
Programming Language Semantics and Design

Programming Languages
A Journey into Abstraction and Composition

Prof. Dr. Guido Salvaneschi



WHY STUDYING PROGRAMMING 
LANGUAGES?



Why Programming Languages?

Programming Languages are a powerful tool to control software complexity

“Better” languages increase our ability to deal with complex problems
– Better languages ‘capture’ a solution more directly.

i = 1
while ( i < 4 ) {

print(i)
i = i + 1

}



The Goal of this Course

Provide insights into the core concepts of PLs

Concepts/abstractions:
– How does it work?
– How can we implement it?
– How do they interact with each other?

Which concepts should we use
– E.g., can we build a full language from a minimal “core”?

Concepts/abstractions are the building blocks of new languages



What do we Study?

Every programming language consists of four elements:

1. Syntax: structure of programs
2. Semantics: meaning associated to syntax
3. Libraries: reusable computations
4. Idioms used by programmers of that language

Can you make examples for each of those?
Which of these elements is the most important for the study of PLs?



What do we Study?

Which of the code fragments is most similar:

a[25] + 5 (Java)
(+ (vector-ref a 25) 5) (Scheme)
a[25] + 5 (C)

But semantics can be different. 
E.g., memory writes and array boundaries…



How to Express Semantics?

Informal specs and language surveys

Formal specs: operational, denotational, axiomatic semantics, 
… not the focus of this course

Interpreter semantics (cousin of operational semantics) 
– Explain a language by writing an interpreter for it
– By telling the computer how to 'execute a concept' we thoroughly understand it ourselves

We’ll interleave language surveys and interpreters
– We will also peek at formal semantics 
– Inductive versus deductive learning



Interpreter Semantics

An interpreter that defines a language cannot be “wrong”. 
– It defines the meaning

Assigning ‘+’ another meaning than addition is not wrong,
at most it is unconventional

– Can you make an example?

Only, when given another specification of a language, one can speak about the 
correctness of the interpreter relative to the specification

– Do two virtual machines implement the same “meaning”?
– Think of JavaScript in different browsers



Overview

Arithmetic expressions
Naming
First-order functions
High-order and first-class functions
Recursion
State
Objects and classes
Memory management
Type systems
…

LANGUAGES WITH
INCREASING COMPLEXITY

HOW TO MODEL THEM



DOES IT MATTER?



The Problem of Semantics

i = 5
f(i++, --i)



The Problem of Semantics

Which values does the f function receive?
– The ++ operator returns the value and then increments is
– Option 1: left-to-right evaluation 5, 5
– Option 2: righ-to-left evaluation 4, 4

The semantics is in the compiler!

i = 5
f(i++, i--)



More about semantics

https://whydoesitsuck.com/why-does-javascript-suck/

[5, 12, 9, 2, 18, 1, 25].sort(function(a, b){
return a - b;

});

→ [1, 12, 18, 2, 25, 5, 9]

[5, 12, 9, 2, 18, 1, 25].sort();



var a = 1;

function four() {
if (true) {

var a = 4;
}
alert(a);

}

four()

What does this program print?





SCALA IN A NUTSHELL



Driving Forces for Scala’s Design

PLs for component software should be scalable
– The same concepts describe small and large parts
– Rather than adding lots of primitives, focus on abstraction, composition, and 

decomposition

Unification of OO and functional programming can provide scalable support
for components

Adoption is key to test the design
à Interoperability with Java



Scala’s Adoption



The Scala Language

We will present only as much Scala as needed.

To learn Scala, you can find many books
and online courses (not needed for this class).

Note, Scala 3 is changing rapidly 
– It is very likely that new features

are be added soon  



Start Right Away!

You will need both:

SBT
– www.scala-sbt.org
– Command line tool
– Create projects
– Upload projects to Coursera

Scala IDE
– Eclipse: scala-ide.org (deprecated)
– IntelliJ (recommended)



Scala Example

object Timer {
def oncePerSecond(callback: () => Unit) = {
while (true) { callback(); Thread sleep 1000 }

}
def timeFlies() = {
println("time flies like an arrow...")

}
def main(args: Array[String]) = {
oncePerSecond(timeFlies)

}
}

What does this do?
Explain all features not 
available in Java used in 
the example.



Classes and Inheritance

class Complex(real: Double, imaginary: Double) {
def re = real
def im = imaginary

override def toString() = 
"" + re + (if (im < 0) "" else "+") + im + "i"

}

object ComplexNumbers {
def main(args: Array[String]) = {
val c = new Complex(1.2, 3.4)
println(c.toString)
println("imaginary part: " + c.im)

}
}

Explain all features not 
available in Java used in the 
example.



