[% T N O R

Save Time and Mechanize
GEORGE ZAKHOUR, University of St. Gallen, Switzerland

1 INTRODUCTION

The gold standard for programming languages semantics are equational theories: operational or
denotational. Some languages offer constructs such as typeclasses that encapsulate equational sys-
tems while others (e.g., Agda, Lean, and Rocq) offer an engine to manipulate equalities within the
language to state and prove properties. Code correctness arguments rely on these equations and
optimizers use them to search for optimal programs that compute equal values.

Storing and querying equalities is thus crucial. Here two standard data structures help: the
union-find [10, 28] which efficiently represents equivalence relations, and the e-graph [18, 29]
which extends the union-find with congruence. Both are used in tools such as Z3 [7] and CVC5 [2]
(solvers), Simplify [8], TheSy [26], and CCLemma [13] (theorem provers), Babel [3], Herbie [21],
and Ruler [17] (synthesizers), and Cranelift [1] (optimizer).

I am developing Propel [33]—an automated inductive theorem prover for programs satisfying
algebraic (equational) laws. My co-authors and I demonstrated its effectiveness for Conflict-Free
Replicated Datatypes in [32]. The use of e-graphs was natural for Propel’s implementation but it
was not possible since Propel tracks disequalities (unequal expressions) to prune the proof space
earlier and thus prove more faster. To integrate e-graphs, we extended them to disequalities in four
variants [31], we formally studied the properties of each variant, and discussed the approach that
some tools take to reason with disequalities. The next challenge is one that every prover—Z3 and
CVC5 included—must address. How to guarantee the correctness of the e-graph’s answer?

Existing Work. To gain trust in the e-graph’s response, provers such as Z3, CVC5, and others use
an e-graph that produces proofs derived from metadata stored alongside the e-graph which
doubles its memory footprint [19]. While proofs can be examined manually, they are often not
as proofs are large. For example, Flatt et al. [9] tell of a circuit optimizer that optimized a circuit
in under a minute but the proof needed 4 hours to verify. Generating smaller proofs is time
consuming and takes between O(nlogn) and O(n’) with n being the number of equalities [9].

For example, whenever the state-of-the-art Lean tactic egg [23, 24] is invoked, it serializes the
goal for a Rust backend that uses the egg library [29], receives back new equalities and proofs,
translates these into Lean, and checks the proofs before admitting the new equalities.

Can We Do Better? Using a mechanically verified e-graph rids us of the memory and runtime
penalties of generating proofs. Put another way, the proof of the e-graph’s correctness is the proof
certificate of any equality which can only be checked once.

Contributions. Towards a verified efficient e-graph, I mechanized a generic yet efficient union-
find in Lean [16]. The implementation is publicly available [30] and performs well compared to a
Rust implementation (Section 3) demonstrating that verified code does not need to be slow.

2 BACKGROUND: UNION-FINDS AND E-GRAPHS

Union-Find. The union-find [10, 28] allows storing and querying an equivalence relation. It is
a forest where two elements are equal whenever they are in the same tree. Each element has a
representative: the root of its tree, and to decide equivalence, the representatives are compared.
To equate two elements, the representative of one is added to the children of the other.

Author’s address: George Zakhour, george.zakhour@unisg.ch, University of St. Gallen, Switzerland.

HTTPS://ORCID.ORG/0009-0000-5042-1207
https://orcid.org/0009-0000-5042-1207

50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

0:2 George Zakhour

structure UFData T where parent: a T T theorem reflexive (uf: UF T): V x, uf F x=x
theorem symmetric (uf: UF =T):
abbrev root ufd x := ufd.parent x == x vV x y, uf b x=y - uf - y=x
theorem transitive (uf: UF <T):
structure UF T extends d: UFData T where Vxyz uftr x=y > uf - y=z > uf F x=z
depth : Erased (Tt - Nat) theorem closure (egs: List (T x T)):
dz: V r, d.root r » depth r = 0 V eq € list, of egs + eq.l = eq.2
dlt: V r, d.root r - theorem smallest (egs: List (Tt x T)):
depth (d.parent r) < depth r Vv (R: T - T - Bool)

vV x, Rxx) » (Vxy, Rxy > Ryx -

(

def 9 := (a.id, A _ » 0 } (Vxyz, Rxy>Ryz~>Rzxz -
(Vv ab € egs, R ab.1 ab.2) -

def of | []=>0 | (a,b)::e=>(of e).union a b V ab, (cf egs+a =b) » Rab

Fig. 1. Simplified snippets from the Lean mechanization [30] with the key theorems on the right.

