Check for
Updates

Hybrid Fuzzing of Infrastructure as Code Programs (Short paper)

Emilio Coppa Daniel Sokolowski Guido Salvaneschi
ecoppa@luiss.it science@d.sokolowski.org guido.salvaneschi@unisg.ch
LUISS University Independent Researcher University of St. Gallen
Italy Germany Switzerland
Abstract abstraction, tooling support, and maintainability, simplifying com-

plex cloud infrastructure management.

Yet, while traditional configuration scripts have a simple struc-
ture, such flexibility (1) comes at the cost of tackling the complexity
of a fully-fledge programming language with control-flow struc-
tures, dynamic resource creation, and dependencies on external
modules, making comprehensive testing difficult. Also, (2) unlike
traditional software, IaC programs interact with cloud providers,
making their behavior dependent on real-world infrastructure states.
Ensuring the correctness and security of modern IaC programs is
challenging. Misconfigurations and inconsistent deployments can
cause severe operational issues, while existing unit and integration
testing methods often fail to cover complex deployment scenarios,
leaving organizations vulnerable to critical misconfigurations.

Fuzzing [38] has proven highly effective in traditional software,
especially when considering graybox fuzzers, such as AFL [37], as
CCS Concepts proved by Google’s OSS-Fuzz [12], which continuously test open-
source software and has discovered thousands of bugs. These meth-
ods start with a small pool of inputs and apply random mutations,
generating diverse inputs to explore program states.

Similar ideas are not applicable to IaC right away: in IaC, pro-
gram execution leads to an actual deployment making unit testing
time and cost prohibitive. This issue has been recently tackled by
ACM Reference Format: ProT], a fuzzing framework for IaC programs that automatically
Emilio Coppa, Daniel Sokolowski, and Guido Salvaneschi. 2025. Hybrid mocks IaC resources, generating randomized values for infrastruc-

Fuzzing of Infrastructure as Code Programs (Short paper). In 34th ACM ture components, and incorporates oracle-based validation. Yet,

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA randomized fuzzing alone struggles with complex IaC logic. For

C ion °25 25-28, 2025, Trondheim, N . ACM, New York, NY, . P P
ompanion 25), June £eo, roncelm, Torway ew or L instance, provisioning a resource may depend on specific input

USA, 6 pages. https:/doi.org/10.1145/3713081.3731721 combinations, which are difficult to guess with random inputs.

In traditional software, fuzzing is often combined with symbolic
execution [3], a powerful testing technique used to generate inputs
that precisely satisfy program conditions. By systematically explor-
ing execution paths through constraint solving, symbolic execution
enhances test coverage. However, symbolic execution often fails
to scale in the presence of large and complex code. Hence, popular
symbolic frameworks like KLEE [5], angr [33], and SymCC [25] are
frequently paired with AFL-like tools [11] to create hybrid fuzzers,
balancing effectiveness with scalability.

Interestingly, symbolic execution has yet to be explored in the
context of IaC programs. While IaC programs are highly dynamic
and rely on complex runtime systems—posing potential implemen-
tation challenges for symbolic engines—they are typically small (a
few hundred LOCs) and contain few loops or other sources of path
explosion, a major obstacle for symbolic execution.

Our contributions. In this paper, we explore the challenges of

testing modern IaC programs and propose a novel approach that
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSTA Companion *25, Trondheim, Norway integrates fuzzing and symbolic execution to improve the effective-
© 2025 Copyright held by the owner/author(s). ness of IaC testing. Our contributions are as follows:

ACM ISBN 979-8-4007-1474-0/2025/06
https://doi.org/10.1145/3713081.3731721

Infrastructure as Code (IaC) has become a cornerstone of modern
cloud and system deployment, enabling automated and repeatable
infrastructure provisioning. However, ensuring the correctness of
IaC programs remains challenging due to their complexity and
dynamic nature. In particular, IaC programs can exhibit different
behaviors depending on the state of the resources they manage.
Since these resources are deployed on external providers, account-
ing for their possible states is difficult, making the testing phase
particularly challenging. This paper presents HIT, a novel unit-
testing framework for IaC programs that effectively tests IaC code
using relevant resource states. HIT combines fuzzing and concolic
execution, two effective yet previously unexplored techniques for
IaC code. Our experiments confirm that HIT achieves better code
coverage than state-of-the-art approaches.

« Software and its engineering — Software verification and
validation.

