8<xCABERFFB, XFFFFEFD4,8xCO006806806)

Name

hal .d1l1
SCSIPORT .S¥S
Disk.sys
Ntfs .sys
Cdrom.S¥S
Null .S¥S
Beep .SYS
mouclass .sys
UIDEOPORT .SY¥S
vga.sys

Npfs .SYS
win32k.sys
Fastfat .SY¥S
nbf .sys
netbt .sys
afd.sys
Parport .sys
ParUdm.SY¥S
rdy» .S5ys

SrV .Sys

Name

— KSecDD.SY¥S

ntoskrnl .exe
ntoskrnl .exe
ntoskrnl .exe

ranel



' this 15 the Frst time you've seen this Stop erroe scraen,
- estart &r computer. If ﬁs screen wsogggjn;-fqlw(,
T - 20 ¥ L e
%l % to make sure new |
1 .tM§ is a new 1\‘”:!11“

for any windows updates

. D problems conti

or software. Dis

1f you WW k
your computer, press F8
select safq s

. P2 information:

ww¥ STOP: OX00000050 (OXBOOOOSF2,0x00000000, OXB04ESICS,

0X00000000)
tr

seginning dusp of physical memory ik

gysical memory dump complete. .
fontact your system administrator or technical support group for further
assistance. .

-







Compiler

S|

. Source
code

Lexical analysis

Syntactic analysis

Semantic analysis

Code generation

Code optimization

[

misbehaving

— Parser

type systems prevent programs from



Robin Milner

“Well-typed programs cannot go wrong”
-- Robin Milner, 1978

1934 - 2010

Robin Milner received Turing award 1991 for
— Logic for computable functions (LCF)
— Programming language ML
— Calculus of communicating systems (CCS), pi-calculus
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Let’'s Look at a Few Existing Type Systems

What kind of type systems do you know?

Which guarantees do the provide?
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Let’'s Look at a Few Existing Type Systems

class Marker {
int position = 0;
public void move() { position += 1; }

Marker m = new Marker();
m.move();
m.move();
m.move();

m.pause();
Ty R AT s
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Let’'s Look at a Few Existing Type Systems

length :: [a] -> Int
length []=0
length (x : xs) = 1 + length xs

map :: (a -> b) ->[a] -> [b]

map f[] =]
map f(x : xs) =fx: map fxs

length [1,2,3,4]
length ["a”, “b"]

map int-to-string [1,2,3,4]

13 ” (1

map int-to-string ["a”, “b"]
s s
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Let’'s Look at a Few Existing Type Systems

data Tree a =
| Leafa
| Node (Tree a) (Tree a)

t = Node (Leaf 3) (Node (Leaf 4) (Leaf 19))

treesum :: Tree Int -> Int

treesum t = case t of
Leaf a=>a
Node t1 t2 => treesum t1 + treesum {2

t2 = Node (Leaf 3) (Node “leaf’ (Leaf 5))

E . - e
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Let’'s Look at a Few Existing Type Systems

class FastMarker extends Marker {
public void moveFast(int steps) {
for (inti = 0; i < steps; i++) move();

FastMarker m1 = new FastMarker();
m1.move(); m1.moveFast();

Marker m2 = new FastMarker();
m2.move();

m2.moveFast();

subtyping
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Let’'s Look at a Few Existing Type Systems

String[] strings = new String {"a”, “b”, “c™};
Object[] objects = strings; // ‘objects’ and ‘strings’ are exactly the same

[/ Some legitimate operations
Object o = strings[0];
objects[0] = “abc”; /I strings[0] equals “abc”

objects[0] = new Integer(5);
int size = 0;

for (String s : strings) run=time error
size += s.length();
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Let’'s Look at a Few Existing Type Systems
String[] strings = new String {"a”, “b”, “c”};
Object[] objects = strings; // ‘objects’ and ‘strings’ are exactly the same

Object o = strings[0];
objects[0] = “abc”; /I strings[0] == “abc”

objects[0] = new Integer(5);

The type system accepts the program but program does go wrong at run time!
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Types

Program behavior defined

. Source |
by language semantics code
Distinguish:

A 4
run time

Lexical analysis
compile time

<

Syntactic analysis

2%

SElEEEREL R Semantic analysis

dynamic semantics
static semantics

v
dynamic semantics —

Run time
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What is a Type?