E-Graphs. In the union-find it may be that x = y without f(x) = f(y). To guarantee congruence,
e-graphs use union-finds and hash-conses: maps from elements to unique identifiers. A hash-cons
allows sharing sub-expressions, so the f node of f(x, x) points twice to the same x, making the AST
a directed graph. The domain of the union-find is the unique identifiers and two expressions are
equal when their identifiers are equal in the union-find. To equate two expressions their identifiers
are equated in the union-find and the dependencies on identifiers are recursively followed.

3 A MECHANIZED AND EFFICIENT COINDUCTIVE UNION-FIND

The Forest. Algebraic data types are famously the go to for modeling tree-shaped data. But im-
plementing the union-find of elements of type 7 using ADTs quickly becomes complicated since its
operations “recurse upwards” towards roots. Thus an element must always be accompanied with
a context [11, 15]. So instead of the ADT px.7 + x X T X x we can treat the whole forest as a graph
and use u : T — 7 with the invariant that a measure on 7 exists that decreases after applying u
except for its fixed points which are the roots in the forest with measure 0.

The left of Fig. 1 shows simplified definitions from the mechanization [30]. Particularly depth
is the measure and dz and d1t specify the invariant. In the empty union-find all elements are
roots, i.e. all elements are fixed points, i.e. the union-find is the identity. Due to space limitations
find, union, and the equivalence - I- - = - judgement are omitted [30]. The right of Fig. 1 shows
the five key theorems: that supplying equalities to the empty union-find generates the smallest
reflexive, symmetric, transitive closure. While the proofs of the last four are common, to the best
of my knowledge this is the first presentation of the proof of the first.

Coinduction. The union-find is coinductive: it’s the terminal coalgebra of the X — 7 x X™*
functor. Informally, equivalences exist in an ambient space (the type of its elements) so querying
it at an outsider to the equalities it closes over is not an error: it may have just not seen it yet. So
if 7 is infinite why shouldn’t the union-find be too? With u not only can the union-find contain an
infinite number of elements, but also an infinite number of equalities. For example the union-find
withu : N —» N = x — 2| x/2] and the measure x — x mod 2 contains all the natural numbers
and equates every odd number to its predecessor which is chosen as the representative.

Efficiency. Unioning two elements requires modifying the root of one subtree. To update u the
old one must be captured in a closure and later conditionally called as is classically done [22]. The
more the union-find is updated the more closures are captured and the more are unwrapped when
one is called, thus degrading the linear complexity of the union-find [28] to become quadratic.
While functions are easy to reason about, practically programmers use (hash)maps or arrays [20].
The last conceptual contribution is to realize that a mechanization that captures the common in-
terface « (in Fig. 1) between functions and maps is the best of both worlds.

Case Study. To witness the efficiency of the mechanization, I wrote a program which processes
the 163 million connections in the 2018 English WikiLinkGraph dataset [4] and a list of article

https://github.com/geezee/union-find-lean

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Save Time and Mechanize 0:3

Time (s) 7 unions then 2 - 10° queries Time (s) 7 unions then 2 - 10® queries
T T T T 20 \ \ T =
800 - 1
600 |- N —_— StSt.d.Hash;\:[ép
400 |- - N 10 |- ring — String |
ust
200 - L H
ol ean | | ol i
\ \ \ \ 106 \ \ \ \ 103
0 50 100 150 10 0 5 10 15 10

Fig. 2. The time to build a union-find of n unions followed by some queries using a Rust (red), a Lean with
hashmaps (blue), and a Lean with functions (green) implementation. Lower is better.

pairs and which prints those which are not mutually reachable. At its heart is a union-find built
from the connections encoding the “reachable” relation. The program has three variants: in Rust
using a hashmap for the tree, in Lean using its hashmap, and in Lean using function closures.

Fig. 2 first shows that the speed of the first Lean variant is comparable to that of Rust, taking
13 min to build the full union-find and check 1 million pairs while the Rust implementation takes
10 min. Then, it shows that the representation with closures suffers dramatically from a quadratic
blowup as each query must unwrap many closures before returning.

4 TOWARDS AN E-GRAPH MECHANIZATION

Coinduction had one more benefit for the mechanization of union-finds: it eliminated add and
contains. Not only was the mechanization effort easier, but the statements of theorems became
simpler. For example none of the theorems in Fig. 1 are conditioned by containment nor were the
definitions of union and £ind. Having everything present simplified everything.

E-Graphs are not clearly coinductive. When the hash-cons and the union-find of an e-graph
are infinite then its recursive union operation never terminates since the proof relies on the
decreasing number of roots in the union-find. For example, to union x with y, the e-graph must
union f(x) with f(y) then f(f(x)) with f(f(y)) ad infinitum because all terms are in the e-graph.

