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E-graphs are a data structure to compactly represent a program space and reason about equality of program

terms. E-graphs have been successfully applied to a number of domains, including program optimization

and automated theorem proving. In many applications, however, it is necessary to reason about disequality

of terms as well as equality. While disequality reasoning can be encoded, direct support for disequalities

increases performance and simplifies the metatheory.

In this paper, we develop a framework independent of a specific implementation to formally reason about

e-graphs. For the first time, we prove the equivalence of e-graphs to the reflexive, symmetric, transitive, and

congruent closure of the equivalence relation they are expected to encode. We use these results to present the

first formalization of an extension of e-graphs that directly supports disequalities and prove an analytical

result about their superior efficiency compared to embedding techniques that are commonly used in SMT

solvers and automated verifiers. We further profile an SMT solver and find that it spends a measurable amount

of time handling disequalities.

We implement our approach in an extension to egg, a popular e-graph Rust library. We evaluate our solution

in an SMT solver and an automated theorem prover using standard benchmarks. The results indicate that

direct support for disequalities outperforms other encodings based on equality embedding, confirming the

results obtained analytically.
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1 Introduction
E-graphs [Nelson 1980] have become an integral data structure for automated reasoning. They

enable representing equivalence relations of expressions that enjoy congruence, i.e., if two expres-

sions 𝑒0 and 𝑒1 are equivalent, then any expressions constructed by applying the same operations

to 𝑒0 and 𝑒1 remain equivalent. They have found applications in a variety of domains, including

program optimization [Tate et al. 2009], program synthesis [Briggs and Panchekha 2022], and

decision procedures [Barbosa et al. 2022; de Moura and Bjørner 2008]. They are a foundational data

structure for performing equality saturation [Pal et al. 2023], a technique where expressions in a
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program are systematically rewritten to explore equivalent forms. By representing expressions in a

compact and structured manner, e-graphs enable the exploration of a vast solution space while

avoiding redundant computations.

E-Graphs and Disequalities in Automated Reasoning. Enabling efficient reasoning about equalities

makes e-graphs crucial for automated theorem proving. Yet, while e-graphs focus on handling

equalities, many real-world problems involve a combination of both equalities and disequalities,

such as SMT (Satisfiability Modulo Theories) and inductive theorem provers.

SMT solvers interpret formulae within predefined formal theories in first-order logic with equality.

They delegate solving the boolean structure of such a formula to a SAT (Boolean Satisfiability)

solver. When lifting the interpretation found by the SAT solver back into the SMT theory, SMT

solvers must handle equalities for variables to which the SAT solver assigned true and disequalities

for those assigned false.
Some SMT theories, such as the widely-used ArraysEx theory for arrays, expose disequalities to

the developer in the axioms of the theory. For instance, modifying an array at index 𝑖 does not affect

the value at index 𝑗 if 𝑖 and 𝑗 are not equal. Different methods exist for encoding disequalities into

e-graphs. We show that a common encoding found in SMT solvers lends itself to easy integration

with the underlying SAT solver and can use an off-the-shelf e-graph data structure, but is not the

most efficient encoding of disequalities in terms of e-graph operations.

In inductive theorem provers, equalities and disequalities naturally arise in handling pattern

matches. For example, to prove any property on the following code snippet, the proof assumes that

x = P0 holds in the first branch and x ≠ P0 holds in the second:

1 cases x of
2 P0 ⇒ e0
3 _ ⇒ e1

Integrating disequalities enables the system to prove a goal by absurdity (ex falso quodlibet) by
deriving contradictions in the set of hypotheses. These contradictions are more apparent when

equalities and disequalities are used together as opposed to using equalities alone.

In summary, automated proving would benefit from a unified framework that reasons about

both equalities and disequalities. Surprisingly, a direct approach to support disequalities has been

proposed since the early days of e-graphs. Nelson [1980] observes that “Given a disequality 𝑡 ≠ 𝑢,
we must add structure to the graph, that if the nodes representing 𝑡 and 𝑢 ever become equivalent, the
program will detect it. The obvious way to do this is to store with the root of each equivalence class a
circular list of nodes that are forbidden to join the class.” Yet, recent approaches [Barbosa et al. 2022;
de Moura and Bjørner 2008] rather embed disequalities and – instead of a direct treatment – they

assign the equality to ⊥ (Section 2.2).