Algebraic Data Types (ADTs)

An ADT is a data type whose values are data are made up of
– a constructor name
– subterm values from other datatypes

Pattern matching to:
• distinguish between values 

defined with different 
constructors of an ADT

• extract the subparts of a 
complex ADT



Case Classes for Algebraic Data Types (ADTs)

abstract class Tree

case class Leaf(n: Int) extends Tree
case class Node(left: Tree, right: Tree) extends Tree

Tree values:

Node(Leaf(3),Leaf(4))
Node(Node(Leaf(3),Leaf(4)),Leaf(7))



Case Classes vs. “normal” Classes (1)

Factory methods are automatically available for case classes: 

Leaf(3) instead of new Leaf(3)

Instances of case classes can be decomposed into their parts
(constructor parameters) through pattern matching



Pattern Matching on Case Classes

Basic idea: 
– Attempt to match a value to a series of patterns
– As soon as a pattern matches, extract and name various parts of the value, 
– Evaluate code that makes use of these named parts

abstract class Tree
case class Leaf(n: Int) extends Tree
case class Node(left: Tree, right: Tree) extends Tree

def sum(t: Tree): Int = t match {
case Leaf(n) => n
case Node(left, right) => sum(left) + sum(right)

}



Question

Do we really need case classes? 
Couldn’t we define sum as a method of Tree and its subclasses? 
Wouldn’t this be more OO conform?

abstract class Tree
case class Leaf(n: Int) extends Tree
case class Node(left: Tree, right: Tree) extends Tree

def sum(t: Tree): Int = t match {
case Leaf(n) => n
case Node(left, right) => sum(left) + sum(right)

}



A SIMPLE LANGUAGE:
ARITHMETIC EXPRESSIONS



Modeling Syntax

Different notations for the idealized action of adding the idealized numbers 
(represented) by “3” and “4”:

– 3 + 4 (infix) Java
– 3 4 + (postfix) FORTH
– (+ 3 4)      (parenthesized prefix) Scheme

Ignoring details of concrete syntax, the essence is a tree  (AST) … 

So the first question to answer in modeling languages is how to represent ASTs.

Autor



Syntax

Concrete syntax
– What the programmer writes
– Comments, multiple spaces, newlines, …

Abstract syntax
– Internal representation of the syntax
– Smaller to make automatic processing (e.g., type checking) and reasoning easier.
– Example: Arithmetic Expressions

<AE> ::= <num>
| {+ <AE> <AE>}
| {- <AE> <AE>}



Case Classes for ASTs

Values of this data type:

Add(Num(3),Num(4))
Add(Sub(Num(3),Num(4)),Num(7))

AST for arithmetic expressions

sealed abstract class Expr

case class Num(n: Int) extends Expr
case class Add(lhs: Expr, rhs: Expr) extends Expr
case class Sub(lhs: Expr, rhs: Expr) extends Expr



Template for Our Interpreters

Autor

def interp(expr: Expr): Int = expr match {
case Num(n) => ???
case Add(lhs, rhs) => ???
case Sub(lhs, rhs) => ???

}

What goes 
into “???”



Template for Our Interpreters

Autor

def interp(expr: Expr): Int = expr match {
case Num(n) => ???
case Add(lhs, rhs) => ???
case Sub(lhs, rhs) => ???

}

def interp(expr: Expr): Int = expr match {
case Num(n) => n
case Add(lhs, rhs) => interp(lhs) + interp(rhs)
case Sub(lhs, rhs) => interp(lhs) - interp(rhs)

}

What goes 
into “???”



Demo

The AE interpreter

Autor



Let, Substitution and Functions

Programming Languages
A Journey into Abstraction and Composition

Prof. Dr. Guido Salvaneschi



Overview

Arithmetic expressions
Naming
First-order functions
High-order and first-class functions
Recursion
State
Objects and classes
Memory management
Type systems
…



A LANGUAGE WITH NAMES



Next: LAE – a Language with Names

Motivation: reduce repetitions by introducing identifiers (not yet variables!)

Example program 1:

Example program 2:

let y = (5 + 10) in
y + y

= (5 + 10) + (5 + 10)

let y = (5 + 10) in
let x = 20 in
(x + y)

= 20 + (5 + 10)



LAE: Abstract Syntax

<AE> ::= <num>
| {+ <AE> <AE>}
| {- <AE> <AE>}

<LAE> ::= <num>
| {+ <LAE> <LAE>}
| {- <LAE> <LAE>}
| {let {<id> <LAE>} <LAE>}
| <id>

Extend 
with “let”



LAE: Concrete Syntax

Which implementation steps are needed?

sealed abstract class Expr
case class Num(n: Int) extends Expr
case class Add(lhs: Expr, rhs: Expr) extends Expr
case class Sub(lhs: Expr, rhs: Expr) extends Expr

???

Extend 
with “let”



LAE: Concrete syntax

Which implementation steps are needed?

sealed abstract class Expr
case class Num(n: Int) extends Expr
case class Add(lhs: Expr, rhs: Expr) extends Expr
case class Sub(lhs: Expr, rhs: Expr) extends Expr

???

sealed abstract class Expr
case class Num(n: Int) extends Expr
case class Add(lhs: Expr, rhs: Expr) extends Expr
case class Sub(lhs: Expr, rhs: Expr) extends Expr

case class Let(name: Symbol, namedExpr: Expr, body: Expr) extends Expr
case class Id(name: Symbol) extends Expr

Extend 
with “let”



Semantics

We need to give a semantics to let expressions
We do so via the concept of substitution

Semantics
of let Substitution



Defining Substitution

Wanted: A definition of the process of substitution

Here is one:

Try it out with the following LAE expressions:

Definition (Substitution): 
To substitute identifier i in e with expression v, 
replace all identifier sub-expressions of e
named i with v.