A type is a collection of computable values that share some structural property

Examples “Non-examples”
Integers
Strings 3, true, x.x
it bool Even integers

(int -> int) ->bool {fiint -> int | if x>3 then f(x) > x*(x+1)}

Distinction between sets that are types and
sets that are not types is language-dependent
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Strong vs. Weak Typing

A language is strongly typed if its type system allows all type errors in a
program to be detected either at compile time or at run time.
— A strongly typed language can be statically or dynamically typed!
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Compile vs. run-time checking

Type-checking at compile time: C, ML
Type-checking at run time: Perl, JavaScript

Java does both

— Widening conversions always valid: performed implicitly.
— Narrowing conversions. Validity cannot be determined at compile time; they require an
explicit cast and may throw ClassCastException.

— Conversions between incompatible types are compile-time errors.

Basic tradeoffs
— Both prevent type errors
— Run-time checking slows down execution
— Compile-time checking restricts program flexibility
» JavaScript array: elements can have different types
* ML list: all elements must have same type
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Typing

Static: type checking by analysis of program
— Compiler/interpreter verifies that type errors cannot occur
— C, C++, F#, Haskell, Java, OCaml

Dynamic: type checking done at run-time
— Runtime detects type errors and reports them.

— Usually requires extra tag information for values in memory.
— JavaScript, LISP, Matlab, PHP, Python, Ruby

Some mixed features, e.g., Java instanceof: most checking done at compile
time, but also checking at run time
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Typing

Manifest: type information supplied in source code
— C, C++, Java (Do not confuse with Scala Manifests)
Implicit: type information not supplied in source code
— Dynamic typing: LISP, Python, Ruby, PHP
— Type inference: Haskell, OCaml, ML, Scala

Usually a spectrum
No reasonable language requires to write the type of 5in x: int = 5
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Type Inference: Examples in Java

Type inference and instantiation of Generic classes

Map<String, List<String>> myMap =
new HashMap<String, List<String>>();

You can substitute the parameterized type of the constructor with an empty set of
type parameters (<>):

Map<String, List<String>> myMap = new HashMap<>();
Type Inference and Generic Methods

public static <U> void addBox(U u,
java.util.List<Box<U>> boxes) {
Box<U> box = new Box<>();
box.set(u);
boxes.add (box) ;

}

BoxDemo.<Integer>addBox(Integer.valueOf(10), listOfIntegerBoxes);
BoxDemo.addBox(Integer.valueOf(20), listOfIntegerBoxes);
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Type Inference

Best known in functional languages

— Especially useful in managing the types of higher-order functions

— But starting to appear in mainstream languages, e.g., C++11:
auto x = e;

declares variable x, initialized with expression e, and type of x is automatically inferred

Invented by Robin Milner for SML
(Hindley—Milner inference algorithm)
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Type Inference

ML: Global Type inference

fun fac 0 =1

| fac n = n * fac (n - 1)
fun fac (0 : int) : int =1
| fac (n : int) : int = n * fac (n - 1)

Scala: Local type inference

def factorial(n: Int): Int = {
if (n == 0)
return 1
else
return n * factorial(n-1)
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A Type Checker: First Steps

For arithmetic expressions AE.

For arithmetic expressions and functions FAE.
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Where are we?