Keywords

Fuzzing, Infrastructure as Code, Symbolic Execution, DevOps

1 Introduction

Modern infrastructure provisioning and application deployment de-
mand high levels of automation to accommodate rapid and frequent
changes in system requirements.Infrastructure as Code (IaC) [20]
has become a key DevOps practice for automated, repeatable in-
frastructure management, enabling software engineering methods
like version control [22] and testing [34] for infrastructure code.
In the IaC space, some evolution directions are clearly recogniz-
able. First, declarative IaC solutions allow developers to specify the
desired state of their deployment, and the IaC framework executes
the necessary steps to reach it. Second, recent advancements, such
as Pulumi [28], AWS CDK [1], and CDKTF [15], have introduced
a shift from DSLs like JSON and YAML to adopt general-purpose
languages such as Python, TypeScript, and Java. This shift enhances

92

https://orcid.org/0000-0002-8094-871X
https://orcid.org/0000-0003-2911-8304
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3713081.3731721
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3713081.3731721
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3713081.3731721&domain=pdf&date_stamp=2025-06-11

ISSTA Companion 25, June 25-28, 2025, Trondheim, Norway

Infrastructure
Provider l

Figure 1: JaC program execution overview.

1aC Deployment Engine

~
4 Resource \

2! nputstate. *
laC Program
~ Resource -,
- " 1
Deployment Configuration '\OU(PM Stats .

Resource Specifications

(1) We discuss the challenges of testing IaC programs, particularly
code behaviors dependent on resource states, and explain why
state-of-the-art (SOTA) solutions may be ineffective.

(2) We introduce HIT, a novel approach that combines random
fuzzing and symbolic execution into a hybrid fuzzing solution
tailored for testing IaC programs.

(3) We present an initial implementation of HIT, targeted at the
testing of Pulumi Typescript programs. It exploits ProTT for
randomized fuzzing and ExpoSE for symbolic execution.

(4) We report experimental results that shows the potential of our
hybrid approach in improving the code coverage, compared to
SOTA solutions, on a dataset of IaC programs.

2 Challenges in Testing of IaC Programs

This section outlines key concepts of IaC programs, showing the
issues emerging with their testing.

2.1 IaC Program Execution in a Nutshell

A simplified execution workflow of an IaC program is in Figure 1.
IaC programs define the resources required for a deployment, ini-
tializing their configuration parameters (the resource input state),
through a deployment configuration, which includes essential param-
eters such as cloud credentials, machine types, resource limits, and
security profiles. The IaC deployment engine evaluates the program
and generates the API calls to request the resources. These requests
are sent to infrastructure providers, such as cloud providers, to
provision the necessary components. An IaC program may define
a resource input state not only using static deployment configu-
ration attributes but also the output state of previously deployed
resources, i.e., resource allocation follows a dependency chain. The
resource input and output states are defined according to a resource
specification created by IaC platform developers based on the in-
frastructure provider documentation. This specification formally
defines the attributes (and their data types) for the resource input
and output states.

Figure 2 shows two (simplified) IaC programs in Typescript and
Pulumi. The program on the left (Hosting a website on AWS S3)
provisions an AWS S3 bucket configured as a static website and
dynamically generates an index.html file with randomized con-
tent. It first creates an S3 bucket with website hosting enabled,
then uses the @pulumi/random resource (local) provider to gener-
ate a random index for selecting a message from a given pair of
words. The selected word is then used to create an index.html
file, which is uploaded as an S3 bucket object with appropriate
content type. Finally, the program exports the website endpoint
URL, allowing access to the hosted HTML page. The program on
the right (Spawning two EC2 instances) first creates a new Virtual

93

Emilio Coppa, Daniel Sokolowski, and Guido Salvaneschi

Private Cloud (VPC) with a CIDR block of 10.0.0.0/16. Within
this VPC, it defines a subnet with a CIDR block of 10.0.1.0/24.
Then, it launches an EC2 instance (I10) using the specified AMI
(ami-cafecafe) and a t2.micro instance type, associating it with
the created subnet. Additionally, the program employs an apply
function to monitor the state of the first instance. If 10 reaches the
"running" state, it triggers the creation of a second EC2 instance
(I1) with the same AMI, instance type, and subnet configuration
as 10, effectively creating a conditional instance deployment based
on the state of the first instance.

2.2 Input dimensions for IaC programs

The behavior of an IaC program naturally depends on two main
input dimensions:

e Deployment configuration. For instance, the programs in Figure 2
include several static deployment configuration properties, such
as the bucket name "site" or the instance type t2.micro, which
are used to instantiate resources during deployment. Modern
IaC solutions provide abstractions, such as the Config object in
Pulumi, to manage these configuration attributes effectively. This
allows developers to switch between different values depending
on the deployment context (e.g., development versus production).

e Resource state. Modern IaC frameworks enable developers to write
programs that monitor and react to the current deployment state.
For example, the program in Figure 2a generates page content
based on a string determined at deployment time by the state
(i.e., value) of the resource random.RandomInt. Similarly, the
program in Figure 2b conditionally creates a second EC2 instance
based on the state of the resource aws.ec2.Instance.

Each input dimension may require distinct testing strategies,
which can be combined for greater efficacy. In this paper, we focus
on testing an IaC program under different resource states. This
approach is essential because, while the deployment configuration
is mostly under the control of developers, resources are provided
by the providers, and their internal state depends on the specific
execution state of an external entity, which may be affected by
numerous factors. We next examine how state-of-the-art IaC testing
solutions address this issue and highlight their limitations.