1. let x = 5 in x + x

2. let x = 5 in x + (let x = 3 in x)



Defining Substitution

1. let x = 5 in x + x

2. let x = 5 in x + (let x = 3 in x)

1. 5 + 5

2. 5 + (let 5 = 3 in 5)

This is not even syntactically legal!
-> it does not respect the BNF and 
it would be rejected by a parser



Defining Substitution

Definition (Binding Instance): 
A binding instance of an identifier is the instance of the identifier that 
gives it its value. In LAE, the <id> position of a ‘let’ is the only binding 
instance.

Definition  (Scope) 
The scope of a binding instance is the region of program in which 
instances of the identifier refer to the value bound by the binding 
instance.

Definition (Free Instance) 
An identifier not contained in the scope of any binding instance of its 
name is said to be free.

Definition (Bound Instance) 
An identifier is bound if it is contained within the scope of a binding 
instance of its name.



Defining Substitution

let x = 5 in 
x + (let x = 3 in 

x + x)

5 + (let x = 3 in 
5 + 5)

5 + (5 + 5)

15

What can go wrong here?

-> We do not 
respect scoping



Defining Substitution

Definition (Binding Instance): 
A binding instance of an identifier is the 
instance of the identifier that gives it its value. 
In LAE, the <id> position of a ‘let’ is the only 
binding instance.

Definition  (Scope) 
The scope of a binding instance is the region 
of program in which instances of the identifier 
refer to the value bound by the binding 
instance.

Definition (Free Instance) 
An identifier not contained in the scope of any 
binding instance of its name is said to be free.

Definition (Bound Instance) 
An identifier is bound if it is contained within 
the scope of a binding instance of its name.

let x = 5 in 
x + (let x = 3 in 

x + y)



Defining Substitution

This definition is implicitly using a notion of scope
Substitute only in the scope of the identifier

An inner binding for the same name introduces a new scope.
The scope of the outer binding is shadowed or masked by the inner binding.
Substituting the inner x is wrong.

Definition (Substitution): 
To substitute identifier i in e with expression v, replace all free
instances of i in e with v.

The previous definition 
respected binding instances, 

but not their scope.



Calculating LAE Expressions

def interp(expr: Expr): Int = expr match {
case Num(n) => n
case Add(lhs, rhs) => calc(lhs) + calc(rhs)
case Sub(lhs, rhs) => calc(lhs) - calc(rhs)
case Let(boundId, namedExpr, boundExpr) => ???
case Id(name) => ???
}

def interp(expr: Expr): Int = expr match {
case Num(n) => n
case Add(lhs, rhs) => interp(lhs) + interp(rhs)
case Sub(lhs, rhs) => interp(lhs) - interp(rhs)
case Let(boundId, namedExpr, boundExpr) => {
interp(subst(boundExpr, boundId, Num(interp(namedExpr))))

}
case Id(name) => sys.error("found unbound id " + name)
}

Use a “subst"
function

def subst(expr: LAE, substId: Symbol, value: LAE)



Calculating LAE Expressions

Any identifier in the scope of a let-expr is replaced with a value when the 
calculator encounters that identifier’s binding instance. 

– There are no free instances of the identifier given as an argument left in the result. 
– Subst replaces identifiers with values before the calculator ever “sees” them. 

The calculator can’t assign a value to a free identifier
– If a free identifier is found, the calculator halts with an error



Calculating LAE Expressions: The Substitution Function

def subst(expr: Expr, substId: Symbol, value: Expr): Expr = expr match {
case Num(n) => ???
case Add(lhs, rhs) => ???
case Sub(lhs, rhs) => ???

case Let(boundId, namedExpr, boundExpr) => ???

case Id(name) => ...
}



Calculating LAE Expressions: The Substitution Function

def subst(expr: Expr, substId: Symbol, value: Expr): Expr = expr match {
case Num(n) => expr
case Add(lhs, rhs) => Add(subst(lhs, substId, value), subst(rhs, substId, value))
case Sub(lhs, rhs) => Sub(subst(lhs, substId, value), subst(rhs, substId, value))

case Let(boundId, namedExpr, boundExpr) => ???

case Id(name) => ...
}



Calculating LAE Expressions: The Substitution Function

def subst(expr: Expr, substId: Symbol, value: Expr): Expr = expr match {
case Num(n) => expr
case Add(lhs, rhs) => Add(subst(lhs, substId, value), subst(rhs, substId, value))
case Sub(lhs, rhs) => Sub(subst(lhs, substId, value), subst(rhs, substId, value))

case Let(boundId, namedExpr, boundExpr) => {
val substNamedExpr = subst(namedExpr, substId, value)
Let(boundId, substNamedExpr, subst(boundExpr, substId, value))

}

case Id(name) => ...
}

What is wrong with this one?