There is a conceptual difference:

— Interpreters model the execution semantics
— Type checking belongs to the compilation phase

Compilation

Compile Time

Type Checker Interpreter
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A Type Checker: First Steps

An interpreter is a function, e.g., Expr -> Value

What about a type checker?
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A Type Checker: First Steps

An interpreter is a function
— From a and expression to a value, e.g., FAE -> Value

What about a type checker?
— Conceptually: Expr -> Type, for example FAE -> Int or FAE -> Bool
— The type checker gets a program and returns its type.

— If the type checker cannot type the program i.e., the program is not correct (for what typing
concerns) it throws an error.

In practice the type checker throws an Exception
if the type checking does not succeed.
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A Type Checker for AE

What can go wrong in the typing of such programs?

def typeOf (e: FE): Type = e match {
case Num(n) => TNum()

case Add(lhs, rhs)
1f typeOf(lhs) == TNum() &&
typeOf(rhs) == TNum() => TNum()
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A Type Checker for BAE

Let’'s add Booleans

sealed abstract class FE

case class
case class
case class
case class
case class
case class
case class
case class

Num(n: Int) extends FE

Bool(b: Boolean) extends FE

Add(lhs: FE, rhs: FE) extends FE
Sub(lhs: FE, rhs: FE) extends FE
And(lhs: FE, rhs: FE) extends FE
Or(lhs: FE, rhs: FE) extends FE
Not(x: FE) extends FE

If(c: FE, ib: FE, eb: FE) extends FE

Now type errors can occur:

assert(typeOf(And(Num(1),Bool(false))) == TBool())
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sealed abstract class Type
case class TNum() extends Type
case class TBool() extends Type

See the
Interpreter




A Type Checker for FAE

How do we type functions?

App(
Fun(C'n, Add(Id(C'n),IdC'n))),
Num(10)
D))

The problem: how to give a type to the subexpression

Add(CId('n),IdC'n))

The type of the Id identifier is not known at the time the type checking of such
expression is performed.
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A Type Checker for FAE

Ask the user to provide a type annotation for the identifiers in the function

signature.

case
case
case
case

class Add(lhs: FAE, rhs: FAE) extends FAE

class App(funExpr: FAE, arg: FAE) extends FAE

class Fun(param: Symbol, typ: Type, body: FAE) extends FAE
class Id(id: Symbol) extends FAE

type Ctx = Map[Symbol, Type]

Propagate type information down in the expression tree using a typing context
— The typing context captures an assumption on the type of an identifier
— Use the typing context when typing subexpressions with identifiers

App(
Fun(

Add(CId('n),Id(C'nd)
, TNum(C), Add(Id(C'n),IdC'n))),

Num(12)

J)
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Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic expressions:

t ::= terms
true constant true
false constant false
if t then t else t conditional
%) constant zero
succ t successor
pred t predecessor
iszero t zero test

Terminology: t here is a metavariable (or a nonterminal)
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Terms, concretely

Define an infinite sequence of sets, So, S1, So, . .., as follows:

So =g

Si+1 = {true, false, 0}
U {succ t1, pred t1, iszero t1 |t1 € Si}
U {if t1 then t2 else t3 | t1, t2, t3 € Si}

Now let

S = UiSi
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INDUCTION ON SYNTAX



Inductive Function Definitions

The set of constants appearing in a term t, written Consts (1), is defined as follows:

Consts (true) = {true}
Consts (false) = {false}
Consts (0) {0}

Consts (succ t1)

Consts (pred t1) Consts (t1)
Consts (iszero t1) Consts (t1)
Consts (if t1 then t2 else t3) = Consts (t1) U Consts (t2) U Consts (t3)

Consts (t1)

Simple, right?
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Another Inductive Definition

size(true) =1

size(false) =1

size(9) =1

size(succ t,) = size(t;) + 1

size(pred t,) = size(t;) + 1

size(iszero t,) = size(t;) + 1

size(if t; then t, else t;) = size(t;) + size(t,) + size(t;) + 1
e
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A proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e,, |Consts (t)| < size(t).

Proof:
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Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e,, |Consts (t)| < size(t).