2.3 Limitations of testing approaches for IaC

Testing IaC programs is challenging because simulating or emu-
lating deployments entails a high degree of freedom in the input
dimensions (Section 2.2). When focusing on the input dimension
for resource state, testing of IaC programs is challenge even with
relatively simple resource chains. Indeed, even when the deploy-
ment configuration is known and well-defined a developer may
struggle to test all possible deployment outcomes since accurately
reproducing infrastructure behavior under all scenarios is impracti-
cal - if not — unfeasible. SOTA IaC testing solutions [34] have thus
explored how to exploit resource specifications to generate random
yet valuable resource output states, enabling effective and efficient
unit testing of IaC programs under different scenarios.

For instance, SOTA IaC testing solutions, such as ProTI [34],
can effectively test the program in Figure 2a. After retrieving the
specifications for aws resources and the (local) random resource
from Pulumi, ProTI mocks the resources and executes the program

Hybrid Fuzzing of Infrastructure as Code Programs (Short paper)

"@pulumi/aws";
"@pulumi/random";

import * as aws from
import * as random from

const bucket = new aws.s3.Bucket("site", {

website: { indexDocument: "index.html" 3},
s
const range = { min: @, max: 1 };
const rng = new random.RandomInt("i", range);
rng.result.apply((coin) => {

const msg = coin % 2 == @ ? "Hi" "Hello";

return new aws.s3.BucketObject("index", {

bucket, key: "index.html",
contentType: "text/html; charset=utf-8",
content: msg,
s
15

export const url = bucket.websiteEndpoint;

(a) Hosting a website on AWS S3.

import * as aws from
» const subnet =

ISSTA Companion 25, June 25-28, 2025, Trondheim, Norway

"@pulumi/aws";
new aws.ec2.Subnet("s", {

vpcId: new aws.ec2.Vpc("vpc",
{ cidrBlock: "10.0.0.0/16" }).id,
5 cidrBlock: "10.0.1.0/24",
s
const inst = new aws.ec2.Instance("I0", {
ami: "ami-cafecafe", instanceType: "t2.micro",
9 subnetId: subnet.id,
)N

inst.instanceState.apply((state) =>

)

state === "running" &&

new aws.ec2.Instance("I1", {
ami: inst.ami, instanceType: inst.instanceType,
subnetId: inst.subnetId,

»

(b) Spawning two EC2 instances.

Figure 2: Example: two simplified Pulumi programs in TypeScript.

considering various (random) values for the resource states. The
values in the resource output state are generated consistently with
the resource types declared in the specification, e.g., ProTI mocks
the random.RandomInt resource and generates alternative output
states for this resource. By leveraging the resource specification,
ProTI learns that the output state consists of an integer and can
thus test the program under different (random) integer values —
hence different resource input states for aws.s3.BucketObject.

Yet, resource specifications often lack semantic details about how
the resource input state impacts the resource output state — they
typically only define the data types for each attribute of the input
and output state. Also, such data types are usually not specialized,
relying on primitive types, creating a semantic gap that limits SOTA
IaC unit-testing solutions. For instance, the program in Figure 2b
creates a second instance only when the instanceState of the
first EC2 instance equals "running". Yet, the Pulumi resource spec-
ification declares this attribute as a string, a primitive type, which
hinders the fuzzer from generating the precise value for the pro-
gram to pass the conditional and allocate the second EC2 instance.
Such simple cases may be addressed through program analysis, but
more complex programs require advanced techniques. Motivated
by this challenge, this paper explores a unit-testing approach that
leverages more sophisticated analyses to determine relevant values
for fuzzing resource states.

3 Hybrid Fuzzing for IaC Programs

In this section, we present HIT (Hybrid IaC Testing), our hybrid
fuzzing unit-testing framework for IaC programs written in Type-
script for Pulumi.

3.1 Conceptual steps
The main conceptual phases of HIT are in Figure 3:

e Program Loading: The first step is to load the code of the IaC
program and its dependencies, including any Pulumi package
related to the resources required by the program. Moreover, the
Pulumi SDK is loaded as it is necessary for the correct execution.

o Resource Mocking: After loading the program and its dependen-
cies, the code is analyzed to identify resource definitions, mocking

94

Phase: Phase:
Program —> Resource
Loading Mocking 1
Phase: Testing
Concrete Execution Concolic Execution
Resource Resource Coverage |——»{| Resource Constraint Branch
Generator Oracle Tracker Symbolizer Solver Tracker —‘

Figure 3: Main workflow of our approach.

the constructors of all resource classes using Pulumi’s runtime
mocking. At runtime, the mocks are responsible for accepting
the resource input states defined by the program, validating them
through resource oracles and generating realistic resource output
states that are consistent with the resource specifications.