Calculating LAE Expressions

def subst(expr: Expr, substId: Symbol, value: Expr): Expr = expr match {
case Num(n) => expr
case Add(lhs, rhs) => Add(subst(lhs, substId, value), subst(rhs, substId, value))
case Sub(lhs, rhs) => Sub(subst(lhs, substId, value), subst(rhs, substId, value))

case Let(boundId, namedExpr, boundExpr) => {
val substNamedExpr = subst(namedExpr, substId, value)
if (boundId == substId)
Let(boundId, substNamedExpr, boundExpr)

else
Let(boundId, substNamedExpr, subst(boundExpr, substId, value))

}

case Id(name) => {
if (substId == name) value
else expr

}
}



Two Substitution Regimes

Lazy substitution:
the expression may be 
evaluated multiple times.

Eager substitution:
avoids re-computing 
the same value 
several times.

{let {x {+ 5 5}} {let {y {- x 3}} {+ y y}}}
= {let {y {- {+ 5 5} 3}} {+ y y}}
= {+ {- {+ 5 5} 3} {- {+ 5 5} 3}}
= {+ {- 10 3} {- {+ 5 5} 3}}
= {+ {- 10 3} {- 10 3}}
= {+ 7 {- 10 3}}
= {+ 7 7}
= 14

2

{let {x {+ 5 5}} {let {y {- x 3}} {+ y y}}}
= {let {x 10} {let {y {- x 3}} {+ y y}}}
= {let {y {- 10 3}} {+ y y}} 
= {let {y 7} {+ y y}}
= {+ 7 7} 
= 14

1



Two Substitution Regimes: Questions

1. Which one have we implemented?

2. Our example suggests that the eager regime generates an answer in fewer 
steps. Is this always true? 

3. Do the two regimes always produce the same result for LAE?

{let {x {+ 5 5}} 
{let {y 4} {+ y y}}}

{let {x {+ z 4}} 
{let {y 4} {+ y y}}}

def interp(expr: Expr): Int = expr match {
…
case Let(boundId, namedExpr, boundExpr) => {
interp(subst(boundExpr, boundId, Num(interp(namedExpr))))

}
…



Demo

The LAE interpreter



Basic Functions

Programming Languages
A Journey into Abstraction and Composition

Prof. Dr. Guido Salvaneschi



A Note on Abstraction

A powerful concept in Computer Science
– “Hide details”
– “Make something. generic w.r.t. something else”
– “Parametrize over something”

Let expressions
– Parametrize an expression based on another expression

Functions
– Parametrize over data (only?)

66

Generics
– Parametrize over types



The F1LAE Language

A language with very simple functions
– Function applications (function calls) are expressions
– Function definitions are not expressions

Separate definitions from expressions
– Similar to the C language
– Predefined functions given to interpreter as an argument

(No first-class/higher-order functions – we will discuss when this means exactly 
in the next lecture)

67



<F1LAE> ::= <num>
| {+ <F1LAE> <F1LAE>}
| {- <F1LAE> <F1LAE>}
| {let {<id> <F1LAE>} <F1LAE>}
| <id>
| ???

sealed abstract class F1LAE
case class Num(n: Int) extends F1LAE
case class Add(lhs: F1LAE, rhs: F1LAE) extends F1LAE
case class Sub(lhs: F1LAE, rhs: F1LAE) extends F1LAE
case class Let(name: Symbol, namedExpr: F1LAE, body: F1LAE) extends F1LAE
case class Id(name: Symbol) extends F1LAE
???

Concrete & Abstract Syntax for F1LAE

how does the concrete syntax change?

how does the abstract syntax change?



<F1LAE> ::= <num>
| {+ <F1LAE> <F1LAE>}
| {- <F1LAE> <F1LAE>}
| {let {<id> <F1LAE>} <F1LAE>}
| <id>
| {<id> <F1LAE>}

Concrete & Abstract Syntax for F1LAE

sealed abstract class F1LAE
case class Num(n: Int) extends F1LAE
case class Add(lhs: F1LAE, rhs: F1LAE) extends F1LAE
case class Sub(lhs: F1LAE, rhs: F1LAE) extends F1LAE
case class Let(name: Symbol, namedExpr: F1LAE, body: F1LAE) extends F1LAE
case class Id(name: Symbol) extends F1LAE
case class App(funName: Symbol, arg: F1LAE) extends F1LAE

concrete syntax for 
function application

abstract syntax for 
function application



The F1LAE Language

Function applications (calls) can be nested.

Function applications can be bound to names in let expressions. 

Function Id can be bound to names in let expressions.

We cannot define new functions in F1LAE. 
– Function definitions are not expressions. 
– There is no expression of the kind {fun ...}

70

<F1LAE> ::= <num>
| {+ <F1LAE> <F1LAE>}
| {- <F1LAE> <F1LAE>}
| {let {<id> <F1LAE>} <F1LAE>}
| <id>
| {<id> <F1LAE>}



Function Definitions in F1LAE

Cannot define functions in F1LAE
– More strict than necessary, functions could be declared at top level, more similar to C

Predefined functions are passed to the interpreter
– How to represent functions?

