Programming Languages
A Journey into Abstraction and Composition

Introduction to Programming Languages

Prof. Dr. Guido Salvaneschi

School of Computer Science
%
YA, University of St.Gallen

LANGUAGE AND MIND

Language shapes the way we
think, and determines what we
can think about.

Benjamin Lee Whorf

o

T8 0

SW

A

a John B. Haviland
REED COLLEGE

Anchoring, Iconicity, and
Orientation in Guugu Yimithirr
Pointing Gestures

Speakers of Guugu Yimithirr at the Hopevale aboriginal community in
Queensland use inflected forms of four cardinal direction words in all talk
about location and motion. This article compares the pointing gestures in
parallel episodes of two tellings of a single story, first to demonstrate that
gestures too can be directionally anchored, and then to contrast other gestures
that are emancipated from cardinal direction. Different sorts of indexical space
and different modes of directional anchoring are posited to account for the
contrasting gestural forms.

Guugu Yimithirr

In July 1770, Lt. James Cook and his crew were camped at the mouth of
the Endeavour River in what is now northeast Queensland, Australia. Their
ship, the original Endeavour, after which Cook named the river, had run
aground on the Great Barrier Reef, and Cook’s crew spent several weeks

rorsairino 1§

i e
= J AR R
"l

LANGUAGE AND COMPUTERS

How to talk to a computer?

| saw a woman with a telescope wrapped in paper

E) alamy stock photo —

1010100010100010

1010100010100010

[[
10101G0010400010
[[

101010 00101 00010

—t— et e,
add 5 2

0i00ii00

oioooioi
0i0oo0iii
oiooiiil

1BM
N

A TALE OF ABSTRACTION

Language shapes the way we
think, and determines what we
can think about.

Benjamin Lee Whorf

ABSTRACTION

1010100010100010

The Joy of Variables

addNumbers() {

X =2; 1010100010100010
y =9;

Z=X+Y;

}

Spread Sheets

H ©-2-%- = Book1 - Excel Tomas Petricek B

File Home Insert Page Layout Formulas Data Review View Add-ins Team Q Tell me
D4 v f

A B D E | G | H 1
1 —
2 —
3 Cost Rate Converted
4 149 0.63)
= 99 1.23
6 | 14 0.63
7 99 1
8 | 249 1.23
9 —
10 |
1
12|
13
Sheet1 ©) <] v

Ready HH ol = i + 120%

Object-oriented Programming

r”['gj Button Example 'T

w = new window()
w.setSize(300x300)

w.setTitle(“Button Example”)

Click Here

w.addButton(“Click Here”)

w.show()

— e — =

Lr LIGHTROOM 4 Library | Develop | Map | Book | Slideshow | Print | Web

v Navigator AT FILL I 18 %

Histogram v

1S0 160 35mm /8.0 1/60 sec
Defaults v Quick Develop
Dialio_120222_1010997.dng Dialio_120222_1010998.dng Dialio_120222_1010999.dng Diallio_120222_1011000.dng
Keywording
-+ Keyword List -
EXIF and IPTC - Metadata
v Catalog Preset | ©2012)
All Phatagraphs 17681 FileName Diallo_120222_1010974.d
Quick Collection + 16 ng =
Previous Import 477 Copy Name -
Previous Export as Catalog 74 Diallo_120222_1011002.dng Dialo_120222_1011004.dng | Diallo_120222_1011005.dng | Diallo_120222_1011006.dng Folder Photos =)
FileSize 34.74 MB ‘
v Folders o+ FileType Digital Negative (DNG)
Metadata Status Has been changed =
il Photo Studio 472/ 465GB
Rating
@& Photos 14604
Label =
= : Title
I Projects 406/ 465 GB Caption
i Work Files 61.1/69.1GB
= Dialio_120222_1011007.dng
v Collections @ EXIF
> ™= Gard Dimensions 5212 x 3468
By ercens Cropped 5212 x 3468 =
» [= Greeteez Exposure 1/60 sec atf /8.0
» = Lightroom Point Cur... Exposure Bias 0 EV
v T= Naima Flash Did not fire
& 0-11 months 349 Exposure Program Aperture priority
— 9 —) | 5 (w12 | Metering Mode Center-weighted average
i Thumbnails |
Export... % Sort: Capture Time . v

All Photographs 17636 of 17681 photos /1 selected /Diallo_120222_1010974.dng v Filter: Filters Off > |m

shapesEventStream
transform(toSquare)
filter(notYellow)
.show(screen)

}

—

T

Hg"

How Different are Programming Languages, Really?

Calculate the square of the even numbers between 1 and 10

How Different are Programming Languages, Really?