Testing Loop: The core phase of HIT is the Testing Loop, where
the program is repeatedly tested using different resource output
states. In practice, since HIT may be used for short unit-testing
sessions, the testing loop can be configured to stop after a speci-
fied timeout or a set number of attempts. Across loop iterations,
HIT may generate several inputs, i.e., possible alternative values
to use in the output states of the resources, which are tracked by
an input queue and consumed throughout the iterations.

3.2 Hybrid IaC Testing at Work

In each testing loop iteration, HIT alternates between Concrete and
Concolic execution modes.

Concrete Execution. In this execution mode, HIT natively runs the
program mocked during the previous phase. When the program
invokes a resource builder, the related mock utilizes three main sub-
components: resource generators, resource oracles, coverage tracker.

For each mocked resource, HIT employs a resource generator to
produce realistic resource output states. The generator evaluates
the resource specification and recursively constructs a TypeScript
object that complies with the expected resource type declaration.
In HIT, the values used to populate the resource output state can
come from two distinct sources:

ISSTA Companion 25, June 25-28, 2025, Trondheim, Norway

o Arbitraries: HIT relies on arbitraries, i.e., type-specific value pro-
ducers, from SOTA property-based testing frameworks when
the input queue is empty. Arbitraries generate random values
based on a random generator state, thus enabling deterministic
reproduction of an execution.

o Input Queue: Whenever available, HIT selects a set of previously
generated (but not yet tested) resource output states by the con-
colic execution mode. Since values generated by the concolic
execution mode are intended to increase coverage, the execution
path in concrete execution mode may encounter additional, pre-
viously untested resources. In such cases, HIT uses arbitraries to
generate realistic output states for these new resources.

Resource Oracles are optional but can be used to validate the
input states of resources, detecting inconsistencies and other prob-
lematic scenarios. Validation strategies can often be reused across
different resources, and HIT provides a plugin interface that allows
developers to easily define custom validation strategies. Finally,
HIT tracks statement and branch coverage to assess the testing
loop’s effectiveness. Ideally, statement coverage increases when
concolic execution successfully generates input values that lead the
program down a previously unexplored branch.

Concotic Execution. HIT employs concolic execution [3], a dy-
namic variant of symbolic execution. Like traditional symbolic
execution, it instruments the program to track computations and
decision points influenced by input data (i.e., resource states in our
context) and uses a constraint solver to generate alternative inputs.
However, concolic execution analyzes only a single execution path,
i.e., in HIT, the one explored in the last concrete execution.

In more detail, whenever the program invokes a resource con-
structor, HIT employs resource symbolizers to construct realistic
objects that comply with resource specifications, similar to resource
generators in concrete execution mode. Yet, unlike a resource gener-
ator, a resource symbolizer not only constructs the resource state but
also generates a shadow object, where each internal attribute of the
resource state is marked symbolic. This means that the attribute’s
value in a shadow object is not fixed (i.e., not yet concrete) and can
initially assume any value permitted by its data type.

As the program executes computations over resource output
states, HIT mirrors these operations, considering the associated
symbolic shadow objects and constructing symbolic expressions,
which represent computations on symbolic attributes. For instance,
a modulo operation by 2 on a symbolic integer attribute rng.result
would be represented by the symbolic expression rng.result % 2,
thus accurately modeling the computation regardless of the con-
crete value chosen for rng.result.

When the program reaches a branch, HIT first determines the
alternative taken based on the current concrete input values. It
then builds a symbolic expression representing the untaken direc-
tion and queries a constraint solver to possibly generate alternative
input values that lead the program to the untaken branch. When
successful, the generated input values are added to the input queue
for future testing. For instance, in an untaken branch having the
condition "rng.result % 2 == 0", HIT queries the solver for a value
satisfying the condition, obtaining, e.g., "rng.result = 0".

Regardless of whether the constraint solver successfully gen-
erates an alternative input, HIT continues execution along the

95

Emilio Coppa, Daniel Sokolowski, and Guido Salvaneschi

path for the current input values, adding a symbolic expression
for the taken decision to the path constraints. When reaching the
next branch, the path constraints, in conjunction with the branch
expression, are passed to the constraint solver to generate new
values consistent with the path effectively explored by the current
concolic execution. For instance, if the program has taken the di-
rection associated with condition "rng.result %2 # 0" and then
hits the untaken condition "rng.k == 5", it queries the solver with
"rng.result %2 # 0 A rng.k == 5"

Beyond branch decisions, HIT can also generate alternative re-
source output states that cause the program to consume different
values from non-primitive data structures. For instance, if input
values are used to access specific elements of an array, HIT employs
the constraint solver to generate alternative inputs that lead to
accessing different array elements or even invalid indices.

Finally, concolic execution mode tracks branch coverage to avoid
generating constraint queries for already explored branches. Addi-
tionally, HIT maintains a record of all generated input values—both
tested and untested—to avoid pushing duplicates in the input queue.

