
Hybrid Fuzzing of Infrastructure as Code Programs (Short paper)
Emilio Coppa
ecoppa@luiss.it
LUISS University

Italy

Daniel Sokolowski
science@d.sokolowski.org
Independent Researcher

Germany

Guido Salvaneschi
guido.salvaneschi@unisg.ch
University of St. Gallen

Switzerland

Abstract
Infrastructure as Code (IaC) has become a cornerstone of modern
cloud and system deployment, enabling automated and repeatable
infrastructure provisioning. However, ensuring the correctness of
IaC programs remains challenging due to their complexity and
dynamic nature. In particular, IaC programs can exhibit different
behaviors depending on the state of the resources they manage.
Since these resources are deployed on external providers, account-
ing for their possible states is difficult, making the testing phase
particularly challenging. This paper presents HIT, a novel unit-
testing framework for IaC programs that effectively tests IaC code
using relevant resource states. HIT combines fuzzing and concolic
execution, two effective yet previously unexplored techniques for
IaC code. Our experiments confirm that HIT achieves better code
coverage than state-of-the-art approaches.

CCS Concepts
• Software and its engineering→ Software verification and
validation.

Keywords
Fuzzing, Infrastructure as Code, Symbolic Execution, DevOps
ACM Reference Format:
Emilio Coppa, Daniel Sokolowski, and Guido Salvaneschi. 2025. Hybrid
Fuzzing of Infrastructure as Code Programs (Short paper). In 34th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
Companion ’25), June 25–28, 2025, Trondheim, Norway. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3713081.3731721

1 Introduction
Modern infrastructure provisioning and application deployment de-
mand high levels of automation to accommodate rapid and frequent
changes in system requirements.Infrastructure as Code (IaC) [20]
has become a key DevOps practice for automated, repeatable in-
frastructure management, enabling software engineering methods
like version control [22] and testing [34] for infrastructure code.

In the IaC space, some evolution directions are clearly recogniz-
able. First, declarative IaC solutions allow developers to specify the
desired state of their deployment, and the IaC framework executes
the necessary steps to reach it. Second, recent advancements, such
as Pulumi [28], AWS CDK [1], and CDKTF [15], have introduced
a shift from DSLs like JSON and YAML to adopt general-purpose
languages such as Python, TypeScript, and Java. This shift enhances

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSTA Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1474-0/2025/06
https://doi.org/10.1145/3713081.3731721

abstraction, tooling support, and maintainability, simplifying com-
plex cloud infrastructure management.

Yet, while traditional configuration scripts have a simple struc-
ture, such flexibility (1) comes at the cost of tackling the complexity
of a fully-fledge programming language with control-flow struc-
tures, dynamic resource creation, and dependencies on external
modules, making comprehensive testing difficult. Also, (2) unlike
traditional software, IaC programs interact with cloud providers,
making their behavior dependent on real-world infrastructure states.
Ensuring the correctness and security of modern IaC programs is
challenging. Misconfigurations and inconsistent deployments can
cause severe operational issues, while existing unit and integration
testing methods often fail to cover complex deployment scenarios,
leaving organizations vulnerable to critical misconfigurations.

Fuzzing [38] has proven highly effective in traditional software,
especially when considering graybox fuzzers, such as AFL [37], as
proved by Google’s OSS-Fuzz [12], which continuously test open-
source software and has discovered thousands of bugs. These meth-
ods start with a small pool of inputs and apply random mutations,
generating diverse inputs to explore program states.

Similar ideas are not applicable to IaC right away: in IaC, pro-
gram execution leads to an actual deployment making unit testing
time and cost prohibitive. This issue has been recently tackled by
ProTI, a fuzzing framework for IaC programs that automatically
mocks IaC resources, generating randomized values for infrastruc-
ture components, and incorporates oracle-based validation. Yet,
randomized fuzzing alone struggles with complex IaC logic. For
instance, provisioning a resource may depend on specific input
combinations, which are difficult to guess with random inputs.

In traditional software, fuzzing is often combined with symbolic
execution [3], a powerful testing technique used to generate inputs
that precisely satisfy program conditions. By systematically explor-
ing execution paths through constraint solving, symbolic execution
enhances test coverage. However, symbolic execution often fails
to scale in the presence of large and complex code. Hence, popular
symbolic frameworks like KLEE [5], angr [33], and SymCC [25] are
frequently paired with AFL-like tools [11] to create hybrid fuzzers,
balancing effectiveness with scalability.

Interestingly, symbolic execution has yet to be explored in the
context of IaC programs. While IaC programs are highly dynamic
and rely on complex runtime systems—posing potential implemen-
tation challenges for symbolic engines—they are typically small (a
few hundred LOCs) and contain few loops or other sources of path
explosion, a major obstacle for symbolic execution.