Calculate the square of the even numbers between 1 and 10
1,2,3,4,5,6,7,8,9, 10
Even: 2,4, 6, 8, 10

Squares: 4, 16, 36, 64, 100

import java.util.*;
public class HelloWorld{
public static void main(String [Jargs){

ArrayList<integer> list1 =
new ArrayList<>(Arrays.asList(1,2,3,4,5,6,7,8,9,10));
ArrayList<Integer> list2 = new ArrayList();

for (Integer e : list1){

if (isEven(e)){
list2.add((int) Math.pow(e, 2));
}

i [xA2 | x <-[1..10], even x]

System.out.printin(list2);

}
}

Java Haskell

LA A A 2 8 0 Q0 0 4

Java

LA A A 2 8 8 0 0 4

Java

TYYYYYYYYY

Java

LA A A 2 8 8 0 0 4

IEven?

<||I|r!\‘|I|r!<||I|r!<||l|r!<|lllr!‘ =
.

Java

LA A A 2 8 8 0 0 4

I3

Java

) *v»f*v» *vv/*v» *vw/*v—v *vwf*v» ‘v

J i

‘4“16 ‘ | 64“100

[xA2 | x <-[1..10], even x]

Haskell

{(x2|1<x<10,x%2=0,x € N}

[xA2 | x <-[1..10], even x]

Haskell

The Logo Programming language

Moyo .1

type 'exit' to quit.

=showturtle

v

¥ ¥V V VYV VY YVYVYYVYVYYVYVYYVYVYYVYYYVYYYVYY

» FMSLogo

File Bitmap Set Zoom Help

< >
repeat 250 [left 89 forward repcount] Halt Trace
Pause Status
Step Reset
Execute Edall

\ Setting H Help | Log |

...

...

setpc :random*15 repeat 8 [fd 99 rt 45] i

setpc :random*15 repeat 8 [fd 98 rt 45]

setpc :random*15 repeat 8 [fd 97 rt 45] Ctrl + Enter !
setpc :random*15 repeat 8 [fd 96 rt 45] 2

setpc :random*15 repeat 8 [fd 95 rt 45] »

{
¢
ht cs for [i1 0 360 45] [seth i make "n 0 - |
repeat 80 [seipc :random™15
J repeat 8 [fd :n 1t 45] make "n :n+1 Ctrl + Enter L
] :
] bl

(-0.000, -0.000), «: 0.000, Pendown

Domain-specific Languages

Hinkelmann

1 Introduction

Markus Voelter
independent /itemis, e-mail: voelter@acm.org
Sergej Koscejev
independent /itemis, e-mail: sergej@koscejev.

A Domain-Specific Language for Payroll
Calculations: a Case Study at DATEV

Markus Voelter, Sergej Koscejev, Marcel Riedel, Anna Deitsch and Andreas

Over the last three years, DATEV, a leading German payroll services provider,
has been developing a domain-specific language (DSL) for expressing the
calculation logic at the core of their payroll systems. The goal is to allow
the business programmers to express and test the calculations and their
evolution over time in a way that is completely independent of the technical
infrastructure that is used to execute them in the data center. Business
programmers are people who are experts in the intricacies of the payroll
domain and its governing laws and regulations (LaR) — but not in software
development — which leads to interesting tradeoffs in the design of the DSL.
The specific set of challenges that motivated the development of the DSL
are given in Sec. 3.2. Payroll might seem dull and not too complicated (“just
a bunch of decisions and some math”). However, the need to work on data
that changes over time, to follow the evolution of the LaR, and to keep the
language understandable for non-expert programmers makes it interesting
from a language design perspective. The need for execution independent of
the deployment infrastructure in the data center and on other devices plus

Domain-specific languages

A Domain-Specific Language for Payroll
Calculations: a Case Study at DATEV

Markus Voelter, Sergej Koscejev, Marcel Riedel, Anna Deitsch and Andreas

Hinkelmann

val
val
val

fun

val

taxRate 1 %%% = 20%
minIncome : EUR = 2000 EUR
minTax = 200 EUR
deadline = /2019 01 01/
calcTax(income: EUR, d: date)

if d > deadline
then if income > minIncome
then (taxRate of income)
else minTax + 10 EUR
else O EUR

//

//

//
//
//
//

type explicitly given

type inferred

compare dates

compare currency

work with percentages
calculate with currency

— R T

language understandable for non-expert programmers makes it interesting
from a language design perspective. The need for execution independent of
the deployment infrastructure in the data center and on other devices plus

Markus Voelter

independent /itemis, e-mail: voelter@acm.org
Sergej Koscejev

independent/itemis, e-mail: sergej@koscejev.cz
Marcel Riedel

DATEV e.G., e-mail: marcel.riedel@datev.de

HMusic: A domain specific language for music
programming and live coding

André Rauber Du Bois
Programa de Pé6s-Graduagao em Computagao
Universidade Federal de Pelotas
Pelotas - RS - Brazil
dubois@inf.ufpel.edu.br