Introducing a Comprehensive Formalism for E-Graphs. The main contribution of this work is a

novel and complete formal reasoning framework for e-graphs. Previous work is rather informal and

tailored to specific use cases like SMT solving [de Moura 2008], or focused on concrete imperative

implementations with long and complex proofs [Nelson 1980]. To the best of our knowledge, our

framework is the first to formally prove correctness and cost properties for e-graphs and extensions

that support disequalities. Our formalism is extendable with new e-graph features and can serve

as a formal foundation for future theoretical developments on e-graphs, including extensions like

inequalities (e.g., greater-than or less-than relations that enable reasoning by induction) and the

formalization of the equality saturation algorithm.
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Contributions. First, in Section 3.1, we present the formal framework use it to prove the equiva-

lence of e-graphs to the reflexive, symmetric, transitive, and congruent closure of the equivalence

relation they are expected to encode. Second, in Section 3.2, we use the framework to reason about

three embedding techniques that enable reasoning about disequalities. Third, in Section 3.3, we gen-

eralize e-graphs to die-graphs, which add support for disequality reasoning directly in the structure

of the e-graph. In die-graphs, equality is represented as in e-graphs. Disequality, on the other hand,

being a symmetric relation between two e-nodes, is thus represented as an undirected disequality
edge between two e-classes in the e-graph. Using the framework, we prove that die-graphs find any

contradiction between the equality relation encoded by an e-graph and a set of disequalities. We

further prove an analytical result about their superior efficiency compared to embedding techniques

used in widespread SMT solvers and automated verifiers. Fourth, in Section 4, we describe our

implementation of DieGraph on top of the egg e-graphs library [Willsey et al. 2021]. Finally, in

Section 5, we empirically evaluate the performance of embedding techniques and disequality edges.

For our empirical analysis, we use SMT solving and theorem proving as case studies for populating

e-graphs with realistic data, e.g., existing SMT benchmarks. As our focus is on the e-graph data

structure rather than proving techniques, our analysis is not targeted specifically to SMT solving.

In summary, this paper provides the following contributions.

• We provide a formalism for e-graphs, which also accounts for disequalities, and prove both

the basic e-graph data structure and its extensions for disequalities correct.

• We use the theoretical framework to compare different solutions to treat disequalities in

e-graphs and show that, analytically, direct support for disequalities performs better.

• We implement our approach in DieGraph, an efficient e-graph library based on the popular

egg e-graph library [Willsey et al. 2021] that natively supports disequalities.

• We evaluate our approach in two case studies based on SMT solving and theorem proving

comparing two different approaches to support disequalities in e-graphs, showing that

(1) tracking disequalities greatly benefits automated reasoning and (2) one of the approaches

performs consistently better throughout the experiments.

• We profile the Z3 SMT solver [de Moura 2008] on the SMT-LIB EUF benchmarks [Barrett et al.

2015], finding that it spends non-negligible amount of time time manipulating disequalities.

Our evaluation suggests that this time can be optimized by using disequality edges as opposed

to Z3’s equality embedding.

2 Equality and Disequality Graphs
In this section, we introduce e-graphs and their operations, and explain the existing approaches to

support reasoning about disequalities.

2.1 E-Graphs
E-graphs compactly represent the equivalence of syntactically different terms according to an

equivalence relation, such as program equivalence, e.g., the programs reduce to the same value

according to the dynamic semantics of a programming language [Plotkin 2004].

The E-Graph Data Structure. An e-graph is a bipartite graph, i.e., a graph with two disjoint sets of

unconnected vertices: e-nodes represent expressions that are either atoms or function applications,

and e-classes represent sets of equivalent expressions. An e-graph –without support for disequalities
– contains two kinds of edges. (1) An edge from an e-class to an e-node means that the e-node

belongs to the e-class, i.e., the e-node is equivalent to every other e-node that belongs to the e-class.

(2) An edge from an argument of an e-node to an e-class encodes congruence, i.e., equivalent
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Fig. 1. E-Graphs structure and basic operations.

expressions can be constructed by replacing any argument with any member of the e-class that the

argument points to.

E-graphs focus on dynamically discovering and maintaining equivalences between expressions,

making it efficient to check whether two expressions are equivalent. The process of dynamically

discovering and maintaining equivalences involves managing the correct set of edges and nodes in

the graph. Initially, each unique expression is represented as an individual e-node, and each e-node

is placed in its own e-class. As new equivalences are discovered through algebraic transformations

or logical simplifications – i.e., two e-classes are found to be equivalent – the e-graph merges the

respective e-classes into a single e-class, ensuring that all semantically equivalent expressions are

represented together.