Our contributions. In this paper, we explore the challenges of
testing modern IaC programs and propose a novel approach that
integrates fuzzing and symbolic execution to improve the effective-
ness of IaC testing. Our contributions are as follows:

92

https://orcid.org/0000-0002-8094-871X
https://orcid.org/0000-0003-2911-8304
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3713081.3731721
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3713081.3731721
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3713081.3731721&domain=pdf&date_stamp=2025-06-11

ISSTA Companion ’25, June 25–28, 2025, Trondheim, Norway Emilio Coppa, Daniel Sokolowski, and Guido Salvaneschi

Infrastructure
Provider

Infrastructure
Provider

IaC Deployment Engine

IaC Program

Deployment Configuration

Infrastructure
Provider

Resource
Input State.

Resource
Output State

Resource Specifications

Figure 1: IaC program execution overview.

(1) We discuss the challenges of testing IaC programs, particularly
code behaviors dependent on resource states, and explain why
state-of-the-art (SOTA) solutions may be ineffective.

(2) We introduce HIT, a novel approach that combines random
fuzzing and symbolic execution into a hybrid fuzzing solution
tailored for testing IaC programs.

(3) We present an initial implementation of HIT, targeted at the
testing of Pulumi Typescript programs. It exploits ProTI for
randomized fuzzing and ExpoSE for symbolic execution.

(4) We report experimental results that shows the potential of our
hybrid approach in improving the code coverage, compared to
SOTA solutions, on a dataset of IaC programs.

2 Challenges in Testing of IaC Programs
This section outlines key concepts of IaC programs, showing the
issues emerging with their testing.

2.1 IaC Program Execution in a Nutshell
A simplified execution workflow of an IaC program is in Figure 1.
IaC programs define the resources required for a deployment, ini-
tializing their configuration parameters (the resource input state),
through a deployment configuration, which includes essential param-
eters such as cloud credentials, machine types, resource limits, and
security profiles. The IaC deployment engine evaluates the program
and generates the API calls to request the resources. These requests
are sent to infrastructure providers, such as cloud providers, to
provision the necessary components. An IaC program may define
a resource input state not only using static deployment configu-
ration attributes but also the output state of previously deployed
resources, i.e., resource allocation follows a dependency chain. The
resource input and output states are defined according to a resource
specification created by IaC platform developers based on the in-
frastructure provider documentation. This specification formally
defines the attributes (and their data types) for the resource input
and output states.

Figure 2 shows two (simplified) IaC programs in Typescript and
Pulumi. The program on the left (Hosting a website on AWS S3)
provisions an AWS S3 bucket configured as a static website and
dynamically generates an index.html file with randomized con-
tent. It first creates an S3 bucket with website hosting enabled,
then uses the @pulumi/random resource (local) provider to gener-
ate a random index for selecting a message from a given pair of
words. The selected word is then used to create an index.html
file, which is uploaded as an S3 bucket object with appropriate
content type. Finally, the program exports the website endpoint
URL, allowing access to the hosted HTML page. The program on
the right (Spawning two EC2 instances) first creates a new Virtual

Private Cloud (VPC) with a CIDR block of 10.0.0.0/16. Within
this VPC, it defines a subnet with a CIDR block of 10.0.1.0/24.
Then, it launches an EC2 instance (I0) using the specified AMI
(ami-cafecafe) and a t2.micro instance type, associating it with
the created subnet. Additionally, the program employs an apply
function to monitor the state of the first instance. If I0 reaches the
"running" state, it triggers the creation of a second EC2 instance
(I1) with the same AMI, instance type, and subnet configuration
as I0, effectively creating a conditional instance deployment based
on the state of the first instance.

2.2 Input dimensions for IaC programs
The behavior of an IaC program naturally depends on two main
input dimensions:
• Deployment configuration. For instance, the programs in Figure 2
include several static deployment configuration properties, such
as the bucket name "site" or the instance type t2.micro, which
are used to instantiate resources during deployment. Modern
IaC solutions provide abstractions, such as the Config object in
Pulumi, to manage these configuration attributes effectively. This
allows developers to switch between different values depending
on the deployment context (e.g., development versus production).

• Resource state.Modern IaC frameworks enable developers towrite
programs that monitor and react to the current deployment state.
For example, the program in Figure 2a generates page content
based on a string determined at deployment time by the state
(i.e., value) of the resource random.RandomInt. Similarly, the
program in Figure 2b conditionally creates a second EC2 instance
based on the state of the resource aws.ec2.Instance.
Each input dimension may require distinct testing strategies,

which can be combined for greater efficacy. In this paper, we focus
on testing an IaC program under different resource states. This
approach is essential because, while the deployment configuration
is mostly under the control of developers, resources are provided
by the providers, and their internal state depends on the specific
execution state of an external entity, which may be affected by
numerous factors. We next examine how state-of-the-art IaC testing
solutions address this issue and highlight their limitations.