ABSTRACT

This paper presents HMusic, a domain specific language
based on music patterns that can be used to write music
and live coding. The main abstractions provided by the
language are patterns and tracks. Code written in HMu-
sic looks like patterns and multi-tracks available in music
sequencers, drum machines and DAWs. HMusic provides
primitives to design and compose patterns generating new
patterns. The basic abstractions provided by the language
have an inductive definition and HMusic is embedded in
the Haskell functional programming language, hence pro-
grammers can design functions to manipulate music on the
fly. The current implementation of the language is compiled
into Sonic Pi [10] and can be downloaded from [9].

Author Keywords

Live coding, Functional Programming, Haskell

CCS Concepts

eApplied computing — Sound and music comput-
ing; Performing arts; eSoftware and its engineering —
Functional languages;

1. INTRODUCTION

Computers are generic abstract machines that can be pro-
grammed with different goals in a variety of domains, in-
cluding arts in general, and music. Computer music is usu-
ally associated with the use of software applications to cre-
ate music, but on the other hand, there is a growing interest
in programming languages that let artists write software as
an expression of art. There are a number of programming
languages that allow artists to write music, e.g., CSound
[2], Max [13, 28], Pure Data [23], Supercollider [19], Chuck
[27], FAUST [22], to name a few. Besides writing songs, all
these languages also allow the live coding of music. Live
codine i the idea of writine nroocrame that renrecent miicic

Rodrigo Geraldo Ribeiro
Programa de P6s-Graduagao em Ciéncia da
Computacao
Universidade Federal de Ouro Preto
Ouro Preto - MG - Brazil
rodrigo@decsi.ufop.br

very similar to the grids available in sequencers, drum ma-
chines and DAWSs. The difference is that these abstractions
have an inductive definition, hence programmers can write
functions that manipulate these tracks in real time. As the
DSL is embedded in Haskell, it is possible to use all the
power of functional programming in our benefit to define
new abstractions over patterns of songs. To understand the
paper the reader needs no previous knowledge of Haskell,
although some knowledge of functional programming and
recursive definitions would help. We try to introduce the
concepts and syntax of Haskell needed to understand the
paper as we go along.
The contributions of this paper are as follows:

e We describe the design and implementation of HMu-
sic, a DSL for music programming that provides the
abstractions of patterns and tracks, together with a set
of functions to manipulate and combine these abstrac-
tions. The interesting aspect of the language is that
basic programs look like the grids available in drum
machines and sequencers, which is a concept familiar
to music composers.

e We describe a simple interface for live coding based
on looping tracks and function application to modify
tracks in real time.

In the current implementation of HMusic, tracks can load
pre-recorded samples. As it is currently compiled into Sonic
Pi [10], any sample accessible by the Sonic Pi environment
can be loaded and manipulated in tracks. The current im-
plementation of the HMusic language can be downloaded
from [9].

The paper is organized as follows. First we describe the
main constructors for pattern (Section 2.1) and track (Sec-
tion 2.2) design and their basic operations. Next, we ex-
amine the important abstraction of track composition, i.e.,
combining different multi-tracks to form a new track (Sec-
tion 2.3). The abstraction provided by HMusic for live cod-

(2 spiepyabs R o E i
ats

Name "Dim na vodi"
Author "Timl"
Beat 4/4
Tempo 120

]

import
bass "instruments/Soundfont BassFing.sf2"
guitar "instruments/Saber 5ths and 3rds.sf2"

sequence guitar-solo guitar_ tabs
{

R|-8-8-8-8---8-8-8-8-8-8-----8-8-8-8---8-8-8-2-] |
el
B|
Gl
D]
Al -0
E|-0---3--

}

Tekst Neki Selection Label

https://github.com/E2Music/pyTabs

[
Name "D%m.na"vodi" song
Author "Timl meta
Beat 4/4 data
Tempo 120

]

impor‘t. . import

bass "instruments/Soundfont BassFing.sf2" section

guitar "instruments/Saber_S5ths_and_3rds.sf2"

sequence guitar-solo bass_tabs

1

R|-8-8-8-8---8-8-8-8-8-8-----8-8-8-8---8-8-8-2-|

R |

D| < m e |

Al | | seauences

E|-0-0-0-0-0-0-0-0-0-0-3-2-1-8-0-3-3-5-5-3-3-0-| || Section

¥

sequence guitar-rhythm guitar_chords
A(4) B(4) C(4) D(4) E(4) F(4) G(4)

segment Chorus

1 song
bass_tabs : bass segments
guitar_chords : guitar section

}

timeline

{ song
Chorus timeline

}

BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY SIGN IN

SUBSCRIBE

Ne+DE

FESTIVAL INsTITUTE INTIATIVES News AsOUT a
Live Coded Music
This unheard-of and magnetic sound definitely was
ing: In his sound per Alex McLean

created distinctive melodies and rhythms, following the

MICHAEL CALORE CULTURE ©83.26.2819 89:88 AM
abstract rules of his code written live in a custom
developed software language.

