
Programming Languages
A Journey into Abstraction and Composition

3rd Exercise: First-Class Functions, Scoping and Closures
Programming Group

guido.salvaneschi@uzh.ch

University of Zurich – June 28th, 2022

First-class Functions
The following exercises are about extending the FLAE interpreter and understanding the difference be-
tween first-class functions and first-order functions. Definitions of the base languages used in these as-
signments are in the first_class_functions.definitions package.

We do not need the let construct when we have functions as values. Taking this into consideration,
define a preprocessor for FLAE such that let is replaced with a combination of App and Fun.

Use the template provided in first_class_functions/Let.scala. Your code has to be in functional
style, i.e., do not use mutable vars and imperative constructs.

Task 1: Let

Multi-argument functions are another feature that can be implemented in a preprocessor. We call
FLAEwithmultiple-argumentsMFLAE. Define a preprocessor where the support formultiple-argument
functions is replaced with currying and single-argument functions.

Use the template provided in first_class_functions/MultipleArguments.scala. Your code has to be in
functional style, i.e., do not use mutable vars and imperative constructs.

Task 2: Multiple Arguments

Implement two functions in Scala that make use of first-class functions and could not be written nicely
with first-order functions only, and two test cases for each function.

Use the templates provided in first_class_functions/{ScalaFns,ScalaFnsTest}.scala.

Task 3: First-Order vs. First-Class Scala

Implement two functions in the MFAE language that make use of first-class functions and could not
be written nicely with first-order functions only, and two test cases for each function.

To define MFAE functions use Scala’s val definitions, like in the example already given in the
project template. Note that the example does not use first-class functions. You may use examples
similar to the ones in the previous task.

Use the templates provided in first_class_functions/{MFAEFns,MFAEFnsTest}.scala.

Task 4: First-Order vs. First-Class MFAE

1



Scoping

What is the difference between dynamic scoping and static (lexical) scoping?

Question 5: Dynamic vs. Static Scoping

In a language with dynamic scoping, the scope of an identifier’s binding is the entire remainder of
the execution during which that binding is in effect. In a language with static scoping, the scope
of an identifier’s binding is a syntactically delimited region. In the interpreter code, we can see
the difference when interpreting App-nodes: To interpret a function’s body, we ignore the previous
environment and only bind the arguments.

What does “static” stand for in static scoping?

Question 6: “Static”

In static scoping, we can decide statically, i.e., by looking at the source text of an expression without
executing the program, whether an identifier is bound or not.

What are potential problems with dynamic scoping?

Question 7: Dynamic Scoping

In general, dynamic scoping can result in unexpected behavior: Since free identifiers can be dynam-
ically bound during program execution, it is not immediately clear before execution how or whether
a free identifier in a function body is bound. If the programmer forgets to bind an identifier, the
interpreter will dynamically fail.

Closures
Consider the interpreters for FLAE in the following questions.

In the interpreter with environments we introduced closures. What is a closure? What do we need
them for?

Question 8: Definition

A closure is a function definition combined with the environment at function-definition time.
We need closures for to implement static scoping in a language with first-class/higher-order func-

tions: The closure “remembers” exactly the bindings for free identifiers used within the function
definition that was valid when the function was defined.

Why did we not need closures in the interpreter with substitution?

Question 9: Closures and Substitution

The interpreter with substitution immediately replaces all bindings in function definitions within let-
bodies. Hence, any binding is “automatically remembered”—it is directly inlined into the function

2



definition.

Why did we not need closures in the F1LAE interpreter with environments?

Question 10:

In the F1LAE interpreter, functions are not first-class and hence cannot be defined within a program
expression. Instead, functions are predefined in an external environment given to the interpreter
for evaluating a program expression. Therefore, when implementing static scoping, it is simply not
possible to bind free identifiers in function definitions (neither when using substitution, nor when
using environments). Hence, there is no need for closures.

When implementing dynamic scoping, the environment would always dynamically contain any
binding that we need during evaluation, just as in the dynamically scoped interpreter for FLAE, where
you don’t need closures anyway.

3