2.3 Limitations of testing approaches for IaC
Testing IaC programs is challenging because simulating or emu-
lating deployments entails a high degree of freedom in the input
dimensions (Section 2.2). When focusing on the input dimension
for resource state, testing of IaC programs is challenge even with
relatively simple resource chains. Indeed, even when the deploy-
ment configuration is known and well-defined a developer may
struggle to test all possible deployment outcomes since accurately
reproducing infrastructure behavior under all scenarios is impracti-
cal – if not – unfeasible. SOTA IaC testing solutions [34] have thus
explored how to exploit resource specifications to generate random
yet valuable resource output states, enabling effective and efficient
unit testing of IaC programs under different scenarios.

For instance, SOTA IaC testing solutions, such as ProTI [34],
can effectively test the program in Figure 2a. After retrieving the
specifications for aws resources and the (local) random resource
from Pulumi, ProTI mocks the resources and executes the program

93

Hybrid Fuzzing of Infrastructure as Code Programs (Short paper) ISSTA Companion ’25, June 25–28, 2025, Trondheim, Norway

1 import * as aws from "@pulumi/aws";

2 import * as random from "@pulumi/random";

3

4 const bucket = new aws.s3.Bucket("site", {

5 website: { indexDocument: "index.html" },

6 });

7 const range = { min: 0, max: 1 };

8 const rng = new random.RandomInt("i", range);

9 rng.result.apply ((coin) => {

10 const msg = coin % 2 == 0 ? "Hi" : "Hello";

11 return new aws.s3.BucketObject("index", {

12 bucket , key: "index.html",

13 contentType: "text/html; charset=utf -8",

14 content: msg ,

15 });

16 });

17 export const url = bucket.websiteEndpoint;

(a) Hosting a website on AWS S3.

1 import * as aws from "@pulumi/aws";

2 const subnet = new aws.ec2.Subnet("s", {

3 vpcId: new aws.ec2.Vpc("vpc",

4 { cidrBlock: "10.0.0.0/16" }).id,

5 cidrBlock: "10.0.1.0/24",

6 });

7 const inst = new aws.ec2.Instance("I0", {

8 ami: "ami -cafecafe", instanceType: "t2.micro",

9 subnetId: subnet.id,

10 });

11 inst.instanceState.apply((state) =>

12 state === "running" &&

13 new aws.ec2.Instance("I1", {

14 ami: inst.ami , instanceType: inst.instanceType ,

15 subnetId: inst.subnetId ,

16 })

17);

(b) Spawning two EC2 instances.

Figure 2: Example: two simplified Pulumi programs in TypeScript.

considering various (random) values for the resource states. The
values in the resource output state are generated consistently with
the resource types declared in the specification, e.g., ProTI mocks
the random.RandomInt resource and generates alternative output
states for this resource. By leveraging the resource specification,
ProTI learns that the output state consists of an integer and can
thus test the program under different (random) integer values –
hence different resource input states for aws.s3.BucketObject.

Yet, resource specifications often lack semantic details about how
the resource input state impacts the resource output state – they
typically only define the data types for each attribute of the input
and output state. Also, such data types are usually not specialized,
relying on primitive types, creating a semantic gap that limits SOTA
IaC unit-testing solutions. For instance, the program in Figure 2b
creates a second instance only when the instanceState of the
first EC2 instance equals "running". Yet, the Pulumi resource spec-
ification declares this attribute as a string, a primitive type, which
hinders the fuzzer from generating the precise value for the pro-
gram to pass the conditional and allocate the second EC2 instance.
Such simple cases may be addressed through program analysis, but
more complex programs require advanced techniques. Motivated
by this challenge, this paper explores a unit-testing approach that
leverages more sophisticated analyses to determine relevant values
for fuzzing resource states.

3 Hybrid Fuzzing for IaC Programs
In this section, we present HIT (Hybrid IaC Testing), our hybrid
fuzzing unit-testing framework for IaC programs written in Type-
script for Pulumi.

3.1 Conceptual steps
The main conceptual phases of HIT are in Figure 3:
• Program Loading: The first step is to load the code of the IaC
program and its dependencies, including any Pulumi package
related to the resources required by the program. Moreover, the
Pulumi SDK is loaded as it is necessary for the correct execution.

• ResourceMocking: After loading the program and its dependen-
cies, the code is analyzed to identify resource definitions, mocking

Phase:
Resource
Mocking

Phase:
Program
Loading

Resource
Generator

Resource
Oracle

Coverage
Tracker

Resource
Symbolizer

Constraint
Solver

Branch
Tracker

Concrete Execution Concolic Execution

Phase: Testing

Figure 3: Main workflow of our approach.

the constructors of all resource classes using Pulumi’s runtime
mocking. At runtime, the mocks are responsible for accepting
the resource input states defined by the program, validating them
through resource oracles and generating realistic resource output
states that are consistent with the resource specifications.

• Testing Loop: The core phase of HIT is the Testing Loop, where
the program is repeatedly tested using different resource output
states. In practice, since HIT may be used for short unit-testing
sessions, the testing loop can be configured to stop after a speci-
fied timeout or a set number of attempts. Across loop iterations,
HIT may generate several inputs, i.e., possible alternative values
to use in the output states of the resources, which are tracked by
an input queue and consumed throughout the iterations.