DJs of the Future Don't Spin Records—They T
Write Code

"Live-coding" parties are the latest phenomenon in underground electronic music culture.

iter 8) § jux rev § sound "~ [bass3:2°2 bas

- (SUpeRS swnd, fgen > "bd*4 feel*8
Cohorg o tslow 5 $orun 12))

HOME WORLD US COMPANIES TECH MARKETS CLIMATE OPINION WORK & CAREERS LIFE & ARTS HOW TO SPEND IT

F:- = Q FINANCIAL TIMES

A new world is possible.

5 If you th
Let's not go back to what wasn't working anyway.

dance music and ‘algorave’ — how
got cool

j puter code are being blended to create an entrancing experience
A

i S
Joanne Armitage (left) and Shelly Knotts of Algobabez perform on the first

musicians played, the audience watched a live projection of the code the d
sounds. MARIAH TIFFANY

RENICK BELL Is standing in front of his computer at a
small table in the middle of the dance floor. The stoic,
bespectacled musician types quickly and efficiently, his g .
eyes locked to his computer screen. Around him in a X ! ;:m&rgi;-
wide circle, the crowd bobs to his music. Sputtering tom] -
rolls, blobby techno synths, and crystalline cymbal taps
blossom and spill out of the theater's massive
surround-sound system. All the lights are off, and the

FEATURED VIDED
getive (rov count)
"’7:"7‘;:-”1 <:my

“Buta DJ isjust playin

£33

EVERYTHING YOU ALWAYS WANTED TO
KNOW ABOUT PROGRAMMING LANGUAGES

Why don’t we use the same PL?

What is the best PL?

How many PLs are there?

Why don’t we add all possible concepts to a single PL?

Programming Languages as a Social Process

Reports and Articles

Social Processes and Proofs of Theorems

and Programs

Richard A. De Millo
Georgia Institute of Technology

Richard J. Lipton and Alan J. Perlis
Yale University

It is argued that formal verifications of programs,
no matter how obtained, will not play the same key role
in the development of computer science and software
engineering as proofs do in mathematics. Furthermore
the absence of continuity, the inevitability of change,
and the complexity of specification of significantly
many real programs make the formal verification
process difficult to justify and manage. It is felt that
ease of formal verification should not dominate
program language design.

Key Words and Phrases: formal mathematics,
mathematical proofs, program verification, program
specification

CR Categories: 2.10, 4.6, 5.24

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by the U.S. Army Research
e

L YRt A A N NRITA e 3 TNA AL AN e M AR O

1 should like to ask the same question that Descartes asked. You
are proposing to give a precise definition of logical correctness
which is to be the same as my vague intuitive feeling for logical
correctness. How do you intend to show that they are the same?
... The average mathematician should not forget that intuition is
the final authority.

J. Barkley Rosser

Many people have argued that computer program-
ming should strive to become more like mathematics.
Maybe so, but not in the way they seem to think. The
aim of program verification, an attempt to make pro-
gramming more mathematics-like, is to increase dramat-
ically one’s confidence in the correct functioning of a
piece of software, and the device that verifiers use to
achieve this goal is a long chain of formal, deductive
logic. In mathematics, the aim is to increase one’s con-
fidence in the correctness of a theorem, and it’s true that
one of the devices mathematicians could in theory use to
achieve this goal is a long chain of formal logic. But in
fact they don’t. What they use is a proof, a very different
animal. Nor does the proof settle the matter; contrary to
what its name suggests, a proof is only one step in the
direction of confidence. We believe that, in the end, it is
a social process that determines whether mathematicians
feel confident about a theorem—and we believe that,

A good analogy: artificial languages are similar to human languages
— Cultural heritage, social groups

Effect of companies and market
— Microsoft: C#
— Apple: Objective-C, Swift
— Google: Go, Dart

Welcome to Amazon.com
Books!

One million titles,
consistently low prices.

(If you explore just one thing, make it our personal notification service. We think it's very cooll)

SPOTLIGHT! -- AUGUST 16TH
These are the books we love, offered at Amazon com low prices. The spotlight moves EVERY
day so please come often.

One Mimrion TITLES
Search Amazon com's million title catalog by author, subject, title, keyword, and more... Or take
alook at the books we recommend in over 20 categones... Check out our customer reviews and

the award winners from the Hugo and Nebula to the Pulitzer and Nobel .. and bestsellers are
30% off the publishers list. ..