Running Examples. In the program in Figure 2a, HIT mocks
the constructors of the resources Bucket, RandomInt, and Bucket
Object. During the first iteration, in concrete mode, it randomly
generates output states for these three resources and executes the
program. Assuming it randomly selects an even integer value for
rng.result, i.e., coin, it generates a BucketObject with the "hi"
page content. In concolic mode, HIT reuses the same values but
symbolizes all internal attributes of the resources, including the
integer coin. Upon reaching the branch in line 10, it leverages the
constraint solver to compute an alternative value for coin that
forces execution to the opposite branch, e.g., an odd integer such as
coin = 1. This newly generated concrete value, along with the other
values used in the current execution path, is added to the input
queue, so that the next testing loop iteration explores a different
path. As discussed in Section 2, SOTA IaC unit testing frameworks
relying solely on random fuzzing can quickly achieve the same path
coverage since the branch in line 10 can easily be satisfied when
considering a few alternative random values.

For the program in Figure 2b, the advantages of HIT’s concolic
mode over SOTA random fuzzing solutions become more evident.
After mocking the constructors of the Subnet and Instance re-
sources, HIT initially randomly fuzzes their internal values during
concrete execution. This approach is unlikely to reproduce a path
where a second EC2 instance is spawned. Yet, in concolic mode, HIT
symbolizes the resource state attributes and, using the constraint
solver, generates a value for instanceState equal to "running".
This allows HIT to explore an execution path that spawns the sec-
ond EC2 instance as early as the second testing loop iteration. In
contrast, SOTA solutions relying solely on random fuzzing unlikely
generate the required value "running" for instanceState.

4 Implementation

The current implementation of HIT, is built by mixing and im-
proving several key technologies: ProTI [34], a random fuzzing IaC
framework; Jest, a popular JavaScript framework for efficient and ef-
fective unit testing; Fast-Check, a property-based testing framework

Hybrid Fuzzing of Infrastructure as Code Programs (Short paper)

Pr # # RES StMT Cov (%) Br Cov (%) TIME (s)
ID | LOC | Types || PrRoTI HIT | ProTI HIT ProTI HIT
0 94 6 82.35 100 0 100 32 212
1 163 11 93.1 100 69.23 100 31 276
2 180 13 96.77 100 66.66 100 36 743
3 48 4 87.5 100 33.3 100 17 198
4 61 6 89.47 89.47 88.23 88.23 27 390
5 64 8 91.3 91.3 66.6 66.6 24 150
6 49 4 84.61 84.61 75 75 24 155
7 82 2 75 100 50 100 32 234
8 50 6 100 100 100 100 24 194
9 79 8 81.48 96.26 | 2857 85.71 20 210

Table 1: Coverage and running time when running ProTI and
HIT on 10 IaC programs.

that provides a rich set of arbitraries; Babel, for transpiling Type-
Script to JavaScript; and Pulumi’s runtime, which enables mocking
functionalities. HIT improved the plugin interface in ProTI, allow-
ing the integration of custom transformers, and added arbitraries
to support the resource symbolizers. To support the concolic mode
in HIT, we reworked several internal components of ExpoSE [19], a
concolic engine based on the Jalangi2 instrumentation framework.
Our improvements were necessary to adapt ExpoSE to the IaC
context and integrate it with the ProTI architecture.

5 Experiments

To evaluate HIT, we generated 10 IaC programs for Pulumi Type-
Script using GPT-4o, instructing it to generate code with real-world
behaviors dependent on resource output states. The choice of using
LLM-generated programs stems from (1) no public benchmark suite
exists, (2) major LLMs are likely trained on diverse IaC code, and
(3) LLMs gain popularity in IaC code generation, as explored by
prior research [17, 26, 35] and encouraged by specialized IaC code
generation services like Pulumi Al [27]. To improve the success
rate during generation, we implemented a feedback loop that ex-
poses syntactic errors, allowing the LLM to iteratively fix common
issues. Experiments were executed on the Docker container image
node:21.1.0 with ProTI 1.3.0, using an Intel Core Ultra 7 165U
CPU and 64GB RAM. Each program was tested for 107 iterations
(default budget in Jest for ProTT), having HIT activate the concolic
mode only in 25% of the iterations. The results of our experiments
are summarized in Table 1. The programs have sizes ranging from
48 to 180 LOC and use from 2 to 13 distinct resource types. When
measuring the coverage with Instabul]S, HIT is more effective than
ProTI on 6 out of 10 programs. In programs #4, #5, and #9, missed
conditional behaviors stem from factors beyond resource state,
while in program #6, HIT is losing track of a resource state due to
an imperfect instrumentation that we are trying to fix. HIT incurs
significant overhead compared to ProTI (6.5X to 21x). However,
HIT currently takes more than 80 seconds during the first concolic
run due to inefficient ExpoSE and Jalangi2 runtime loading.