3.2 Hybrid IaC Testing at Work
In each testing loop iteration, HIT alternates between Concrete and
Concolic execution modes.

Concrete Execution. In this execution mode, HIT natively runs the
program mocked during the previous phase. When the program
invokes a resource builder, the related mock utilizes three main sub-
components: resource generators, resource oracles, coverage tracker.

For each mocked resource, HIT employs a resource generator to
produce realistic resource output states. The generator evaluates
the resource specification and recursively constructs a TypeScript
object that complies with the expected resource type declaration.
In HIT, the values used to populate the resource output state can
come from two distinct sources:

94

ISSTA Companion ’25, June 25–28, 2025, Trondheim, Norway Emilio Coppa, Daniel Sokolowski, and Guido Salvaneschi

• Arbitraries: HIT relies on arbitraries, i.e., type-specific value pro-
ducers, from SOTA property-based testing frameworks when
the input queue is empty. Arbitraries generate random values
based on a random generator state, thus enabling deterministic
reproduction of an execution.

• Input Queue: Whenever available, HIT selects a set of previously
generated (but not yet tested) resource output states by the con-
colic execution mode. Since values generated by the concolic
execution mode are intended to increase coverage, the execution
path in concrete execution mode may encounter additional, pre-
viously untested resources. In such cases, HIT uses arbitraries to
generate realistic output states for these new resources.
Resource Oracles are optional but can be used to validate the

input states of resources, detecting inconsistencies and other prob-
lematic scenarios. Validation strategies can often be reused across
different resources, and HIT provides a plugin interface that allows
developers to easily define custom validation strategies. Finally,
HIT tracks statement and branch coverage to assess the testing
loop’s effectiveness. Ideally, statement coverage increases when
concolic execution successfully generates input values that lead the
program down a previously unexplored branch.

Concolic Execution. HIT employs concolic execution [3], a dy-
namic variant of symbolic execution. Like traditional symbolic
execution, it instruments the program to track computations and
decision points influenced by input data (i.e., resource states in our
context) and uses a constraint solver to generate alternative inputs.
However, concolic execution analyzes only a single execution path,
i.e., in HIT, the one explored in the last concrete execution.

In more detail, whenever the program invokes a resource con-
structor, HIT employs resource symbolizers to construct realistic
objects that comply with resource specifications, similar to resource
generators in concrete execution mode. Yet, unlike a resource gener-
ator, a resource symbolizer not only constructs the resource state but
also generates a shadow object, where each internal attribute of the
resource state is marked symbolic. This means that the attribute’s
value in a shadow object is not fixed (i.e., not yet concrete) and can
initially assume any value permitted by its data type.

As the program executes computations over resource output
states, HIT mirrors these operations, considering the associated
symbolic shadow objects and constructing symbolic expressions,
which represent computations on symbolic attributes. For instance,
a modulo operation by 2 on a symbolic integer attribute 𝑟𝑛𝑔.𝑟𝑒𝑠𝑢𝑙𝑡
would be represented by the symbolic expression 𝑟𝑛𝑔.𝑟𝑒𝑠𝑢𝑙𝑡 %2,
thus accurately modeling the computation regardless of the con-
crete value chosen for 𝑟𝑛𝑔.𝑟𝑒𝑠𝑢𝑙𝑡 .

When the program reaches a branch, HIT first determines the
alternative taken based on the current concrete input values. It
then builds a symbolic expression representing the untaken direc-
tion and queries a constraint solver to possibly generate alternative
input values that lead the program to the untaken branch. When
successful, the generated input values are added to the input queue
for future testing. For instance, in an untaken branch having the
condition "𝑟𝑛𝑔.𝑟𝑒𝑠𝑢𝑙𝑡 % 2 == 0", HIT queries the solver for a value
satisfying the condition, obtaining, e.g., "𝑟𝑛𝑔.𝑟𝑒𝑠𝑢𝑙𝑡 = 0".

Regardless of whether the constraint solver successfully gen-
erates an alternative input, HIT continues execution along the

path for the current input values, adding a symbolic expression
for the taken decision to the path constraints. When reaching the
next branch, the path constraints, in conjunction with the branch
expression, are passed to the constraint solver to generate new
values consistent with the path effectively explored by the current
concolic execution. For instance, if the program has taken the di-
rection associated with condition "𝑟𝑛𝑔.𝑟𝑒𝑠𝑢𝑙𝑡 %2 ≠ 0" and then
hits the untaken condition "𝑟𝑛𝑔.𝑘 == 5", it queries the solver with
"𝑟𝑛𝑔.𝑟𝑒𝑠𝑢𝑙𝑡 % 2 ≠ 0 ∧ 𝑟𝑛𝑔.𝑘 == 5".