Interplay between technologies
— Early ‘90s: e-commerce becomes popular
— April 1995: at Netscape, Brendan Eich designs JavaScript

JélVaScr1pt:
The Good Parts

g iid A7 7HSETE

O’REILLY” / YAFHOOY!. PRESS PP !
ouglas rockford

JavaScript: let’s Figure out the Semantics

Sergio Maffeis, John C. Mitchell, and Ankur Taly. 2008. An Operational
Semantics for JavaScript. In Proceedings of the 6th Asian Symposium on
Programming Languages and Systems (APLAS '08), G. Ramalingam (Ed.).
Springer-Verlag, Berlin, Heidelberg, 307-325.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence of
javascript. In Proceedings of the 24th European conference on Object-oriented
programming (ECOOP'10), Theo D'Hondt (Ed.). Springer-Verlag, Berlin,
Heidelberg, 126-150.

Daejun Park, Andrei Stefanescu, and Grigore Rosu. 2015. KJS: a complete
formal semantics of JavaScript. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI '15).
ACM, New York, NY, USA, 346-356.

School of Computer Science

v%
<«
a. University of St.Gallen

Why don’t we all use the same language”?

Why don’t we all use the same language”?
Which one”?

Uh... What about the most common?

Why don’t we all speak Chinese?

What is the best language?

No clear answer (what's the “best” human language!?)

Some languages are very effective for certain tasks
— E.g., Python for data science

How many languages exist?

Wikipedia lists 700 “recognized” languages

In practice, many more. Could be ~10.000

What is a ‘new’ language anyway?

For comparison, ~6000 human languages

TIOBE Index for October 2021
October Headline: Python programming language number 1!

For the first time in more than 20 years we have a new leader of the pack: the Python programming language. The long-standing hegemony of Java and
C is over. Python, which started as a simple scripting language, as an alternative to Perl, has become mature. Its ease of learning, its huge amount of
libraries, and its widespread use in all kinds of domains, has made it the most popular programming language of today. Congratulations Guido van
Rossum! Proficiat! - Paul Jansen CEQ TIOBE Software

The TIOBE Programming Community index is an indicator of the popularity of programming languages. The index is updated once a month. The ratings
are based on the number of skilled engineers world-wide, courses and third party vendors. Popular search engines such as Google, Bing, Yahoo!,
Wikipedia, Amazon, YouTube and Baidu are used to calculate the ratings. It is important to note that the TIOBE index is not about the best programming
language or the language in which most lines of code have been written.

The index can be used to check whether your programming skills are still up to date or to make a strategic decision about what programming language
should be adopted when starting to build a new software system. The definition of the TIOBE index can be found here

Oct 2021 Oct 2020 Change Programming Language Ratings Change
1 3 A Fad Python 1.27% -0.00%
2 1 v G c 1.16% -5.79%
3 2 v 5 Java 10.46% -211%
4 4 @ CH+ 7.50% +0.57%
5 5 @ c# 5.26% +1.10%
6 6 @ Visual Basic 5.24% +1.27%
S
TIOBE Programming Community Index
7 7 JS JavaScript .
Source: www.tiobe.com
30

8 10 A saL
9 8 v . PHP 25
10 17 @ Assembly language 20 rw\wm

% \ - N A

ARG & X o

1 19 o« Classic Visual Basic “ A\ ‘\,j\ M\‘/

£ 15

=]
12 14 @0 Go &

10
13 15 4\ MATLAB
14 9 ¥ R R 5
. ., A 4 A
15 12 v . Groovy 0 - —r— it J
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
16 13 v & Ruby
Python == C Java C++ == C# == Visual Basic JavaScript === SQL == PHP Assembly language

17 16 v e Swift . —
18 37 @ Fortran 1.08% +0.70%
19 1 v 0 Perl 0.93% -0.49%

1954 1957 1960 1965 1970 1975 1980 1985 1990 1995 2000

1954

FORTRAN

1957 1960 1965 1970 1975

1980

november 1954

Languages
january 1, 2021
Eric Lévine:

o
<hpihww Jevenez.comila

9992021

ALGOL 58 ALGOL 60
1958 1960

PostSeript
1982 T
Forth - Forth-¢
1968 1978 1983
Logo
» » ” , FORTRAN IV FORTRAN v
october 1956 1957 end-1958 1962 (Fortran 66 ANS) (Fortran 77 ANS)
1966 april 1978
Prolog Prolog 1T
1970 october 1982
Joss TELCOMP MUMPS MUMPS (ANSI)
1968~ loes —® " ioge september 15, 1977
APL
1960 "
1981
Flow-Matic COBOL. COBOL61__,_COBOL 61 COBOL COBOL 68 ANS COBOL 74 ANST
— - = <
1958 155 1961 Extended 1965 1968 1974 Py
1962 Rexlod . Rex200 _, Recao
Pascal 4 may 1979 1980 2
Pascal A
1970 oy
LM Modula Modula 2
1572 1975 o |47 e
PLI LI ANS 1 7 january 16
1964 1976
CPL / BCPL B / c C (K&R) Classic C
963 july 1967 1969 1971 1978 Classic
JOVIAL JOVIALT _ JOVIAL JOVIAL3
1959 ———m""jog0 M 1961 1965
1964 1966 pal
1964 1967
oL I I
N 196 ALGOL 68 \ 1977 ~ o

