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Save Time and Mechanize
GEORGE ZAKHOUR, University of St. Gallen, Switzerland

1 INTRODUCTION

The gold standard for programming languages semantics are equational theories: operational or
denotational. Some languages offer constructs such as typeclasses that encapsulate equational sys-
tems while others (e.g., Agda, Lean, and Rocq) offer an engine to manipulate equalities within the
language to state and prove properties. Code correctness arguments rely on these equations and
optimizers use them to search for optimal programs that compute equal values.

Storing and querying equalities is thus crucial. Here two standard data structures help: the
union-find [10, 28] which efficiently represents equivalence relations, and the e-graph [18, 29]
which extends the union-find with congruence. Both are used in tools such as Z3 [7] and CVC5 [2]
(solvers), Simplify [8], TheSy [26], and CCLemma [13] (theorem provers), Babel [3], Herbie [21],
and Ruler [17] (synthesizers), and Cranelift [1] (optimizer).

I am developing Propel [33]—an automated inductive theorem prover for programs satisfying
algebraic (equational) laws. My co-authors and I demonstrated its effectiveness for Conflict-Free
Replicated Datatypes in [32]. The use of e-graphs was natural for Propel’s implementation but it
was not possible since Propel tracks disequalities (unequal expressions) to prune the proof space
earlier and thus prove more faster. To integrate e-graphs, we extended them to disequalities in four
variants [31], we formally studied the properties of each variant, and discussed the approach that
some tools take to reason with disequalities. The next challenge is one that every prover—Z3 and
CVC5 included—must address. How to guarantee the correctness of the e-graph’s answer?

Existing Work. To gain trust in the e-graph’s response, provers such as Z3, CVC5, and others use
an e-graph that produces proofs derived from metadata stored alongside the e-graph which
doubles its memory footprint [19]. While proofs can be examined manually, they are often not
as proofs are large. For example, Flatt et al. [9] tell of a circuit optimizer that optimized a circuit
in under a minute but the proof needed 4 hours to verify. Generating smaller proofs is time
consuming and takes between O(nlogn) and O(n’) with n being the number of equalities [9].

For example, whenever the state-of-the-art Lean tactic egg [23, 24] is invoked, it serializes the
goal for a Rust backend that uses the egg library [29], receives back new equalities and proofs,
translates these into Lean, and checks the proofs before admitting the new equalities.

Can We Do Better? Using a mechanically verified e-graph rids us of the memory and runtime
penalties of generating proofs. Put another way, the proof of the e-graph’s correctness is the proof
certificate of any equality which can only be checked once.

Contributions. Towards a verified efficient e-graph, I mechanized a generic yet efficient union-
find in Lean [16]. The implementation is publicly available [30] and performs well compared to a
Rust implementation (Section 3) demonstrating that verified code does not need to be slow.

2 BACKGROUND: UNION-FINDS AND E-GRAPHS

Union-Find. The union-find [10, 28] allows storing and querying an equivalence relation. It is
a forest where two elements are equal whenever they are in the same tree. Each element has a
representative: the root of its tree, and to decide equivalence, the representatives are compared.
To equate two elements, the representative of one is added to the children of the other.
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structure UFData T where parent: a T T theorem reflexive (uf: UF T): V x, uf F x=x
theorem symmetric (uf: UF =T):
abbrev root ufd x := ufd.parent x == x vV x y, uf b x=y - uf - y=x
theorem transitive (uf: UF <T):
structure UF T extends d: UFData T where Vxyz uftr x=y > uf - y=z > uf F x=z
depth : Erased (Tt - Nat) theorem closure (egs: List (T x T)):
dz: V r, d.root r » depth r = 0 V eq € list, of egs + eq.l = eq.2
dlt: V r, d.root r - theorem smallest (egs: List (Tt x T)):
depth (d.parent r) < depth r Vv (R: T - T - Bool)

vV x, Rxx) » (Vxy, Rxy > Ryx -

(

def 9 := ( a.id, A _ » 0 } (Vxyz, Rxy>Ryz~>Rzxz -
(Vv ab € egs, R ab.1 ab.2) -

def of | []=>0 | (a,b)::e=>(of e).union a b V ab, (cf egs+a =b) » Rab

Fig. 1. Simplified snippets from the Lean mechanization [30] with the key theorems on the right.

E-Graphs. In the union-find it may be that x = y without f(x) = f(y). To guarantee congruence,
e-graphs use union-finds and hash-conses: maps from elements to unique identifiers. A hash-cons
allows sharing sub-expressions, so the f node of f(x, x) points twice to the same x, making the AST
a directed graph. The domain of the union-find is the unique identifiers and two expressions are
equal when their identifiers are equal in the union-find. To equate two expressions their identifiers
are equated in the union-find and the dependencies on identifiers are recursively followed.