Proof: By induction on t.
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Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e,, |Consts (t)| < size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we
must prove it for t itself.
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Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e,, |Consts (t)| < size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:
Case: t is a constant

Immediate: |Consts(t)| = [{t}| = 1 = size(t).
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Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e,, |Consts (t)| < size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:
Case: t is a constant

Immediate: |Consts(t)| = [{t}| = 1 = size(t).

Case: t = succ t;, pred t;, or iszero t;

By the induction hypothesis, |Consts (t)| < size(t). We now
calculate as follows:

|Consts (t)| = |Consts (t;)| < size(t,) < size(t).
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Case: t = if t; then t, else t;
By the induction hypothesis, |Consts (t;)| < size(t,),

|Consts (t,)| < size(t,),and |Consts (t;)| < size(t;). We now
calculate as follows:

|Consts (t)| = |Consts (t,) U Consts (t,) U Consts (t;)]
< |Consts (t,)| + |[Consts (t,)| + |Consts (t;)]
< size(t;) + size(t,) + size(ty)

< size(t).
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Abstract Machines

An abstract machine consists of:

— a set of states
— a transition relation on states, written —

We read “t — t’°” as “t evaluates to t’ in one step”

A state records all the information in the machine at a given moment.

For example, an abstract-machine-style description of a conventional
microprocessor would include the program counter, the contents of the registers,
the contents of main memory, and the machine code program being executed.
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Abstract Machines

For the very simple languages we are considering at the moment, however, the
term being evaluated is the whole state of the abstract machine.

NB. Often, the transition relation is actually a partial function i.e., from a given
state, there is at most one possible next state.

But in general, there may be many.
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Operational semantics for Booleans

Syntax of terms and values

t=
true
false
if t then t else t
V=
true
false
 sricmmerion
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terms
constant true

constant false
conditional

values
true value

false value



Evaluation relation for Booleans

The evaluation relation t — t' is the smallest relation closed
under the following rules:

if true then t, else t; — t, (E-IFTRUE)

if false then t, else t; — t; (E-IFFALSE)

t, — t’1
if t; then t, else t; — if t’1 then t, else t;

(E-IF)
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Terminology

Computation rules:

if true then t2 else t3 — t2 (E-IFTRUE)

if false then t2 else t3 — t3 (E-IFFALSE)

Congruence rule:

t, — t;’°
if t; then t, else t; — if t;? then t, else t;

(E-IF)

Computation rules perform “real” computation steps.
Congruence rules determine where computation rules can be applied next.
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Evaluation, more explicitly
— is the smallest two-place relation closed under the following rules:

((if true then t, else t;), t,) € —
((if false then t, else t3), t;) € —

(t., £t2.) € —

((if t; then t, else t;), (if t’; then t, else t;)) € —

The notationt — t’ isshort-hand for (t, t’) € —.
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Simple Arithmetic Expressions

The set 7 of terms is defined by the following abstract grammar:

t ::= terms

true constant true

false constant false

if t then t else t conditional

0 constant zero
succ t Successor
pred t predecessor
iszero t zero test
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Inference Rule Notation

\More explicitly: The set 7 is the smallest set closed under the following rules.

true €T falseeT OET
ty, €T ty, €T ty, €T
succt; €T succt; €T succt; €T

t, €T t, €T t; €T
if tythent,elset; €T
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Recap: Operational Semantics

Computation rules:

if true then t2 else t3 — t2 (E-IFTRUE)

if false then t2 else t3 — t3 (E-IFFALSE)

Congruence rule:

t, — t;’°
if t; then t, else t; — if t;? then t, else t;

(E-IF)
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Digression

Suppose we wanted to change our evaluation strategy so that the then and else
branches of an if get evaluated (in that order) before the guard.