For example, Figure 1 shows an e-graph with two atoms a and b and a function f with arity 1.

Rectangles denote e-nodes and circles denote e-classes. We visualize the two kinds of edges by

representing the edge between e-class and e-node as undirected and the edge between an argument

of an e-node and an e-class as directed. Initially, the e-nodes for a, b, f(a) and f(b) are in distinct

e-classes (Figure 1a). Upon equating a and b, both atoms become members of the same e-class

(Figure 1b). Crucially, as a result, the e-graph discovers that the e-nodes representing f(a) and f(b)
are identical and thus equates their e-classes (Figure 1c).

Equality Saturation. Equality saturation [Pal et al. 2023] is a key technique in e-graphs used to

discover equivalent expressions by exhaustively applying a predefined set of equivalence rules until

no further progress can be made. As equality saturation is computationally expensive, research has

focused on optimizing this process [Willsey et al. 2021].

The procedure starts with an initial e-graph and proceeds by iteratively applying equivalence

rules to generate new e-nodes. Whenever two e-classes are found to be equivalent – i.e., they

contain overlapping e-nodes after the introduction of new ones – they are merged into a single

e-class. Ultimately, the process may reach a saturated state where no more equivalence rules can

be applied. In practice, however, e-graphs are typically not fully saturated since this process is

resource-intensive and is not guaranteed to terminate.

For example, saturating the e-graph of Figure 1c with the equivalence rule ∀𝑥 .f(𝑥) ≡ 𝑥 equates

the terms a with f(a), b with f(b), f(a) with f(f(a)), etc. Thus in the fully saturated graph there

are two e-classes: the first containing the atom e-node representing a and the function application

e-node f(·) with an edge to its own e-class representing f(a), f(f(a)), etc; and the second similarly

containing b and f(b), f(f(b)), etc.

Applications of E-Graphs. The ability to compactly reason about the equivalence of expressions is

crucial in several domains. In compiler optimizations, e-graphs help to identify andmerge equivalent

code fragments, reducing redundancy and selectingmore efficient representations among equivalent

programs. In automated theorem proving, they simplify expressions and discover equivalences,

aiding progress towards proof goals. In symbolic computation, they enable the manipulation and
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Fig. 2. Equality Embedding in E-Graphs.

simplification of algebraic expressions. In program analysis, e-graphs track and merge equivalent

program states or expressions, supporting tasks such as optimization, verification, and refactoring.

2.2 Die-Graphs
We present the two prevalent methods to extend the functionality of e-graphs to handle disequalities:

different variants of equality embeddings and disequality edges.

Equality Embedding. A straightforward equality embedding (EE) technique reifies the equality

relation constructed by the e-graph explicitly into the term language of the e-nodes. We first

introduce a special symbol eq into the language to represent equality and two symbols true and

false to represent truth and falsehood. Two terms 𝑡1 and 𝑡2 are equal if the terms eq(𝑡1, 𝑡2) and
true are equal, i.e., in the same class. And 𝑡1 and 𝑡2 are unequal if eq(𝑡1, 𝑡2) and false are equal.

Checking whether the given equalities and disequalities are consistent, i.e., that no contradiction

exists, amounts to simply checking whether true and false are not equal. Yet, this check only yields

the correct result after saturating the e-graph on the following rules: (1) ∀𝑥,𝑦. eq(𝑥,𝑦) ≡ true →
𝑥 ≡ 𝑦 to lift the embedded equality to e-graph equivalence, (2) ∀𝑥,𝑦. eq(𝑥,𝑦) ≡ false → eq(𝑦, 𝑥) ≡
false to account for symmetry of disequality, and, (3) ∀𝑥,𝑦. eq(eq(𝑥,𝑦), false) ≡ false → 𝑥 ≡ 𝑦

to account for double negation elimination. Further, when adding eq(𝑡1, 𝑡2) ≡ false to the e-graph,

we need to also add the equalities eq(𝑡1, 𝑡1) ≡ true and eq(𝑡2, 𝑡2) ≡ true. This is needed to discover

equalities of disequated terms in the hopes of merging true and false when a contradiction exists.

Thus, we further saturate on (4) ∀𝑥,𝑦. eq(𝑥,𝑦) ≡ false → eq(𝑥, 𝑥) ≡ true and (5) ∀𝑥,𝑦. eq(𝑥,𝑦) ≡
false → eq(𝑦,𝑦) ≡ true.

Overall, while EE can use an off-the-shelf e-graph, it comes at the cost of performing saturation

to ensure consistent results when querying the e-graph.