Beyond branch decisions, HIT can also generate alternative re-
source output states that cause the program to consume different
values from non-primitive data structures. For instance, if input
values are used to access specific elements of an array,HIT employs
the constraint solver to generate alternative inputs that lead to
accessing different array elements or even invalid indices.

Finally, concolic execution mode tracks branch coverage to avoid
generating constraint queries for already explored branches. Addi-
tionally, HITmaintains a record of all generated input values—both
tested and untested—to avoid pushing duplicates in the input queue.

Running Examples. In the program in Figure 2a, HIT mocks
the constructors of the resources Bucket, RandomInt, and Bucket
Object. During the first iteration, in concrete mode, it randomly
generates output states for these three resources and executes the
program. Assuming it randomly selects an even integer value for
𝑟𝑛𝑔.𝑟𝑒𝑠𝑢𝑙𝑡 , i.e., coin, it generates a BucketObject with the "hi"
page content. In concolic mode, HIT reuses the same values but
symbolizes all internal attributes of the resources, including the
integer coin. Upon reaching the branch in line 10, it leverages the
constraint solver to compute an alternative value for coin that
forces execution to the opposite branch, e.g., an odd integer such as
𝑐𝑜𝑖𝑛 = 1. This newly generated concrete value, along with the other
values used in the current execution path, is added to the input
queue, so that the next testing loop iteration explores a different
path. As discussed in Section 2, SOTA IaC unit testing frameworks
relying solely on random fuzzing can quickly achieve the same path
coverage since the branch in line 10 can easily be satisfied when
considering a few alternative random values.

For the program in Figure 2b, the advantages of HIT’s concolic
mode over SOTA random fuzzing solutions become more evident.
After mocking the constructors of the Subnet and Instance re-
sources, HIT initially randomly fuzzes their internal values during
concrete execution. This approach is unlikely to reproduce a path
where a second EC2 instance is spawned. Yet, in concolic mode,HIT
symbolizes the resource state attributes and, using the constraint
solver, generates a value for instanceState equal to "running".
This allows HIT to explore an execution path that spawns the sec-
ond EC2 instance as early as the second testing loop iteration. In
contrast, SOTA solutions relying solely on random fuzzing unlikely
generate the required value "running" for instanceState.

4 Implementation
The current implementation of HIT, is built by mixing and im-
proving several key technologies: ProTI [34], a random fuzzing IaC
framework; Jest, a popular JavaScript framework for efficient and ef-
fective unit testing; Fast-Check, a property-based testing framework

95

Hybrid Fuzzing of Infrastructure as Code Programs (Short paper) ISSTA Companion ’25, June 25–28, 2025, Trondheim, Norway

Pr # # Res Stmt Cov (%) Br Cov (%) Time (s)
ID LOC Types ProTI HIT ProTI HIT ProTI HIT
0 94 6 82.35 100 0 100 32 212
1 163 11 93.1 100 69.23 100 31 276
2 180 13 96.77 100 66.66 100 36 743
3 48 4 87.5 100 33.3 100 17 198
4 61 6 89.47 89.47 88.23 88.23 27 390
5 64 8 91.3 91.3 66.6 66.6 24 150
6 49 4 84.61 84.61 75 75 24 155
7 82 2 75 100 50 100 32 234
8 50 6 100 100 100 100 24 194
9 79 8 81.48 96.26 28.57 85.71 20 210

Table 1: Coverage and running time when running ProTI and
HIT on 10 IaC programs.

that provides a rich set of arbitraries; Babel, for transpiling Type-
Script to JavaScript; and Pulumi’s runtime, which enables mocking
functionalities. HIT improved the plugin interface in ProTI, allow-
ing the integration of custom transformers, and added arbitraries
to support the resource symbolizers. To support the concolic mode
in HIT, we reworked several internal components of ExpoSE [19], a
concolic engine based on the Jalangi2 instrumentation framework.
Our improvements were necessary to adapt ExpoSE to the IaC
context and integrate it with the ProTI architecture.

5 Experiments
To evaluate HIT, we generated 10 IaC programs for Pulumi Type-
Script using GPT-4o, instructing it to generate code with real-world
behaviors dependent on resource output states. The choice of using
LLM-generated programs stems from (1) no public benchmark suite
exists, (2) major LLMs are likely trained on diverse IaC code, and
(3) LLMs gain popularity in IaC code generation, as explored by
prior research [17, 26, 35] and encouraged by specialized IaC code
generation services like Pulumi AI [27]. To improve the success
rate during generation, we implemented a feedback loop that ex-
poses syntactic errors, allowing the LLM to iteratively fix common
issues. Experiments were executed on the Docker container image
node:21.1.0 with ProTI 1.3.0, using an Intel Core Ultra 7 165U
CPU and 64GB RAM. Each program was tested for 107 iterations
(default budget in Jest for ProTI), having HIT activate the concolic
mode only in 25% of the iterations. The results of our experiments
are summarized in Table 1. The programs have sizes ranging from
48 to 180 LOC and use from 2 to 13 distinct resource types. When
measuring the coverage with InstabulJS, HIT is more effective than
ProTI on 6 out of 10 programs. In programs #4, #5, and #9, missed
conditional behaviors stem from factors beyond resource state,
while in program #6, HIT is losing track of a resource state due to
an imperfect instrumentation that we are trying to fix. HIT incurs
significant overhead compared to ProTI (6.5× to 21×). However,
HIT currently takes more than 80 seconds during the first concolic
run due to inefficient ExpoSE and Jalangi2 runtime loading.