Deferred rebuilding is a popular union strategy proposed by egg [29] that separates the loop
from union. It would also suffer from nontermination for the same reason, but I suspect that
it can be adapted to guarantee termination. The key observation is that each equality affects a
finite subgraph which—once rebuilt—renders the infinite dependency chain unreachable. In the
next steps I wish to explore this strategy and contribute the first coinductive functional e-graph.

5 FUTURE WORK

The mechanized e-graph will be the foundation for the much needed e-graph extensions to in-
tegrate e-graphs into Propel. Four extensions are necessary: (1) data-analysis [29] enables useful
analyses for optimization and verification such as disequalities [31], (2) e-matching [6] allows effi-
cient search for expressions (a must for applying theorems), (3) conditional reasoning [5, 27] avoids
cloning the whole e-graph in every branch of a conditional expression, and (4) a¢-equivalence as
used in slotted e-graphs [25], to enable higher-order reasoning, a hallmark of Propel. Beyond, these
mechanizations are useful for the community as they could serve as the new trusted backend for
the egg Lean tactic, for developing an efficient and verified solver in Lean, or even for the opti-
mizer [12] of a certified compiler such as CompCert [14].

ACKNOWLEDGEMENT

I extend my thanks to Prof. Dr. Guido Salvaneschi for the supervision of the project and my PhD
and to my colleagues Dr. Pascal Weisenburger and Jahrim Gabriele Cesario with whom I will be
developing e-graph extensions and verify them with the mechanization presented here.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

181
182
183
184

186
187
188
189
190
191
192
193
194
195
196

0:4

George Zakhour

REFERENCES

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]
[24]

[25]

Bytecode Alliance. 2025. Cranelift. https://cranelift.dev/. Accessed: 15 October 2025.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Notzli, et al. 2022. cvc5: A versatile and industrial-strength SMT solver.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 415-442.
David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova. 2023. babble:
Learning better abstractions with e-graphs and anti-unification. Proceedings of the ACM on Programming Languages
7, POPL (2023), 396-424.

Cristian Consonni, David Laniado, and Alberto Montresor. 2019. WikiLinkGraphs: A complete, longitudinal and mul-
tilanguage dataset of the Wikipedia link networks. https://doi.org/10.5281/zenodo.2539424

Samuel Coward, Theo Drane, and George A. Constantinides. 2024. Constraint-Aware E-Graph Rewriting for Hard-
ware Performance Optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2024), 14 pages. https://doi.org/10.1109/TCAD.2024.3483096

Leonardo De Moura and Nikolaj Bjerner. 2007. Efficient E-matching for SMT solvers. In International Conference on
Automated Deduction. Springer, 183-198.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 337-340.

David Detlefs, Greg Nelson, and James B Saxe. 2005. Simplify: a theorem prover for program checking. Journal of
the ACM (JACM) 52, 3 (2005), 365-473.

Oliver Flatt, Samuel Coward, Max Willsey, Zachary Tatlock, and Pavel Panchekha. 2022. Small proofs from congru-
ence closure. In 2022 Formal Methods in Computer-Aided Design (FMCAD). IEEE, 75-83.

Bernard A Galler and Michael J Fisher. 1964. An improved equivalence algorithm. Commun. ACM 7, 5 (1964), 301-303.
Gérard Huet. 1997. The Zipper. J. Funct. Program. 7, 5 (Sept. 1997), 549-554. https://doi.org/10.1017/
50956796897002864

Smail Kourta, Adel Abderahmane Namani, Fatima Benbouzid-Si Tayeb, Kim Hazelwood, Chris Cummins, Hugh
Leather, and Riyadh Baghdadi. 2022. Caviar: an e-graph based TRS for automatic code optimization. In Proceedings of
the 31st ACM SIGPLAN International Conference on Compiler Construction (Seoul, South Korea) (CC 2022). Association
for Computing Machinery, New York, NY, USA, 54-64. https://doi.org/10.1145/3497776.3517781

Cole Kurashige, Ruyi Ji, Aditya Giridharan, Mark Barbone, Daniel Noor, Shachar Itzhaky, Ranjit Jhala, and Nadia
Polikarpova. 2024. CCLemma: e-graph guided lemma discovery for inductive equational proofs. Proceedings of the
ACM on Programming Languages 8, ICFP (2024), 818-844.

Xavier Leroy, Sandrine Blazy, Daniel Kastner, Bernhard Schommer, Markus Pister, and Christian Ferdinand. 2016.
CompCert-a formally verified optimizing compiler. In ERTS 2016: Embedded Real Time Software and Systems, 8th
European Congress.