Figure 2a shows an EE of the e-graph in Figure 1a after equating a and b – but before saturation.

Note that – while the equality eq(a, b) ≡ true is already encoded in the e-graph – this e-graph has

not yet equated the terms a and b, i.e., the data structure does not yet contain the equality a ≡ b.

Upon disequating f(a) and f(b) on the e-graph of Figure 2a, we obtain the one shown in Figure 2b.
The state of the e-graph hints at a contradiction as it states that eq(f(a), f(b)) ≡ false and

eq(a, b) ≡ true This is why saturation is crucial. The saturated graph is shown in Figure 2c, in which

f(a) and f(b) are merged – following standard e-graph merging described in Figure 1c. As now

f(a) and f(b) are treated equal, the disequality eq(f(a), f(b)) ≡ false that we added to the graph

is equivalent to eq(f(a), f(a)) ≡ false. Saturation further creates the node eq(f(a), f(a)) ≡ true,

which leads to true and false being merged into the same class, i.e., the e-graph can report the

contradiction.

Optimized Equality Embedding. Instead of checking whether true and false are in the same

class, as EE does, we can check whether eq(𝑡, 𝑡) ≡ false exists in the e-graph. This check is less
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Fig. 3. Negated Equality Embedding in E-Graphs.

efficient than the simple one in EE, but it reduces the amount of the performance-critical saturation

performed in EE. In fact, this optimization exploits the key observation that EE’s second saturation

rule will have searched for such an equality already to guarantee that true ≡ false. With this

check, the only saturating rules from EE that are needed for this optimized equality embedding
(OEE) are ∀𝑥,𝑦. eq(𝑥,𝑦) ≡ true → 𝑥 ≡ 𝑦 to lift the embedded equality to e-graph equivalence and

∀𝑥,𝑦. eq(eq(𝑥,𝑦), false) ≡ false → 𝑥 ≡ 𝑦 to account for double negation elimination.

For the simple example of EE in Figure 2c, the same steps still apply to OEE, except that the

condition to detect a contradiction in Figure 2 is that eq(f(a), f(a)) ≡ false is in the e-graph.

Negated Equality Embedding. EE and OEE need to saturate as user code might add equalities of the

form eq(𝑡1, 𝑡2) ≡ true and the eq relation should faithfully represent equality. Instead, saturation

can be avoided by extending the e-graph term language with a symbol that is not accessible to

user code, ensuring that terms containing this symbol are added only when the embedding itself

introduces them. This technique exploits the observation that the embeddings that are ever added

are of the form eq(𝑡1, 𝑡2) ≡ false. In other words, we are only interested in embedding disequality.

To this end, in this negated equality embedding (NEE) approach, the symbol ne is used to reify the

disequality relation. Two terms 𝑡1 and 𝑡2 are unequal if the term ne(𝑡1, 𝑡2) exists in the e-graph.

Checking whether the given equalities and disequalities are consistent, i.e., that no contradiction

exists, amounts to checking whether ne(𝑡, 𝑡) is contained in the e-graph for any term 𝑡 .

Figure 3a shows the e-graph in Figure 1a after disequating f(a) and f(b). Upon equating a and

b, we obtain the e-graph shown in Figure 3b. The state of the e-graph shows a contradiction as it

contains ne(a, a).
Note that ne only ever connects two e-classes or one e-class to itself in the case of a contradiction.

Hence, instead of storing ne e-nodes, we can directly encode the disequality relation as an edge

between two e-classes, which we describe next.

Disequality Edges. A more direct approach to supporting disequalities in e-graphs incorporates

disequality edges (DE) – originally called “forbid lists” – directly into the e-graph data structure [Nel-

son 1980]. DE are class-to-class edges that explicitly express that the two e-classes may not be

merged, i.e., that their members are unequal.

For example, when disequating f(a) and f(b) on the previously described e-graph of Figure 1a,

with DE, we obtain the one shown in Figure 4a. The e-graph encodes that f(a) ≠ f(b) by the DE

between the e-classes of f(a) and f(b). Upon equating a and b on Figure 4a we obtain the one

shown in Figure 4b. In this die-graph it is immediately possible to detect the contradiction, as the

e-graph contains a disequality self-loop (denoted by the dashed edge) on one of its e-classes.