How would we need to change the rules?
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Digression

Computation rules:

if true then v2 else v3 — v2 (E-IFTRUE)

if false then v2 else v3 — v3 (E-IFFALSE)

Congruence rule:

t2

t2°

—>
—

if t; then t, else t;

t3

if t; then t,’ else t;

t3°

L

if t; then v, else t;

t1

if t; then v, else t3’°

t1°

L

if t; then v, else v;
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Digression

Suppose, that if the evaluation of the then and else branches leads to the same
value, we want to immediately produce that value (“short-circuiting” the
evaluation of the guard).

How would we need to change the rules?

Of the rules we just invented, which are computation rules and which are
congruence rules?
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Digression

V = V, = V3

Computation rules: if t,; then v, else v; — v

if true then v2 else v3 — v2 (E-IFTRUE)

if false then v2 else v3 — v3 (E-IFFALSE)

Congruence rule:

t2

t2°

—>
—

if t; then t, else t;

t3

if t; then t,’ else t;

t3°

ﬁ
if t; then v, else t; —

t1 — t1°

if t; then v, else t3’°

V2 != V3

if t; then v, else v; —
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REASONING ABOUT EVALUATION



Simple Arithmetic Expressions

The set 7 of terms is defined by the following abstract grammar:

t ::= terms

true constant true

false constant false

if t then t else t conditional

0 constant zero
succ t Successor
pred t predecessor
iszero t zero test
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Normal forms

A normal form is a term that cannot be evaluated any further
i.e., aterm t is a normal form (or “is in normal form”) if thereisnot's.t. t — t'.

A normal form is a state where the abstract machine is halted
i.e., it can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants true and false)
to be exactly the possible “results of evaluation.”

Did we get this definition right?
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Recap: Language with Booleans

Syntax of terms and values

t=
true
false
if t then t else t
V=
true
false
 sricmmerion
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terms
constant true

constant false
conditional

values
true value

false value



Values = normal forms (Language with Booleans)

Theorem: Aterm t is a value iff it is in normal form.
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Numbers

New syntactic forms

0
succ t
pred t
iszero t

nv

Succ nv
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Let's extend the language.
Will the results about values
and normal forms still hold?

terms
constant zero
successor
predecessor
zero test

Values
numeric value

numeric values
zero value
successor value



Numbers

New evaluation rules t, —» t';
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t, — tll (E_SUCC)
succt; — succ t;

(E-PredZero)
pred @ — ©

pred (succ nvy) — nvy  (E-PredSucc)
t, — tll
pred t; — pred t; (E-Pred)
iszero @ — true

(E-1szeroZero)

iszero (succ nv,) — false

t — t (E-IszeroSucc)

iszerot; — iszero t';

(E-IsZero)



Values are normal forms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? l.e., is every normal form a value?
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Values are normal forms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? l.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.
What are some examples?

Stuck terms model run-time errors.
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Multi-step evaluation.

The multi-step evaluation relation, —* | is the reflexive, transitive closure of
single-step evaluation.

l.e., it is the smallest relation closed under the following rules:

t — t

t —x t'

t —x t

t —x _t/ t,—>* _t//

_t — % _tll
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Termination of evaluation

Theorem: For every t there is some normal form t such thatt —* t’.

Proof:
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Termination of evaluation

Theorem: For every t there is some normal form t’ such thatt —* t’.

Proof:

» First, recall that single-step evaluation strictly reduces the size of the term:
ift — t’, thensize(t) > size(t’)

» Now, assume (for a contradiction) that
to, T2, T2y T3, Ty ...
is an infinite-length sequence such that
ty =>t; =t, =t; >t — -
» Then
Size(ty) > size(t;) > size(t,) > size(ts;) > ...
» But such a sequence cannot exist — contradiction!
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Based on material by Benyamin Pierce
CIS 500, Software Foundations

Programming Languages
A Journey into Abstraction and Composition

Type Systems, Formally

Prof. Dr. Guido Salvaneschi
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Outline

1. begin with a set of terms, a set of values, and an evaluation relation
2. define a set of types classifying values according to their “shapes”