december
1968
GOGOL GOGOL 1l Smaltalk ___ Smalltalk-72 Smalltalk-74 Smalltalk-76 Smalltalk-78
1967 1971 B 1072 1974 1976 1978

Smalltalk-80
1980

1963
ed
Sail 1973 Mainsai
1968 o5 ———
ISWIM] ank
966 Tors e
- os1
Mgz =
SASL 4 oo 1ons
1976 Miranda
o
-
1569
BASIC MS Basic 20 BASICA
may 1, 1964 July 1975 95
Lip1s
W62
Scheme Scheme MIT
075 1975
ML,
1973 ;
sLs Leon
SNOBOL SNOBOL2 __ SNOBOL3 SNOBOL 4 A e i
1962 ———®w"qpril 1965 — 1965 Y967

1954 1957 1960 1965]

Forth
1968
Logo
1968
FORTRAN FORTRAN I FORTRAN II FORTRAN III __ FORTRANIV FFORTRANAI]\}’S
november 1954 P> october 1956 1957 end-1958 Ll 1962 (0rtr2}l(1)6666)
JOSS TELCOMP MUMPS
1964 ™ 1965 P 1966
APL
1960
) Flow-Matic COBOL, COBOL 61 COBOL 61 COBOL o COBOL 68 ANS
— ———————
1957 1958 1959 1961 Extended 1965 - 1968
1962
PL/
1964
CPL o BCPL
1963 = july 1967
JOVIAL JOVIALT _ JOVIALII JOVIAL 3
1959 —® 1960 W 1961 1965 -
\ CORAL 64 CORAL 66
1964 > 1966
Simula I Simula 67
o > 1967
ALGOL W |
IAL ALGOL 58 ALGOL 60 N 1966 __ ALGOL 68
1958 1958 1960 = december
1968
GOGOL GOGOL Il
1964 > 1967
\ Sail
1968
ISWIM
1966
sh
1969
BASIC
may 1, 1964
Lis, Lisp 1 Lisp 1.5 /
1955 —™ 1959 1962
. Languages SNOBOL SNOBOL2 _ SNOBOL 3 SNOBOL 4
January I', 2021 1962~ pril 1964 — W 1965 ————————————®» 1967

© Eric Lé
<http://www.

nez 1999-2021
2.com/lang/>

2018

. Tc/TKS.69
november 16,2018

Tcl/Tk 8.6.8
december 22,2017

2019

p Tcl/Tk 8.6.10
november 21,2019

Python 3.8.0

2020

Python 3.9.0
ber 5,2020 >

-
P octol

P july 8,2019 ——————® october 14,2019

Swift 5.2 Swift 5.3
L . —_— —
march 24,2020 september 16, 2020

Java 13

Java 15

Java 14
- — -
march 2020 september 2020

C#9.0
> september 2020 >

L C#8O
P september 2019

13.63 Python 3.7.0 Python 3.7.4
3,2017 june 27,2018
Swift 4.1 . .
_— - . - Swift 5 S“’Ifl 51
7 april 29.2018 " march 25,2019 april 19,2019
Java 10,0 » Javall Java 12 >
april 20,2018 september 25,2018 march 19,2019 september 2019
Cc#73
by abo0rg T My 2018
ebruar? ,
Y » ISO/ECC (C17) —m
june 2018

)/IEC C++ (C++17)

d ber 1,2017
lecember o ECMAScript ed9

w. ECMAScript ed10

ECMAScript ed11
- june 2020

> june 2019

- june 2018

oy

p Ruby250 o Ruby2s.1
dec. 25,2017 march 28,2018

Ruby 2.6
december 25,2018

2.63 » Ruby 2.7.0
019 december 25,2019

Ruby
april 17,20

Ruby 3.0.0 — -

-
december 25, 2020

PHP 7.4.12
» october 29,2020 >

Perl 5320
P ne2l,2000 — ™

7.2 - PHP 7.3 PHP 7.3.8
J——
30,2017 " december 6,2018 July 30,2019
Perl 6 2018,04 Perl 6 2018,06
may 7,2018 —— june 27,2018 ——=

Perl 5.30.0
7 may 22,2018
aml 4.06.0 o OCaml 4.07.0 . OCaml 4.08.0 OCaml 4.09.0 g OCaml 4.10.0

¥ july 10,2018 june 14,2019 september 18,2019 february 20, 2020

nber 3, 2017

OCaml 4.11.0
august 19,2020

Why don’t we add all possible concepts
to a single language”

Chinese characters + German grammar +
UK humor + Latin declinations + ...