3 A MECHANIZED AND EFFICIENT COINDUCTIVE UNION-FIND

The Forest. Algebraic data types are famously the go to for modeling tree-shaped data. But im-
plementing the union-find of elements of type 7 using ADTs quickly becomes complicated since its
operations “recurse upwards” towards roots. Thus an element must always be accompanied with
a context [11, 15]. So instead of the ADT px.7 + x X T X x we can treat the whole forest as a graph
and use u : T — 7 with the invariant that a measure on 7 exists that decreases after applying u
except for its fixed points which are the roots in the forest with measure 0.

The left of Fig. 1 shows simplified definitions from the mechanization [30]. Particularly depth
is the measure and dz and d1t specify the invariant. In the empty union-find all elements are
roots, i.e. all elements are fixed points, i.e. the union-find is the identity. Due to space limitations
find, union, and the equivalence - I- - = - judgement are omitted [30]. The right of Fig. 1 shows
the five key theorems: that supplying equalities to the empty union-find generates the smallest
reflexive, symmetric, transitive closure. While the proofs of the last four are common, to the best
of my knowledge this is the first presentation of the proof of the first.

Coinduction. The union-find is coinductive: it’s the terminal coalgebra of the X — 7 x X™*
functor. Informally, equivalences exist in an ambient space (the type of its elements) so querying
it at an outsider to the equalities it closes over is not an error: it may have just not seen it yet. So
if 7 is infinite why shouldn’t the union-find be too? With u not only can the union-find contain an
infinite number of elements, but also an infinite number of equalities. For example the union-find
withu : N —» N = x — 2| x/2] and the measure x — x mod 2 contains all the natural numbers
and equates every odd number to its predecessor which is chosen as the representative.

Efficiency. Unioning two elements requires modifying the root of one subtree. To update u the
old one must be captured in a closure and later conditionally called as is classically done [22]. The
more the union-find is updated the more closures are captured and the more are unwrapped when
one is called, thus degrading the linear complexity of the union-find [28] to become quadratic.
While functions are easy to reason about, practically programmers use (hash)maps or arrays [20].
The last conceptual contribution is to realize that a mechanization that captures the common in-
terface « (in Fig. 1) between functions and maps is the best of both worlds.

Case Study. To witness the efficiency of the mechanization, I wrote a program which processes
the 163 million connections in the 2018 English WikiLinkGraph dataset [4] and a list of article
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Fig. 2. The time to build a union-find of n unions followed by some queries using a Rust (red), a Lean with
hashmaps (blue), and a Lean with functions (green) implementation. Lower is better.

pairs and which prints those which are not mutually reachable. At its heart is a union-find built
from the connections encoding the “reachable” relation. The program has three variants: in Rust
using a hashmap for the tree, in Lean using its hashmap, and in Lean using function closures.

Fig. 2 first shows that the speed of the first Lean variant is comparable to that of Rust, taking
13 min to build the full union-find and check 1 million pairs while the Rust implementation takes
10 min. Then, it shows that the representation with closures suffers dramatically from a quadratic
blowup as each query must unwrap many closures before returning.

4 TOWARDS AN E-GRAPH MECHANIZATION

Coinduction had one more benefit for the mechanization of union-finds: it eliminated add and
contains. Not only was the mechanization effort easier, but the statements of theorems became
simpler. For example none of the theorems in Fig. 1 are conditioned by containment nor were the
definitions of union and £ind. Having everything present simplified everything.

E-Graphs are not clearly coinductive. When the hash-cons and the union-find of an e-graph
are infinite then its recursive union operation never terminates since the proof relies on the
decreasing number of roots in the union-find. For example, to union x with y, the e-graph must
union f(x) with f(y) then f(f(x)) with f(f(y)) ad infinitum because all terms are in the e-graph.

Deferred rebuilding is a popular union strategy proposed by egg [29] that separates the loop
from union. It would also suffer from nontermination for the same reason, but I suspect that
it can be adapted to guarantee termination. The key observation is that each equality affects a
finite subgraph which—once rebuilt—renders the infinite dependency chain unreachable. In the
next steps I wish to explore this strategy and contribute the first coinductive functional e-graph.

5 FUTURE WORK

The mechanized e-graph will be the foundation for the much needed e-graph extensions to in-
tegrate e-graphs into Propel. Four extensions are necessary: (1) data-analysis [29] enables useful
analyses for optimization and verification such as disequalities [31], (2) e-matching [6] allows effi-
cient search for expressions (a must for applying theorems), (3) conditional reasoning [5, 27] avoids
cloning the whole e-graph in every branch of a conditional expression, and (4) a¢-equivalence as
used in slotted e-graphs [25], to enable higher-order reasoning, a hallmark of Propel. Beyond, these
mechanizations are useful for the community as they could serve as the new trusted backend for
the egg Lean tactic, for developing an efficient and verified solver in Lean, or even for the opti-
mizer [12] of a certified compiler such as CompCert [14].
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