3. define a typing relation t : T that classifies terms according to the shape of
the values that result from evaluating them

4. check that the typing relation is sound in the sense that,
a. ift : Tandt —* v,thenv : T
b. ift : T, then evaluation of t will not get stuck
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Review: Arithmetic Expressions — Syntax

true

false

if t then t else t

%)

succ t

pred t

iszero t

true
false
nv
nv ::=
0

Ssucc nv
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terms
constant true
constant false
conditional
constant zero
successor
predecessor
zero test

values
true value
false value
numeric value

numeric values
zero value

successor value



Evaluation Rules

if true then t, else t; — 1, (E-IFTRUE)

if false then t, else t; — t; (E-IFFALSE)

t, — t,]_

if t; then t, else t; — 1if t'; then t, else t; (E-1F)
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t, —» t’;

succ t; — succ t';

pred 8 — 0
pred (succ nvi) — nv,

t, — tll

pred t; — pred t’;
iszero @ — true
iszero (succ nv;) — false

t, —» t’;

iszero t; — iszero t';

(E-Sucq)

(E-PREDZERO)

(E-PREDSUCC)

(E-PRED)

(E-ISZEROZERO)

(E-1szErOSUCC)

(E-ISZERO)



Types

In this language, values have two possible “shapes”. they are either booleans or
numbers.

T ::= types
Bool type of booleans
Nat type of numbers
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Typing Rules
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true : Bool (T-TRUE)
false : Bool (T-FALSE)
t, : Bool t, : T t; : T

if t; then t, else t5 : T (T-IF)

O : Nat
(T-ZERO)

t, : Nat
succ t; : Nat (T-SucQ)

t, : Nat
pred t; : Nat (T-PRED)

t, : Nat

iszero t; : Bool

(T-1ISZERO)



Typing Derivations

Every pair (t, T) in the typing relation can be justified by a derivation tree built
from instances of the inference rules.

T-ZERO T-ZERO
@ : Nat @ : Nat
T-ISZERO T-ZERO T-PRED
1szero © : Bool @ : Nat pred © : Nat T-IF

if iszero © then 0 else pred 0 : Nat

Proofs of properties about the typing relation often proceed by induction on
typing derivations.
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Imprecision of Typing

Like other static program analyses, type systems are generally imprecise: they
do not predict exactly what kind of value will be returned by every program, but
just a conservative (safe) approximation.

t; : Bool t, : T t3 ¢ T (T-1F)
if t; then t, else t3 : T

Using this rule, we cannot assign a type to
if true then @ else false

even though this term will certainly evaluate to a number.
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Type Safety

The safety (or soundness) of this type system can be expressed by two
properties:

Progress: A well-typed term is not stuck
Ift : T, then eithertis avalue orelset — t' for some t'.

Preservation: Types are preserved by one-step evaluation
Ift : Tandt — t',thent’ : T.
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Recap: Type Systems

Very successful example of a lightweight formal method
Big topic in PL research
Enabling technology for all sorts of other things, e.g. language-based security

The skeleton around which modern programming languages are designed
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Based on material by Benyamin Pierce
CIS 500, Software Foundations

A Type System for The Lambda Calculus
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t ::= terms
X variable
Ax.t abstraction
tt application
Terminology:.

» terms in the pure A-calculus are often called A—-terms
» terms of the form Ax. t are called A-abstractions or just abstractions
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Syntactic conventions

Since A-calculus provides only one-argument functions, all multi-argument
functions must be written in curried style.

The following conventions make the linear forms of terms easier to read:

Application associates to the left
E.g., tuvmeans (1 u)v, not t(uv)

Bodies of 1-abstractions extend as far to the right as possible
E.g., Ax.Ay.xy means Ax. (Ay.xy), not Ax. (Ay.x)y
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Scope

The A-abstraction term Ax. t binds the variable x.
The scope of this binding is the body t.
Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction binding x are
said to be free.