6 Related work
Software Fuzzing. Fuzzing has advanced significantly [38], with
grey-box fuzzing (GBF) becoming dominant for traditional soft-
ware. Unlike black-box fuzzers that mutate inputs blindly [36], GBF

uses lightweight instrumentation to track coverage, prioritizing in-
puts exploring new paths. While GBF effectively detects bugs [24],
it struggles with magic numbers, checksums [2], and structured
inputs [4, 24]. Modern fuzzers address these challenges with light-
weight program analysis, like approximated taint analysis [2], to
bypass roadblocks or infer input grammars [4]. Consequently,HIT’s
random fuzzing component could be adapted into a modern GBF.

Symbolic Execution. Another well-known software testing tech-
nique is symbolic execution [3], which explores execution paths by
treating inputs as symbolic variables rather than concrete values.
It formulates constraints to model input-dependent program deci-
sion points and uses SMT solvers to determine values that satisfy
specific conditions, possibly enabling discovery of edge cases and
vulnerabilities. Examples of symbolic execution frameworks are
KLEE [5], angr [33], SymCC [25], and Symbolic Path Finder [23].
While powerful, symbolic execution faces path explosion and ex-
ternal dependency (e.g., system calls) challenges [3]. We focus on
concolic execution (a dynamic variant), leveraging IaC programs’
limited size to mitigate path explosion, while resource specifications
and mocking techniques help handle external dependencies.

IaC Testing. Rahman et al. [29] found limited research on IaC
quality despite extensive Configuration as Code (CaC) tool studies.
Guerriero et al. [13] highlighted industry’s need for better IaC test-
ing tools, while Chiari et al. [9] noted gaps in IaC static analysis
research. These studies underscore the need for systematic IaC
quality techniques. Pre-deployment assessment has been minimally
studied: Lepiller et al. [18] introduced Häyhä for AWS CloudForma-
tion vulnerability detection, while Cauli et al. [6, 7] used description
logic for security flaw checking. However, these methods lack broad
applicability, especially for provisioning tools like Pulumi and Ter-
raform. Similarly, existing approaches for idempotency [14, 16, 31],
defect prediction [8, 10], and code smell detection [21, 30, 32] have
only targeted CaC. Sokolowski et al. [34] introduced ProTI, the first
testing approach for IaC programs. We extend their fuzzing strategy
by integrating concolic execution to improve testing effectiveness.

7 Conclusion
Ensuring IaC program correctness is challenging due to cloud en-
vironment complexity and dynamic resource state dependencies.
While existing approaches provide a foundation, they fall short
with intricate conditional logic and resource dependencies. To this
end, we introduced HIT, a hybrid fuzzing framework combining
random fuzzing with concolic execution to improve code coverage.

Acknowledgments
Thisworkwas partially supported by: project FARE (PNRRM4.C2.1.1
PRIN 2022, 202225BZJC, CUP D53D23008380006); project SETA
(PNRRM4.C2.1.1 PRIN 2022 PNRR, P202233M9Z, CUPB53D23026000001).
Both projects are under the Italian NRRP MUR program funded by
NextGenEU. This work has also been supported by the Swiss Na-
tional Science Foundation (SNSF, Grant No. 200429 and 10001777),
by armasuisse Science and Technology, and by European Union’s
Horizon research and innovation programme (CAPE Project, Grant
No. 101189899).

References
[1] Amazon Web Services. [n. d.]. Cloud Development Framework: AWS Cloud Dev.

96

ISSTA Companion ’25, June 25–28, 2025, Trondheim, Norway Emilio Coppa, Daniel Sokolowski, and Guido Salvaneschi

Kit. https://aws.amazon.com/cdk/.
[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and

Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspon-
dence. In 26th Annual Network and Distributed System Security Symposium,
NDSS. https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-
input-to-state-correspondence/

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. Comput.
Surveys 51, 3, Article 50 (2018). doi:10.1145/3182657

[4] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schu-
milo, Simon Wörner, and Thorsten Holz. 2019. GRIMOIRE: Synthesizing Struc-
ture while Fuzzing. In 28th USENIX Security Symposium (USENIX Security 19).
https://www.usenix.org/system/files/sec19-blazytko.pdf

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). 209–224. http://dl.acm.org/citation.cfm?id=1855741.
1855756

[6] Claudia Cauli, Meng Li, Nir Piterman, andOksana Tkachuk. 2021. Pre-deployment
Security Assessment for Cloud Services Through Semantic Reasoning. In 33rd
Int. Conf., CAV 2021 (Lecture Notes in Computer Science). doi:10.1007/978-3-030-
81685-8_36