@bogartcreek

DOES IT MATTER?

When Abstraction Goes Wrong

addNumbers() {

X =2; 1010100010100010
y =9;

Z=X+Y,

}

When Abstraction Goes Wrong

addNumbers() {

X = 2147483647;
y=59;

Z=X+Y,

}

01001100

11000101

01101100

01011001

01000101

11011000

Abstraction Gone Wrong: The Ariane 5

STOP:

BAD_POOL_HEADER

PUID: Genuine Intel 5.2.c

11 Base
BA16686606
3006106060
8802c6000
88024106060
fc698000
fc98a8060
fc864000
fc6d4d800608
fc8740800
feffafno
fc7608000

801471c8 861

DateStmp
3282cB?e
31ledB6b4
31ledB6bf
3lec6c?a
3lecbtc?d
3lec6df?
31ed868b
3lec6c98
3lec6c94
3lecbcb2
3lecébeccech
3leed262
31£f91a51
3lecébebe
31f1368a?
316861a30
3lecbe?a
3lec6c9b
3lec6echbl
31f7alba

88143e006
8
8
L)
t
u

dword dump

8
8
£
8

irgl:1f

Name
ntoskrnl .exe
atapi.sys
aic?78xx.sys
CLASS2 .SY¥S
Floppy .S¥S
Fs_Rec .S¥S
KSecDD.SY¥S
i8842p»t .s5ys
kbdclass .sys
mga_mil .sys
Msfs .SYS

ND IS .S¥S
mga.dll
TDI.S¥S
tcpip.sys
el59x.sys
netbios .sys
Parallel .S¥YS
Sexrial .S¥S
Mup .sys

Build [1381]

143e808 861440080
144808 ffdffeee
883fef fB30eeen
88823c AHBBHB34

SYSUVER 8xf8888565

Do

he recovery options
G system start option.

f£fdf£08
8386860b
133c4b
8806008

D11 Base
806166060
80886000
8862cdBBn
88637cB88
fc6a80080
fc9c90808808
fc9cabfng
fc86cBBH
fc6f0000
fc896808080
fc4bbhooo
afdvsnneeen
fec3100606
feafbfnnn
feab388686
fco560000
fc8580080
£fc9540800
feadcBnn
fe9danng

LOD®

DateStmp
3leebcdH2
3lec6c?4
31ed237c
3leedBa?
3lecé6ecal
3lec6c99
3lec6c?8
3lec6c9?
31£f58722
3lecbectd
3lecbecc?
31£954£f7
3leeddB?
31edB8?754
31£f58a65
31f8f864
3lec6c9b
3lec6c9d
31£f56830b
32831 abe

in the system control

Bx880080019 (BxPBABBVB0,8<xCABERFFB, XFFFFEFD4,8xCO006806806)

Name

hal .d1l1
SCSIPORT .S¥S
Disk.sys
Ntfs .sys
Cdrom.S¥S
Null .S¥S
Beep .SYS
mouclass .sys
UIDEOPORT .SY¥S
vga.sys

Npfs .SYS
win32k.sys
Fastfat .SY¥S
nbf .sys
netbt .sys
afd.sys
Parport .sys
ParUdm.SY¥S
rdy» .S5ys

SrV .Sys

Name

— KSecDD.SY¥S

ntoskrnl .exe
ntoskrnl .exe
ntoskrnl .exe

ranel

o~

P

TR A

v

3£ 2
£ this 42 the first time you've seen this Stop erroe scraen,
[GStary Yo Computer. If ms screen ag‘pousogggjn.vfa][

ﬁio make sure any new h o Ty 1nst % - :
168 is a new installation,"ask ‘hardware oF software man 5 P e ——

m—pctcal 4 Bt iont o R
(¥ STOP: WSO (OxXBO000SF2, 0x00000000, OXBOSESICS, W)

mimﬁng dunp of physical memory :’.

d\yﬂcal memory dump complete.
Tontact your system administrator or technical s;qport group for further
15515tance.

-

The Software Engineering Process

REQUIREMENTS

DESIGN

DEVELOPMENT
(CODING)

TESTING

MAINTENANCE

The Software Engineering Process

REQUIREMENTS

DESIGN
DEVELOPMENT
(CODING)
TESTING

MAINTENANCE

Ferguson’s Covid 19 Epidemic Model

“From tomorrow, if you have coronavirus symptoms, however mild [...] you should
stay at home for at least 7 days to protect others [...]”