AX. Ay. Xy z
AX. (ly. zy)y
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Values

AX.t
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values
abstraction value



Operational Semantics

Computation rule:
(Ax.t) v — [X — vy]ts (E-APPABS)

Notation: [x — v,]t,, is “the term that results from substituting free occurrences of x in
tlz With V12. ”

Congruence rules:

t, — tll

tl tz N tll -t2 (E‘APP1)
t, — tlz

v, t, —vq tlz (E‘APPZ)
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Normal forms

Recall:

» A normal form is a term that cannot take an evaluation step.
» A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure A-calculus?
Prove it.
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Normal forms

Recall:

» A normal form is a term that cannot take an evaluation step.
» A stuck term is a normal form that is not a value.

Are there any stuck terms in the pure A-calculus?
Prove it.

Does every term evaluate to a normal form?
Prove it.
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The simply typed lambda-calculus

The system we are about to define is commonly called the simply typed lambda-
calculus, or A_, for short.

Unlike the untyped lambda-calculus, the “pure” form of 1_, (with no primitive

values or operations) is not very interesting; to talk about 1_,, we always begin
with some set of “base types.”

» So, strictly speaking, there are many variants of 1_,, depending on the choice
of base types.

» For now, we’ll work with a variant constructed over the booleans.
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Untyped lambda-calculus with booleans

t ::= terms
X variable
Ax.t abstraction
tt application
true constant true
false constant false
if t then t else t conditional
V o= values
Ax.t abstraction value
true true value
false false value
P
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“Simple Types”

T ::= types
Bool type of booleans
T —T types of functions
’ School of Computer Science
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Type Annotations

We now have a choice to make. Do we...

» annotate lambda-abstractions with the expected type of the argument
AX:T,. t
(as in most mainstream programming languages), or

» continue to write lambda-abstractions as before
AX. t,
and ask the typing rules to “guess” an appropriate annotation (as in OCaml)?

Both are reasonable choices, but the first makes the job of defining the typin
rules simpler. Let’s take this choice for now.
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Typing rules

true : Bool (T-TRUE)
false : Bool
(T-FALSE)
t, : Bool t, ¢ T t; ¢ T
if t; then t, else t5 : T (T-1F)
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Typing rules
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true : Bool (T-TRUE)
false : Bool
(T-FALSE)
t, : Bool t, ¢ T t; ¢ T
if t; then t, else t5 : T (T-1F)
PP
AX:T,.t, ¢+ T —T, (T-ABS)



Typing rules
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t, :

true : Bool

false : Bo

ol

Bool t, ¢ T t;

T

if t; then t, else t; :

[, x:T; F &,

T,

[+ AXx:T..t,

x:T e
T x:T

T,—T,

T

(T-TRUE)
(T-FALSE)

(T-IF)

(T-ABS)

(T-VAR)



Typing rules
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[ F true : Bool

[ I false : Bool

[+ t; : Bool [ Fty: T

[ +t3:T

[ +ift;thent,elset;: T

|_,X:T1 |‘t2:T2

N AX:Tl.tz . T1 — Tz

xT € [
[+ x:T

|_|—t1:T11 —)le

|_|—t2:T11

|_|—t1t2:T12

(T-TRUE)
(T-FALSE)

(T-IF)

(T-ABS)

(T-VAR)

(T-APP)



Typing Derivations

What derivations justify the following typing statements?

- (Ax:Bool.x) true : Bool
f:Bool — Bool I f (if false then true else false) : Bool

f:Bool — Bool + Ax:Bool. f (if x then false else x) : Bool — Bool
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Properties of 4_,

The fundamental property of the type system we have just defined is soundness
with respect to the operational semantics.

Progress: A closed, well-typed term is not stuck
If - t: T, then either tis a value or else t— t' for some t'.

Preservation: Types are preserved by one-step evaluation
If [ - t:Tandt— t',then [ +t':T.
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