Example:

Class FunDef does not extend class F1LAE => no syntax for fun definitions 

71

case class FunDef(argName: Symbol, body: F1LAE)
type FunDefs = Map[Symbol, FunDef]

FunDef('n, Add('n, 1))



Example Interpreter Calls 

Note: Scala 3 has removed symbols
– We use String, instead, in the interpreter implementations

interp(
App('f, 10),
Map(
'f -> FunDef('x, App('g, Add('x, 3))),
'g -> FunDef('y, Sub('y, 1)))

scala.Symbol: tick (‘) followed by identifier

interp(
App(“f”, 10),
Map(

“f” -> FunDef(“x”, App(“g”, Add(“x”, 3))),
“g” -> FunDef(“y”, Sub(“y”, 1)))

case class FunDef(argName: String, body: F1LAE)
type FunDefs = Map[String, FunDef]



Discussion

What is needed to interpret F1LAE expressions? 



F1LAE Interpreter

def interp(expr: F1LAE, funDefs: Map[Symbol, FunDef]): Int = expr match {
case Num(n) =
n

case Add(lhs, rhs) => 
interp(lhs, funDefs) + interp(rhs, funDefs)

case Sub(lhs, rhs) =>
interp(lhs, funDefs) - interp(rhs, funDefs)

case Let(id, expr, body) => 
val body = subst(body, id, Num(interp(expr, funDefs)))
interp(body, funDefs)

case Id(name) => sys.error("found unbound id " + name)

case App(fun, arg) => funDefs(fun) match {
case FunDef(param, body) => 
interp(subst(body, param, Num(interp(arg, funDefs))), funDefs)

}
}



Demo

The F1LAEImmediateSubstInterp interpreter



Discussion on Scoping

What is the result of {f 10} where {f x} = {g {+ x 3}} and 
{g y} = {- y 1}

Some open issues:
– Should f be able to invoke g or should the invocation fail because g is defined after f? 
– What if there are multiple bindings for the same name? 
– If a function can invoke every defined function, it can also invoke itself. Do we have 

recursion in F1LAE?

val funDefs = Map(
'f -> FunDef('x, App('g, Add('x, 3))),
'g -> FunDef('y, Sub('y, 1))

)

interp(App('f, 10), funDefs)



ENVIRONMENTS:
STATIC VS. DYNAMIC SCOPING



Let and Substitution 

In {let {x e} t} we immediately replace free identifiers x in expression t
with the value expression e evaluates to

id expressions left in t after substitution denote free identifiers

If the interpreter encounters an id expression à error

80



Let and Substitution 

The current solution is slow
Consider the following sequence of  evaluation steps: 

Substitution is applied three 
times: once for each let

The program has size n, 
measured in abstract syntax 
tree nodes.

Each substitution sweeps 
the whole rest of the 
program.

{let {x 3} 
{let {y 4} 
{let {z 5} 
{+ x {+ y z}}}}} 

= {let {y 4}   
{let {z 5} 
{+ 3 {+ y z}}}} 

= {let {z 5} 
{+ 3 {+ 4 z}}} 

= {+ 3 {+ 4 5}} 



Let and Environments

The interpreter receives a store called environment, which maps identifiers to 
values

{let {x e} t} simply stores in the environment a mapping from x to the value e
evaluates to

When the interpreter encounters an id expression, it looks up the corresponding 
value in the environment
Free variables not in environment à error

We represent environments as values of the type Env:

type Env = Map[Symbol, Int]



Here is F1LAE. How Does it Change?

def interp(expr: F1LAE, funDefs: FunDefs): Int = expr match {
case Num(n) => 

n
case Add(lhs, rhs) => 

interp(lhs, funDefs) + interp(rhs, funDefs)
case Sub(lhs, rhs) => 

interp(lhs, funDefs) - interp(rhs, funDefs)

case Let(id, expr, body) =>
val body = subst(body, id, Num(interp(expr, funDefs)))
interp(body, funDefs)

case Id(name) => 
sys.error("found unbound id " + name)

case App(fun, arg) => funDefs(fun) match {
case FunDef(param, body) =>

interp(subst(body, param, Num(interp(arg, funDefs))), funDefs)
}

}



Is this our F1LAE with Environments?

def interp(expr: F1LAE, funDefs: FunDefs, env: Env): Int = expr match {
case Num(n) => 

n
case Add(lhs, rhs) => 

interp(lhs, funDefs, env) + interp(rhs, funDefs, env)
case Sub(lhs, rhs) => 

interp(lhs, funDefs, env) - interp(rhs, funDefs, env)

case Let(id, expr, body) => 
val newEnv = env + (id -> interp(expr, funDefs, env))
interp(body, funDefs, newEnv)

case Id(name) => env(name)

case App(fun, arg) => funDefs(fun) match {
case FunDef(param, body) =>

val funEnv = env + (param -> interp(arg, funDefs, env))
interp(body, funDefs, funEnv)

}
}

Interpreter: F1LAEDynamicInterp



Scoping

Using environments, the result is 5. 
– The result of applying a function may change depending on the calling context?
– This contradicts our mathematical understanding of a function. 

For F1WAE with substitution n would not be substituted and it would be an error 

Autor

What is the answer when using 
F1LAE with substitution?