Boris Johnson, March 12t 2020

Ferguson’s Covid 19 Epidemic Model

“From tomorrow, if you have coronavirus symptoms, however mild [...] you should
stay at home for at least 7 days to protect others [...]”

Boris Johnson, March 12t 2020

March 16t: Imperial team’s model, released
— With no countermeasures, UK’s health service overwhelmed.

— UK: As many as 500,000 deaths
— United States might face 2.2 million deaths.

> neil_ferguson &
> @neil_ferguson

I'm conscious that lots of people would like to see and
run the pandemic simulation code we are using to model
control measures against COVID-19. To explain the
background - | wrote the code (thousands of lines of
undocumented C) 13+ years ago to model flu
pandemics...

10:13 PM - Mar 22, 2020 - Twitter for iPhone

1,412 Retweets 661 Quote Tweets 4,789 Likes

1970 1975

1980 1985

PostScript
/ 1982 00 Forth
» 1987
Forth Forth-83 ANS Forth
1968 > 083 1986 A
Logo Object Logo Tel Tcl/Tk
{1968 > ios6 mid 1988 ™ end 1988
= (Fortran 77 ANSI)
i A
Prolog 11T 1988
Prolog Prolog II /(
1970 > october 1982 - 1984
Sharp APL
o MUMPS (ANSD) A . MUMPS (FIPS)
» »
september 15, 1977 Modula 3
1988
. APL2
B " august 1984 ABC
1981 > 1og7
Object Pascal > Blr]nrl:Iz,]
OBOL 68 ANS o COBOL 74 ANSI - COBOL 85 ISO/ANSI 4 198 y
1968 > 1974 Rex 1.00 Rex 2.00 Rex 3.00 Rexx 3 20 19
ex ex 2. .4
e > >
. 1980 1982
Pascal - Pascal AFNOR >
1970 1983 Oberon
1987
PL/M Modula /
1972 1975 Ada 83 ANSI Ada ISO
L Jjanuary 1983 P 087
__ PL/1 ANS
> 1976

c)

B
1969 1971 }

Concurrent C
1984

/ ANSI C

\

- (C89)
1989
Objective-C
1983

/ - g -
CLU / july 1983
1974 |

/ \ - \ Mesa

\i

J

OL 68 i

-
\ Cedar
1983

Lt

ember
968
Smalltalk Smalltalk-72 Smalltalk-74 Smalltalk-76 80
1971 Lt 1972 ————® 914 —————® 1976 e — 1980
sed - A g
1973 Mamsall Eiffel Flffel 2
i 1986 — ™ -
- nawk »
KRC _ 1985
1981 -
SASL ocmber 1978 e
1976 Perl 1.000 g Perl 2.000 - Perl3
Miranda degember 18,1987 january 5, 1988 october 1
1982 -
sh -
1969 /
MS Basic 2.0 BASICA GW-Basic QuickBasic 1.0 QuickBasic 4.5 MS Basi
Bty 1975 981 1983 P 1985 ———W 1988 — ¢
Clos
/ Common Lisp / 1989
1984

\ Scheme oy
1975 -

ML

o Scheme 84
»
1984 S Haskell 1.0
1987

o SML

1973 SLs Icon

A 1976 > 1977

1984

\\ Caml

1987

COBOL 74 ANSI

1974
Pascal
1970 \
PL/M Modula
1972 1975
Z PL/1 ANS
/ / \ \ > 1976
C C(K
/ \> - / \ \\ B
/
|
CLU
1974 \ \
/ \ - Mesa \ \
\ / 1977 \ \
¥ Smalltalk Smalltalk-72 Smalltalk-74 Smalltalk-76 \
1971 —® 1972 1974 1976
sed \ \‘
1973 Mainsail
/ > 1975 ———B
|

s

neil_ferguson & @neil_ferguson - Mar 22, 2020

Replying to @neil_ferguson

| am happy to say that @Microsoft and @GitHub are working with
@Imperial_JIDEA and @MRC_Outbreak to document, refactor and extend
the code to allow others to use without the multiple days training it would
currently require (and which we don’t have time to give)...

Q a4 1 287 QO 12 o

neil_ferguson & @neil_ferguson - Mar 22, 2020

They are also working with us to develop a web-based front end to allow
public health policy makers from around the world to make use of the
model in planning. We hope to make v1 releases of both the source and
front end in the next 7-10 days...

Q 46 0 151 K o

neil_ferguson & @neil_ferguson - Mar 22, 2020

That timescale reflects the balancing of those priorities with the multitude
of other urgent policy-relevant COVID-19 questions we are addressing....

C) 17 T 49 QO a7n2 5