6 Related work

Software Fuzzing. Fuzzing has advanced significantly [38], with
grey-box fuzzing (GBF) becoming dominant for traditional soft-
ware. Unlike black-box fuzzers that mutate inputs blindly [36], GBF

96

ISSTA Companion 25, June 25-28, 2025, Trondheim, Norway

uses lightweight instrumentation to track coverage, prioritizing in-
puts exploring new paths. While GBF effectively detects bugs [24],
it struggles with magic numbers, checksums [2], and structured
inputs [4, 24]. Modern fuzzers address these challenges with light-
weight program analysis, like approximated taint analysis [2], to
bypass roadblocks or infer input grammars [4]. Consequently, HIT’s
random fuzzing component could be adapted into a modern GBF.

Symbolic Execution. Another well-known software testing tech-
nique is symbolic execution [3], which explores execution paths by
treating inputs as symbolic variables rather than concrete values.
It formulates constraints to model input-dependent program deci-
sion points and uses SMT solvers to determine values that satisfy
specific conditions, possibly enabling discovery of edge cases and
vulnerabilities. Examples of symbolic execution frameworks are
KLEE [5], angr [33], SymCC [25], and Symbolic Path Finder [23].
While powerful, symbolic execution faces path explosion and ex-
ternal dependency (e.g., system calls) challenges [3]. We focus on
concolic execution (a dynamic variant), leveraging IaC programs’
limited size to mitigate path explosion, while resource specifications
and mocking techniques help handle external dependencies.

IaC Testing. Rahman et al. [29] found limited research on IaC
quality despite extensive Configuration as Code (CaC) tool studies.
Guerriero et al. [13] highlighted industry’s need for better IaC test-
ing tools, while Chiari et al. [9] noted gaps in IaC static analysis
research. These studies underscore the need for systematic IaC
quality techniques. Pre-deployment assessment has been minimally
studied: Lepiller et al. [18] introduced Hayha for AWS CloudForma-
tion vulnerability detection, while Cauli et al. [6, 7] used description
logic for security flaw checking. However, these methods lack broad
applicability, especially for provisioning tools like Pulumi and Ter-
raform. Similarly, existing approaches for idempotency [14, 16, 31],
defect prediction [8, 10], and code smell detection [21, 30, 32] have
only targeted CaC. Sokolowski et al. [34] introduced ProT], the first
testing approach for IaC programs. We extend their fuzzing strategy
by integrating concolic execution to improve testing effectiveness.

7 Conclusion

Ensuring IaC program correctness is challenging due to cloud en-
vironment complexity and dynamic resource state dependencies.
While existing approaches provide a foundation, they fall short
with intricate conditional logic and resource dependencies. To this
end, we introduced HIT, a hybrid fuzzing framework combining
random fuzzing with concolic execution to improve code coverage.

Acknowledgments

This work was partially supported by: project FARE (PNRR M4.C2.1.1
PRIN 2022, 202225BZJC, CUP D53D23008380006); project SETA

(PNRR M4.C2.1.1 PRIN 2022 PNRR, P202233M9Z, CUP B53D23026000001).

Both projects are under the Italian NRRP MUR program funded by
NextGenEU. This work has also been supported by the Swiss Na-
tional Science Foundation (SNSF, Grant No. 200429 and 10001777),
by armasuisse Science and Technology, and by European Union’s
Horizon research and innovation programme (CAPE Project, Grant
No. 101189899).

References
[1] Amazon Web Services. [n. d.]. Cloud Development Framework: AWS Cloud Dev.

ISSTA Companion ’25, June 25-28, 2025, Trondheim, Norway

[2

[

(3

=

=

[10

[11]

[12]

[13

[14]

[15]

[16]

[17

Kit. https://aws.amazon.com/cdk/.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspon-
dence. In 26th Annual Network and Distributed System Security Symposium,
NDSS. https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-
input-to-state-correspondence/

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. Comput.
Surveys 51, 3, Article 50 (2018). doi:10.1145/3182657

Tim Blazytko, Cornelius Aschermann, Moritz Schlégel, Ali Abbasi, Sergej Schu-
milo, Simon Wérner, and Thorsten Holz. 2019. GRIMOIRE: Synthesizing Struc-
ture while Fuzzing. In 28th USENIX Security Symposium (USENIX Security 19).
https://www.usenix.org/system/files/sec19-blazytko.pdf

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI'08). 209-224. http://dl.acm.org/citation.cfm?id=1855741.
1855756

Claudia Cauli, Meng Li, Nir Piterman, and Oksana Tkachuk. 2021. Pre-deployment
Security Assessment for Cloud Services Through Semantic Reasoning. In 33rd
Int. Conf., CAV 2021 (Lecture Notes in Computer Science). doi:10.1007/978-3-030-
81685-8_36