Static Versus Dynamic Scoping

Definition Scope (of a name binding): 
The scope of a name binding is the part of the program where 
the binding is in effect.

Definition Dynamic Scoping: 
The scope of a name binding is determined by the execution 
context (at runtime).

Definition Static/Lexical Scoping: 
The scope of a name binding is determined syntactically (at 
compile-time).



F1LAE with Environments

def interp(expr: F1LAE, funDefs: FunDefs, env: Env): Int = expr match {
case Num(n) => 

n
case Add(lhs, rhs) =>

interp(lhs, funDefs, env) + interp(rhs, funDefs, env)
case Sub(lhs, rhs) => 

interp(lhs, funDefs, env) - interp(rhs, funDefs, env)

case Let(id, expr, body) => 
val newEnv = env + (id -> interp(expr, funDefs, env))
interp(body, funDefs, newEnv)

case Id(name) => 
env(name)

case App(fun, arg) => funDefs(fun) match {
case FunDef(param, body) =>

val funEnv = env + Map(param -> interp(arg, funDefs, env))
interp(body, funDefs, funEnv)

}
}

Interpreter: F1LAEStaticInterp



First-class Functions

Programming Languages
A Journey into Abstraction and Composition

Prof. Dr. Guido Salvaneschi



Functions: Terminology

First-class functions
– Functions are values/objects with all the rights of other values

• Can be constructed at runtime 
• Can be passed as arguments to other functions
• Can be returned by other functions, stored in data structures etc.

– No first-class functions => functions can only be defined in designated regions of the 
program, where they are given names for use in the rest of the program

Higher-order functions 
– Functions that return and/or take other functions as parameters
– Parameterize computations over other computations

First-order Functions
– Functions that neither return nor take other functions as parameters
– Parameterize computations over data

89



First-class Functions

Some languages achieve some kind of higher-orderless without first class funs.

Functions pointers (C, C++)
– Once can pass around the pointer

Objects with a “call” method
– “A function is an object with a single method”
– One can pass around the callable object

Eval: interprets a string on the fly
– Slow, not secure, not safe, makes code

unreadable and hard to maintain.
– One can do pretty much everything.

var result;
function Sum(val1, val2)
{

return val1 + val2;
}
eval("result = Sum(5, 5);");
alert(result);

var str = '({"firstName":"Bill",
"lastName":"Gates"})';

var obj = eval(str);
obj.firstName; // Bill



FIRST-CLASS FUNCTIONS



Abstracting over Computations

def filter[A, B] (relOp: (A, B) => Boolean, b: B, list: List[A]): List[A] = 
list match {
case Nil => Nil
case x :: xs => 
val filteredRest = filter(relOp, b, xs)
if (relOp(x, b)) x :: filteredRest
else filteredRest

}

def <(a: Int, b: Int) = a < b
def >(a: Int, b: Int) = a > b

def below(thres: Int, l: List[Int]) = filter(<, thres, l)
def above(thres: Int, l: List[Int]) = filter(>, thres, l)

println(below(4, List(1, 2, 3, 4, 5)))
println(above(4, List(1, 2, 3, 4, 5)))

def squaredGt(x: Int, c: Int) = x * x > c
println(filter(squaredGt, 10, List(1, 2, 3, 4, 5)))



Functions that Return Functions 

Also: The body of a function is an expression
à a function can return a function

Especially useful when produced function “remembers” arguments …

def add(x: Int) = {
def xAdder(y: Int) = x + y
xAdder _

}

Expressions in functional languages (Scheme, Haskell, Scala)
can evaluate to functions. 



Syntax of lambdas in Scala

def findAnon(list: List[Person], name: Symbol) = {
filter((p: Person, name: Symbol) => { p.name == name }, name, list)

}

case class Person(name: Symbol)

def findAnon(list: List[Person], name: Symbol) = {
def hasName(p: Person, name: Symbol) = p.name == name
filter(hasName, name, list)

}



FUNCTIONAL DECOMPOSITION AND 
RECURSION PATTERNS



Recursion Operators

Many recursive programs share a common pattern of recursion
– Repeating the same patterns again and again is tedious, time consuming, error prone

Such repetition can be avoided by introducing special recursion operators
– Recursion operators encapsulate common patterns
– They allow one to concentrate on parts that are different for each application



Any Problems with this list-of-squares?

This definition includes the element-by-element processing of the input list.

The operation applied to elements (square) is hard-coded.

The construction of the result  from the input is hard-coded
– Coupled to a particular implementation of the list, using the :: operator 

def listOfSquares(list: List[Int]): List[Int] = list match {
case Nil => Nil
case x :: xs => square(x) :: listOfSquares(xs)

}



def map[A, B](f: A => B, list: List[A]): List[B] = list match {
case Nil => Nil
case x :: xs => f(x) :: map(f, xs)

}

def listOfSquares2(list: List[Int]) = map(square, list)

What about this Definition?