[7] Claudia Cauli, Magdalena Ortiz, and Nir Piterman. 2022. Actions over Core-closed
Knowledge Bases. In 11th International Joint Conference, IJCAR 2022, (Lecture
Notes in Computer Science). doi:10.1007/978-3-031-10769-6_17

[8] Wei Chen, Guoquan Wu, and Jun Wei. 2018. An Approach to Identifying Error
Patterns for Infrastructure as Code. In 2018 IEEE Int. Symposium on Software
Reliability Engineering Workshops. doi:10.1109/ISSREW.2018.00-19

[9] Michele Chiari, Michele De Pascalis, and Matteo Pradella. 2022. Static Analysis
of Infrastructure as Code: A Survey. In IEEE 19th International Conference on
Software Architecture Companion, ICSA Companion 2022, Honolulu, HI, USA, March
12-15, 2022. IEEE, 218–225. doi:10.1109/ICSA-C54293.2022.00049

[10] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri.
2022. Within-project Defect Prediction of Infrastructure-as-Code Using Product
and Process Metrics. IEEE Trans. Software Eng. 48, 6 (2022), 2086–2104. doi:10.
1109/TSE.2021.3051492

[11] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ :
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association. https://www.usenix.
org/conference/woot20/presentation/fioraldi

[12] Google. 2019. Google OSS-Fuzz: continuous fuzzing of open source software.
https://github.com/google/oss-fuzz.

[13] Michele Guerriero, Martin Garriga, Damian Andrew Tamburri, and Fabio
Palomba. 2019. Adoption, Support, and Challenges of Infrastructure-as-Code:
Insights from Industry. In 2019 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2019. doi:10.1109/ICSME.2019.00092

[14] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. Asserting
Reliable Convergence for Configuration Management Scripts. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016. doi:10.1145/2983990.2984000

[15] HashiCorp. [n. d.]. CDK for Terraform. https://developer.hashicorp.com/
terraform/cdktf. Accessed: 2024-01-15.

[16] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. 2013.
Testing Idempotence for Infrastructure as Code. In Middleware 2013 - ACM/I-
FIP/USENIX 14th International Middleware Conference (Lecture Notes in Computer
Science). doi:10.1007/978-3-642-45065-5_19

[17] Patrick Tser Jern Kon, Jiachen Liu, Yiming Qiu, Weijun Fan, Ting He, Lei Lin,
Haoran Zhang, Owen M. Park, George S. Elengikal, Yuxin Kang, Ang Chen,
Mosharaf Chowdhury, Myungjin Lee, and Xinyu Wang. 2024. IaC-Eval: A Code
Generation Benchmark for Cloud Infrastructure-as-Code Programs. In Advances
in Neural Inf. Processing Systems.

[18] Julien Lepiller, Ruzica Piskac, Martin Schäf, and Mark Santolucito. 2021. An-
alyzing Infrastructure as Code to Prevent Intra-update Sniping Vulnerabili-
ties. In Tools and Algorithms for the Construction and Analysis of Systems -
27th International Conference, TACAS 2021 (Lecture Notes in Computer Science).
doi:10.1007/978-3-030-72013-1_6

[19] Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: practical
symbolic execution of standalone JavaScript. In Proceedings of the 24th ACM

SIGSOFT International SPIN Symposium on Model Checking of Software (SPIN
2017). 196–199. doi:10.1145/3092282.3092295

[20] Kief Morris. 2021. Infrastructure as Code: Dynamic Systems for the Cloud Age
(second ed.). O’Reilly Media, Inc., Sebastopol, CA, USA.

[21] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2023. Control and
Data Flow in Security Smell Detection for Infrastructure as Code: Is It Worth the
Effort?. In 20th IEEE/ACM International Conference onMining Software Repositories,
MSR 2023, Melbourne, Australia, May 15-16, 2023. IEEE, 534–545. doi:10.1109/
MSR59073.2023.00079

[22] Ruben Opdebeeck, Ahmed Zerouali, Camilo Velázquez-Rodríguez, and Coen De
Roover. 2020. Does Infrastructure as Code Adhere to Semantic Versioning?
An Analysis of Ansible Role Evolution. In 2020 IEEE 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM). 238–248. doi:10.
1109/SCAM51674.2020.00032

[23] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,
Michael Lowry, Suzette Person, and Mark Pape. 2008. Combining Unit-Level
Symbolic Execution and System-Level Concrete Execution for Testing Nasa
Software. In Proceedings of the 2008 Int. Symposium on Software Testing and
Analysis. doi:10.1145/1390630.1390635

[24] V. Pham, M. Boehme, A. E. Santosa, A. R. Caciulescu, and A. Roychoudhury.
2019. Smart Greybox Fuzzing. IEEE Transactions on Software Engineering (2019).
doi:10.1109/TSE.2019.2941681