Claudia Cauli, Magdalena Ortiz, and Nir Piterman. 2022. Actions over Core-closed
Knowledge Bases. In 11th International Joint Conference, IJCAR 2022, (Lecture
Notes in Computer Science). doi:10.1007/978-3-031-10769-6_17

Wei Chen, Guoquan Wu, and Jun Wei. 2018. An Approach to Identifying Error
Patterns for Infrastructure as Code. In 2018 IEEE Int. Symposium on Software
Reliability Engineering Workshops. doi:10.1109/ISSREW.2018.00-19

Michele Chiari, Michele De Pascalis, and Matteo Pradella. 2022. Static Analysis
of Infrastructure as Code: A Survey. In IEEE 19th International Conference on
Software Architecture Companion, ICSA Companion 2022, Honolulu, HI, USA, March
12-15, 2022. TEEE, 218-225. d0i:10.1109/ICSA-C54293.2022.00049

Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri.
2022. Within-project Defect Prediction of Infrastructure-as-Code Using Product
and Process Metrics. IEEE Trans. Software Eng. 48, 6 (2022), 2086—-2104. doi:10.
1109/TSE.2021.3051492

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++ :
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association. https://www.usenix.
org/conference/woot20/presentation/fioraldi

Google. 2019. Google OSS-Fuzz: continuous fuzzing of open source software.
https://github.com/google/oss-fuzz.

Michele Guerriero, Martin Garriga, Damian Andrew Tamburri, and Fabio
Palomba. 2019. Adoption, Support, and Challenges of Infrastructure-as-Code:
Insights from Industry. In 2019 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2019. doi:10.1109/ICSME.2019.00092

Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. Asserting
Reliable Convergence for Configuration Management Scripts. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016. doi:10.1145/2983990.2984000
HashiCorp. [n.d.]. CDK for Terraform. https://developer.hashicorp.com/
terraform/cdktf. Accessed: 2024-01-15.

Waldemar Hummer, Florian Rosenberg, Fabio Oliveira, and Tamar Eilam. 2013.
Testing Idempotence for Infrastructure as Code. In Middleware 2013 - ACM/I-
FIP/USENIX 14th International Middleware Conference (Lecture Notes in Computer
Science). doi:10.1007/978-3-642-45065-5_19

Patrick Tser Jern Kon, Jiachen Liu, Yiming Qiu, Weijun Fan, Ting He, Lei Lin,
Haoran Zhang, Owen M. Park, George S. Elengikal, Yuxin Kang, Ang Chen,
Mosharaf Chowdhury, Myungjin Lee, and Xinyu Wang. 2024. IaC-Eval: A Code
Generation Benchmark for Cloud Infrastructure-as-Code Programs. In Advances
in Neural Inf. Processing Systems.

[18] Julien Lepiller, Ruzica Piskac, Martin Schaf, and Mark Santolucito. 2021. An-

[19

alyzing Infrastructure as Code to Prevent Intra-update Sniping Vulnerabili-
ties. In Tools and Algorithms for the Construction and Analysis of Systems -
27th International Conference, TACAS 2021 (Lecture Notes in Computer Science).
doi:10.1007/978-3-030-72013-1_6

Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: practical
symbolic execution of standalone JavaScript. In Proceedings of the 24th ACM

97

[20]

[21

[22

~
&

[24]

[25

w
—

[32

[33

[34

@
2

Emilio Coppa, Daniel Sokolowski, and Guido Salvaneschi

SIGSOFT International SPIN Symposium on Model Checking of Software (SPIN
2017). 196-199. doi:10.1145/3092282.3092295

Kief Morris. 2021. Infrastructure as Code: Dynamic Systems for the Cloud Age
(second ed.). O’Reilly Media, Inc., Sebastopol, CA, USA.

Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2023. Control and
Data Flow in Security Smell Detection for Infrastructure as Code: Is It Worth the
Effort?. In 20th IEEE/ACM International Conference on Mining Software Repositories,
MSR 2023, Melbourne, Australia, May 15-16, 2023. IEEE, 534-545. doi:10.1109/
MSR59073.2023.00079

Ruben Opdebeeck, Ahmed Zerouali, Camilo Velazquez-Rodriguez, and Coen De
Roover. 2020. Does Infrastructure as Code Adhere to Semantic Versioning?
An Analysis of Ansible Role Evolution. In 2020 IEEE 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM). 238-248. doi:10.
1109/SCAM51674.2020.00032

Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,
Michael Lowry, Suzette Person, and Mark Pape. 2008. Combining Unit-Level
Symbolic Execution and System-Level Concrete Execution for Testing Nasa
Software. In Proceedings of the 2008 Int. Symposium on Software Testing and
Analysis. doi:10.1145/1390630.1390635

V. Pham, M. Boehme, A. E. Santosa, A. R. Caciulescu, and A. Roychoudhury.
2019. Smart Greybox Fuzzing. IEEE Transactions on Software Engineering (2019).
doi:10.1109/TSE.2019.2941681

Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with
SymCC: Don’t interpret, compile!. In Proceedings of the 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association, 181-198. https:
//www.usenix.org/conference/usenixsecurity20/presentation/poeplau

Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas Dupuis, Burn Lewis, Sahil
Suneja, Atin Sood, Ganesh Nalawade, Matthew Jones, Alessandro Morari, and
Ruchir Puri. 2023. Automated Code generation for Information Technology
Tasks in YAML through Large Language Models. arXiv:2305.02783 [cs.SE] https:
//arxiv.org/abs/2305.02783

Pulumi. [n.d.]. Pulumi AL https://www.pulumi.com/ai.