Map: an Abstraction Barrier

Abstraction barrier: map supports a higher-level of abstraction
– isolating the implementation of procedures that transform lists from the details of how list 

elements are extracted and combined.
– One can vary the implem. of the list independent of the function applied to each element.

map encapsulates a recursion pattern.

low-level details of how 
sequences are implemented

MAP

operations that transform 
sequences to sequences



The fold* Recursion Operator

In Scala:

*aka reduce, accumulate, compress or inject

def fold[A, B](init: B, combine: (A, B) => B, l: List[A]): B = 
l match {
case Nil => init
case x :: xs => combine(x, fold(init, combine, xs))

}



Folding in Scala

Two predefined operations: foldLeft, foldRight:

List(a, b, c).foldLeft(init)(f) 

== 

f(f(f(init a), b), c) 

List(a, b, c).foldRight(init)(f) 

==  

f(a, f(b, f(c, init))) 



Some Instantiations of fold

package templates

object FoldingTemp extends App {
def summing(list: List[Int]): Int = ???
def product(list: List[Int]): Int = ???
def length[A](list: List[A]): Int = ???
def reverse[A](list: List[A]): List[A] = ???
def myMap[A, B] (f: A => B, list: List[A]): List[B] = ???   
def myFilter[A](p: A => Boolean, list: List[A]): List[A] = ???

println(summing(List(1, 4, 5)))
println(product(List(1, 4, 5)))
println(length(List(1, 4, 5)))
println(reverse(List(1, 4, 5)))
println(myMap( (x:Int) => 2*x, List(1, 4, 5) ))
println(myFilter( (x: Int) => x > 2, List(1, 4, 5) ) )

}



IMPLEMENTING
FIRST-CLASS FUNCTIONS



FLAE: A Language with First-Class Functions

Function definitions are expressions in FLAE:
– They can appear everywhere within other compound expressions
– Functions are values just like numbers
– Function values can be passed to and returned by other functions

Examples of FLAE programs:

{{fun {x} {+ x x}} 3}

{let {inc {fun {x} {+ x 1}}} 
{+ {inc 4} {inc 5}}}

{let {x 3} {fun {y} {+ x y}}} 



Concrete and Abstract Syntax of FLAE

<F1LAE> ::= <num>
| {+ <F1LAE> <F1LAE>}
| {- <F1LAE> <F1LAE>}
| {let {<id> <F1LAE>} <F1LAE>}
| <id>
| {<id> <F1LAE>}

sealed abstract class F1LAE
case class Num(n: Int) extends F1LAE
case class Add(lhs: F1LAE, rhs: F1LAE) extends F1LAE
case class Sub(lhs: F1LAE, rhs: F1LAE) extends F1LAE
case class Let(name: Symbol, namedExpr: F1LAE, body: F1LAE) extends F1LAE
case class Id(name: Symbol) extends F1LAE
case class App(funName: Symbol, arg: F1LAE) extends F1LAE



sealed abstract class FLAE
case class Num(n: Int) extends FLAE
case class Add(lhs: FLAE, rhs: FLAE) extends FLAE
case class Sub(lhs: FLAE, rhs: FLAE) extends FLAE
case class Let(name: Symbol, namedExpr: FLAE, body: FLAE) extends FLAE
case class Id(name: Symbol) extends FLAE
case class Fun(param: Symbol, body: FLAE) extends FLAE
case class App(funExpr: FLAE, arg: FLAE) extends FLAE

<FWAE> ::= <num>
| {+ <FLAE> <FLAE>}
| {- <FLAE> <FLAE>}
| {let {<id> <FLAE>} <FLAE>}
| <id>
| {fun {<id>} <FLAE>}
| {<FLAE> <FLAE>}

Concrete and Abstract Syntax of FWAE

Concrete syntax

Abstract syntax



Interpreting FLAE

We first implement an interpreter for FLAE that employs substitution 
– To facilitate the comparison to LAE and F1LAE
– To define a “reference” specification of the semantics

Next, we will replace substitutions with environments



Interpreting FLAE

What does the interpreter produce, i.e., what are the values of FLAE?

What needs to be done to turn LAE into FLAE?



FLAE with Substitution: Interpreter Implementation Steps

1. Extend the class of values
– Interpreters so far produced Scala integers. 
– The interpretation of FLAE expressions can also produce functions
– First try: Return values of FLAE are Num or Fun

2. Add clauses for function definition expressions
to the substitution procedure and the interpreter

3. Modify substitution and interpretation of application expressions



FLAE with Substitution: Substitution Function

…  
case class Let(name: Symbol, namedExpr: FLAE, body: FLAE) extends FLAE
case class Id(name: Symbol) extends FLAE
case class Fun(param: Symbol, body: FLAE) extends FLAE
case class App(funExp: FLAE, arg: FLAE) extends FLAE

case Fun(param, body) =>
if (param == substId)

Fun(param, body)
else

Fun(param, subst(body, substId, value))

case App(funExpr, argExpr) => 
App(subst(funExpr, substId, value), subst(argExpr, substId, value))

abstract class Value
case class VNum(n: Int) extends Value
case class VFun(param: Symbol, body: FLAE) extends Value

Interpreter: FLAEImmediateSubstInterp

Static 
scoping!