Conor McBride. 2008. Clowns to the left of me, jokers to the right (pearl): dissecting data structures. SIGPLAN Not.
43, 1 (Jan. 2008), 287-295. https://doi.org/10.1145/1328897.1328474

Leonardo de Moura and Sebastian Ullrich. 2021. The lean 4 theorem prover and programming language. In Interna-
tional Conference on Automated Deduction. Springer, 625-635.

Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki, Adam Anderson, Adriana Schulz, Dan
Grossman, and Zachary Tatlock. 2021. Rewrite rule inference using equality saturation. Proc. ACM Program. Lang. 5,
OOPSLA, Article 119 (Oct. 2021), 28 pages. https://doi.org/10.1145/3485496

Charles Gregory Nelson. 1980. Techniques for program verification. Stanford University.

Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-producing congruence closure. In International Conference on
Rewriting Techniques and Applications. Springer, 453-468.

Robert Nieuwenhuis and Albert Oliveras. 2007. Fast congruence closure and extensions. Information and Computation
205, 4 (2007), 557-580.

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automatically improving accuracy
for floating point expressions. SIGPLAN Not. 50, 6 (June 2015), 1-11. https://doi.org/10.1145/2813885.2737959
Benjamin C. Pierce et al. 2015 - (revised 2025-08-24). Maps: Total and Partial Maps. In Software Foundations, Volume
1: Logical Foundations, Benjamin C. Pierce (Ed.). Electronic textbook, University of Pennsylvania. Available online:
https://softwarefoundations.cis.upenn.edu/lf-current/Maps.html (accessed 30-10-2025).

Marcus Rossel. 2024. An Equality Saturation Tactic for Lean (Master’s thesis).

Marcus Rossel, Rudi Schneider, Thomas Keehler, Michel Steuwer, and Andrés Goens. 2026. Towards Pen-and-Paper-
Style Equational Reasoning in Interactive Theorem Provers by Equality Saturation. Proceedings of the ACM on Pro-
gramming Languages POPL (2026).

Rudi Schneider, Marcus Rossel, Amir Shaikhha, Andrés Goens, Thomas Keehler, and Michel Steuwer. 2025. Slotted
E-Graphs: First-Class Support for (Bound) Variables in E-Graphs. Proceedings of the ACM on Programming Languages

https://cranelift.dev/
https://doi.org/10.5281/zenodo.2539424
https://doi.org/10.1109/TCAD.2024.3483096
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1145/3497776.3517781
https://doi.org/10.1145/1328897.1328474
https://doi.org/10.1145/3485496
https://doi.org/10.1145/2813885.2737959
https://softwarefoundations.cis.upenn.edu/lf-current/Maps.html

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

235
236
237
238
239
240
241
242
243
244
245

Save Time and Mechanize 0:5

[26]
[27]
[28]
[29]

[30]
[31]

[32]

[33]

9, PLDI (2025), 1888-1910.

Eytan Singher and Shachar Itzhaky. 2021. Theory Exploration Powered by Deductive Synthesis. In Computer Aided
Verification, Alexandra Silva and K. Rustan M. Leino (Eds.). Springer International Publishing, Cham, 125-148.
Eytan Singher and Shachar Itzhaky. 2024. Easter egg: Equality reasoning based on E-graphs with multiple assump-
tions. In 2024 Formal Methods in Computer-Aided Design (FMCAD). IEEE, 70-83.

Robert Endre Tarjan. 1975. Efficiency of a good but not linear set union algorithm. Journal of the ACM (JACM) 22, 2
(1975), 215-225.

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. Egg:
Fast and extensible equality saturation. Proceedings of the ACM on Programming Languages 5, POPL (2021), 1-29.
George Zakhour. 2025. UnionFind in Lean4. https://github.com/geezee/union-find-lean

George Zakhour, Pascal Weisenburger, Jahrim Gabriele Cesario, and Guido Salvaneschi. 2025. Dis/Equality Graphs.
Proceedings of the ACM on Programming Languages 9, POPL (2025), 2282-2305.

George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2023. Type-Checking CRDT Convergence. Proc. ACM
Program. Lang. 7, PLDI, Article 162 (June 2023), 24 pages. https://doi.org/10.1145/3591276

George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2024. Automated Verification of Fundamental Alge-
braic Laws. Proc. ACM Program. Lang. 8, PLDI, Article 178 (June 2024), 24 pages. https://doi.org/10.1145/3656408

https://github.com/geezee/union-find-lean
https://doi.org/10.1145/3591276
https://doi.org/10.1145/3656408

	1 Introduction
	2 Background: Union-Finds and E-Graphs
	3 A Mechanized and Efficient Coinductive Union-Find
	4 Towards an E-Graph Mechanization
	5 Future Work
	References