Pulumi. [n. d.]. Pulumi: Infrastructure as Code in Any Programming Language.
https://github.com/pulumi/pulumi. Accessed: 2024-01-15.

Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie A. Williams. 2019. A
Systematic Mapping Study of Infrastructure as Code Research. Inf. Softw. Technol.
108 (2019), 65-77. doi:10.1016/j.infsof.2018.12.004

Sofia Reis, Rui Abreu, Marcelo d’Amorim, and Daniel Fortunato. 2022. Lever-
aging Practitioners’ Feedback to Improve a Security Linter. In 37th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2022, Rochester,
MI, USA, October 10-14, 2022. ACM, 66:1-66:12. doi:10.1145/3551349.3560419
Rian Shambaugh, Aaron Weiss, and Arjun Guha. 2016. Rehearsal: A Configuration
Verification Tool for Puppet. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016,. doi:10.1145/
2908080.2908083

Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your
Configuration Code Smell?. In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016,
Miryung Kim, Romain Robbes, and Christian Bird (Eds.). ACM, 189-200. doi:10.
1145/2901739.2901761

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. (2016).

Daniel Sokolowski, David Spielmann, and Guido Salvaneschi. 2024. Automated In-
frastructure as Code Program Testing. IEEE Transactions on Software Engineering
(2024). doi:10.1109/TSE.2024.3393070

Kalahasti Ganesh Srivatsa, Sabyasachi Mukhopadhyay, Ganesh Katrapati, and
Manish Shrivastava. 2024. A Survey of using Large Language Models for Gener-
ating Infrastructure as Code. arXiv:2404.00227 [cs.SE] https://arxiv.org/abs/2404.
00227

Ari Takanen, Jared D. Demott, and Charles Miller. 2018. Fuzzing for Software
Security Testing and Quality Assurance (2nd ed.). Artech House, Inc.

Michat Zalewski. 2019. American Fuzzy Lop. https://github.com/Google/AFL.
A. Zeller, R. Gopinath, M. Bohme, G. Fraser, and C. Holler. 2019. The Fuzzing
Book. https://www.fuzzingbook.org/.

https://aws.amazon.com/cdk/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://doi.org/10.1145/3182657
https://www.usenix.org/system/files/sec19-blazytko.pdf
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1007/978-3-030-81685-8_36
https://doi.org/10.1007/978-3-030-81685-8_36
https://doi.org/10.1007/978-3-031-10769-6_17
https://doi.org/10.1109/ISSREW.2018.00-19
https://doi.org/10.1109/ICSA-C54293.2022.00049
https://doi.org/10.1109/TSE.2021.3051492
https://doi.org/10.1109/TSE.2021.3051492
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://github.com/google/oss-fuzz
https://doi.org/10.1109/ICSME.2019.00092
https://doi.org/10.1145/2983990.2984000
https://developer.hashicorp.com/terraform/cdktf
https://developer.hashicorp.com/terraform/cdktf
https://doi.org/10.1007/978-3-642-45065-5_19
https://doi.org/10.1007/978-3-030-72013-1_6
https://doi.org/10.1145/3092282.3092295
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1109/SCAM51674.2020.00032
https://doi.org/10.1109/SCAM51674.2020.00032
https://doi.org/10.1145/1390630.1390635
https://doi.org/10.1109/TSE.2019.2941681
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://arxiv.org/abs/2305.02783
https://arxiv.org/abs/2305.02783
https://arxiv.org/abs/2305.02783
https://www.pulumi.com/ai
https://github.com/pulumi/pulumi
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1145/3551349.3560419
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1109/TSE.2024.3393070
https://arxiv.org/abs/2404.00227
https://arxiv.org/abs/2404.00227
https://arxiv.org/abs/2404.00227
https://github.com/Google/AFL
https://www.fuzzingbook.org/

	Abstract
	1 Introduction
	2 Challenges in Testing of IaC Programs
	2.1 IaC Program Execution in a Nutshell
	2.2 Input dimensions for IaC programs
	2.3 Limitations of testing approaches for IaC

	3 Hybrid Fuzzing for IaC Programs
	3.1 Conceptual steps
	3.2 Hybrid IaC Testing at Work

	4 Implementation
	5 Experiments
	6 Related work
	7 Conclusion
	Acknowledgments
	References