[25] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with
SymCC: Don’t interpret, compile!. In Proceedings of the 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association, 181–198. https:
//www.usenix.org/conference/usenixsecurity20/presentation/poeplau

[26] Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas Dupuis, Burn Lewis, Sahil
Suneja, Atin Sood, Ganesh Nalawade, Matthew Jones, Alessandro Morari, and
Ruchir Puri. 2023. Automated Code generation for Information Technology
Tasks in YAML through Large Language Models. arXiv:2305.02783 [cs.SE] https:
//arxiv.org/abs/2305.02783

[27] Pulumi. [n. d.]. Pulumi AI. https://www.pulumi.com/ai.
[28] Pulumi. [n. d.]. Pulumi: Infrastructure as Code in Any Programming Language.

https://github.com/pulumi/pulumi. Accessed: 2024-01-15.
[29] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie A. Williams. 2019. A

Systematic Mapping Study of Infrastructure as Code Research. Inf. Softw. Technol.
108 (2019), 65–77. doi:10.1016/j.infsof.2018.12.004

[30] Sofia Reis, Rui Abreu, Marcelo d’Amorim, and Daniel Fortunato. 2022. Lever-
aging Practitioners’ Feedback to Improve a Security Linter. In 37th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2022, Rochester,
MI, USA, October 10-14, 2022. ACM, 66:1–66:12. doi:10.1145/3551349.3560419

[31] Rian Shambaugh, AaronWeiss, and Arjun Guha. 2016. Rehearsal: A Configuration
Verification Tool for Puppet. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016,. doi:10.1145/
2908080.2908083

[32] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your
Configuration Code Smell?. In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016,
Miryung Kim, Romain Robbes, and Christian Bird (Eds.). ACM, 189–200. doi:10.
1145/2901739.2901761

[33] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. (2016).

[34] Daniel Sokolowski, David Spielmann, and Guido Salvaneschi. 2024. Automated In-
frastructure as Code Program Testing. IEEE Transactions on Software Engineering
(2024). doi:10.1109/TSE.2024.3393070

[35] Kalahasti Ganesh Srivatsa, Sabyasachi Mukhopadhyay, Ganesh Katrapati, and
Manish Shrivastava. 2024. A Survey of using Large Language Models for Gener-
ating Infrastructure as Code. arXiv:2404.00227 [cs.SE] https://arxiv.org/abs/2404.
00227

[36] Ari Takanen, Jared D. Demott, and Charles Miller. 2018. Fuzzing for Software
Security Testing and Quality Assurance (2nd ed.). Artech House, Inc.

[37] Michał Zalewski. 2019. American Fuzzy Lop. https://github.com/Google/AFL.
[38] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler. 2019. The Fuzzing

Book. https://www.fuzzingbook.org/.

97

https://aws.amazon.com/cdk/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://doi.org/10.1145/3182657
https://www.usenix.org/system/files/sec19-blazytko.pdf
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1007/978-3-030-81685-8_36
https://doi.org/10.1007/978-3-030-81685-8_36
https://doi.org/10.1007/978-3-031-10769-6_17
https://doi.org/10.1109/ISSREW.2018.00-19
https://doi.org/10.1109/ICSA-C54293.2022.00049
https://doi.org/10.1109/TSE.2021.3051492
https://doi.org/10.1109/TSE.2021.3051492
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://github.com/google/oss-fuzz
https://doi.org/10.1109/ICSME.2019.00092
https://doi.org/10.1145/2983990.2984000
https://developer.hashicorp.com/terraform/cdktf
https://developer.hashicorp.com/terraform/cdktf
https://doi.org/10.1007/978-3-642-45065-5_19
https://doi.org/10.1007/978-3-030-72013-1_6
https://doi.org/10.1145/3092282.3092295
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1109/SCAM51674.2020.00032
https://doi.org/10.1109/SCAM51674.2020.00032
https://doi.org/10.1145/1390630.1390635
https://doi.org/10.1109/TSE.2019.2941681
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://arxiv.org/abs/2305.02783
https://arxiv.org/abs/2305.02783
https://arxiv.org/abs/2305.02783
https://www.pulumi.com/ai
https://github.com/pulumi/pulumi
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1145/3551349.3560419
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1109/TSE.2024.3393070
https://arxiv.org/abs/2404.00227
https://arxiv.org/abs/2404.00227
https://arxiv.org/abs/2404.00227
https://github.com/Google/AFL
https://www.fuzzingbook.org/

	Abstract
	1 Introduction
	2 Challenges in Testing of IaC Programs
	2.1 IaC Program Execution in a Nutshell
	2.2 Input dimensions for IaC programs
	2.3 Limitations of testing approaches for IaC

	3 Hybrid Fuzzing for IaC Programs
	3.1 Conceptual steps
	3.2 Hybrid IaC Testing at Work

	4 Implementation
	5 Experiments
	6 Related work
	7 Conclusion
	Acknowledgments
	References