FLAE with Substitution

def interp(expr: FLAE): Value = expr match {

…

case Fun(param, body) => VFun(param, body)

case App(funExpr, argExpr) => interp(funExpr) match {
case VFun(param, body) => interp(subst(body, param, argExpr))
case v1 => error(s"Expected function value but got $v1")

}

}

Interpreter: FLAEImmediateSubstInterp



Example: Static vs Dynamic Scoping

The result is different:
– Static (lexical) scoping: evaluates to 4
– Dynamic scoping: evaluates to 3

Early versions of LISP, APL, 1 PostScript, TeX, Perl, early versions of Python had 
dynamic scoping

https://www.cs.cornell.edu/courses/cs6110/2018sp/lectures/lec12.pdf

let d = 2 in
let f = fun x { x + d } in
let d = 1 in
f 2



FLAE with Environments

Replace substitution with environment lookup
Preserve static scoping

Question
To avoid dynamic scoping, in F1LAE with 

environments, we used an empty environment for 
evaluation function applications.

Can we apply the same trick here?



FLAE with Environments

If uncertain, compare manual evaluations of the following…

interp(Let('x, Num(3), 
App(Fun('y, Add('x 'y)) Num(4))), 

Map()) 

interp(App('f, Num(4)), 
Map('f -> FunDef('y, Add('x 'y))))



FLAE with Environments

Remember environment at function-definition time, so that it can be used for 
binding free identifiers in function bodies when applying the function.

Function + environment = closure

{let {x 3} {fun {y} {+ x y}} }

y {+ x y}[x à 3]

type Env = Map[Symbol, Value]

Parameter BodyEnvironment



FLAE with Environments

1. Define a data type for representing FLAE values (closures)

2. Modify the definition of environments to use the new values

3. Modify the interpreter to:
– use the environment for deferring substitutions
– return closures as the result of evaluating function definitions
– use the environment of the closure returned by evaluating the function sub-expression 

when evaluating function applications



FLAE with Environments

Interpreter: FLAEStaticInterpreter





Lambda Calculus

Originally developed by Church in the 1930s, to study, with others, the 
foundations of mathematics via universal models of computation: 

– Lambda calculus (Church)
– Turing Machines (Turing)
– Primitive recursive functions (Kleene, Gödel)

It is considered the foundation of modern functional programming and we look at 
It from this perspective



Lambda Calculus

Very simple model
– All functions are anonymous (i.e. they are lambdas)
– Lexical coping 
– Semantics by substitution
– In the original model, only functions and variables (numbers, etc, can be encoded)

x variable
λx.M abstraction – i.e. a function
M N application – i.e. a function call 

(λx.x)  y
→ y

(λx.x)  3
→ 3

(λx.x)  λy.y
→ λy.y

(λx.x+1)   7 
→ 7+1
→ 8

(λx.(λy.x+y))  7  8 
→ (λy.(7+y))  8
→ 7+8
→ 15

(λx.x x) λy.y
→ λy.y λy.y
→ λy.y

Outdated version with different precedence 
(abstraction over application)

Pleas refer to the alternative on the next slide where
Application has precedence over abstraction



Lambda Calculus

Very simple model
– All functions are anonymous (i.e. they are lambdas)
– Lexical coping 
– Semantics by substitution
– In the original model, only functions and variables (numbers, etc, can be encoded)

x variable
λx.M abstraction – i.e. a function
M N application – i.e. a function call 

(λx.x)  y
→ y

(λx.x)  3
→ 3

(λx.x)  λy.y
→ λy.y

(λx.x+1)   7 
→ 7+1
→ 8

(λx. λy.x+y)  7  8 
→ (λy.7+y)  8
→ 7+8
→ 15

(λx.x x) λy.y
→ (λy.y) λy.y
→ λy.y



Example: Python is Statically Scoped

1. a is in (the function) scope
2. a is in the global scope, hence it is in scope
3. a is not in scope 

def foo():
print(a)

def bar():
a = 10
foo()

bar()

> NameError: name 
'a' is not defined

def foo():
a = 10
print(a)

foo()

> 10

a = 10

def foo():
print(a)

foo()



Example: Python is Statically Scoped

In Python there are two scopes: global and local (to a function)
– Note: indentation per se does not create a new scope
– There is no block scoping

def foo():
if True:

a = 10
print(a)

foo()

> 10



Example: Closures in Python

Closures are often used to implement some form of delayed evaluation
– All function objects have a __closure__ attribute
– It returns a tuple of cell objects if it is a closure function
– The cell object has the attribute cell_contents which stores the closed value.

from urllib.request import urlopen
def page(url): 

def get(): 
return urlopen(url).read() 

return get

>>> url1 = page("http://www.google.com") 
>>> url2 = page("http://www.bing.com") >>> url1
<function page.<locals>.get at 0x10a6054d0>
>>> url2
<function page.<locals>.get at 0x10a6055f0>

>>> gdata = url1() # Fetches http://www.google.com
>>> bdata = url2() # Fetches http://www.bing.com

>>> page.__closure__ # Returns None since not a closure
>>> url1.__closure__
(<cell at 0x10a5f1250: str object at 0x10a5f3120>,)

>>> url1.__closure__[0].cell_contents
'http://www.google.com’
>>> url2.__closure__[0].cell_contents
'http://www.bing.com'