Disequalities in theWild. Weobserve that common SMT solver implementations, like Z3 [deMoura

and Bjørner 2008] or cvc5 [Barbosa et al. 2022] use embeddings, whereas OpenSMT [Bruttomesso

et al. 2010] uses DE. We believe that embeddings are popular in SMT solvers because they make

it straightforward to integrate the solver for the theory with the underlying SAT solver. These
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Fig. 4. Disequality Edges in E-Graphs.

tools often treat the equality relation encoded by the e-graph to be the logical assignment that the

SAT solver outputs. Yet, current state-of-the-art high-performance e-graph libraries like egg do not

provide built-in support for disequalities in the form of DE. Encoding equalities manually using EE,

however, is possible of course. We elaborate on the design choices of SMT solvers in Section 6.

3 Formal Reasoning for Dis/Equality Graphs
In this section, we develop a formalization of e-graphs and extensions that support disequalities.

3.1 E-Graphs
E-graphs compactly represent a set of equalities among terms. Throughout this section, we use term
to refer to a tree of function applications. The function is a symbol chosen from a finite alphabet Σ.
Each function is given an arity specified by the 𝑎𝑟𝑖𝑡𝑦 : Σ → N function. We assume every function

application in a term respects the function’s arity. Formally, a term is drawn from the set 𝑇 =
⋃

𝑖 𝑇𝑖
where 𝑇0 = ∅ and 𝑇𝑖+1 =

⋃
𝑓 ∈Σ{𝑓 (𝑡1, · · · , 𝑡𝑛) : 𝑎𝑟𝑖𝑡𝑦 (𝑓 ) = 𝑛, 𝑡1 ∈ 𝑇𝑖 , . . . , 𝑡𝑛 ∈ 𝑇𝑖 }.

In Definition 3.1 we define e-graphs as a triple of e-classes, e-nodes, and node–class edges.

Definition 3.1. An e-graph 𝐺 is a triple (𝑉𝑐 ,𝑉𝑛, 𝐸) such that:

(1) a set of e-classes 𝑉𝑐 ⊆ 𝐶 , where 𝐶 is countably infinite,

(2) a set of e-nodes 𝑉𝑛 ⊆ ⋃
𝑓 ∈Σ{𝑓 } ×𝑉

𝑎𝑟𝑖𝑡𝑦 (𝑓 )
𝑐 ,

(3) a total function 𝐸 : 𝑉𝑛 → 𝑉𝑐 representing e-class membership edges.

In our definition, e-classes can be represented using any object chosen from a countably infinite

universe. This assumption is needed since adding terms to the e-graph results in adding each

subterm to a freshly created e-class, i.e., in the worse case, there are as many e-classes as there are

terms. Since terms are countably infinite, e-classes must be too. Moreover, we encode the edges as

a total function whose domain are e-nodes and whose codomain are e-classes since all e-nodes

must belong to one and only one e-class.

Notation. We use the 𝑠 meta-variable for any symbol, the 𝑎, 𝑏, 𝑐 meta-variables for symbols in

Σ with arity 0, and 𝑓 , 𝑓1, 𝑓2 for those with a strictly positive arity. Terms are denoted with 𝑡, 𝑡1, 𝑡2,

e-nodes with 𝑛, 𝑛1, 𝑛2, and e-classes with 𝑐, 𝑐1, 𝑐2. Instead of using the notation (𝑓 , 𝑐1, · · · , 𝑐𝑛) or (𝑎)
for terms as suggested by Definition 3.1, we will use the more intuitive notation 𝑓 (𝑐1, · · · , 𝑐𝑛) and
𝑎, respectively.

We use [𝑒1/𝑒2] to denote substitution that replaces 𝑒2 with 𝑒1, 𝜎 ranges over substitutions, and

𝑒𝜎 denotes the application of the substitution 𝜎 to the expression 𝑒 . If 𝐴 is a set of expressions,

𝐴𝜎 denotes the set of all expressions in 𝐴 applied to 𝜎 . If 𝑓 is a function, we use 𝑓 𝜎 to denote the

function that behaves as 𝑓 with its domain and codomain applied to 𝜎 .

We use [𝑓 (𝑥) ↦→ 𝑔(𝑥) : 𝑥 ∈ 𝐴] for the function with domain being the pre-image of 𝑓 (𝐴)
w.r.t. 𝑓 and mapping every 𝑓 (𝑥) to 𝑔(𝑥). When 𝐴 is a singleton set, we use [𝑓 (𝑥) ↦→ 𝑔(𝑥)]. We use

𝑓 ↓𝐴 to be the function 𝑓 with its domain restricted to 𝐴, i.e., we assume that 𝐴 is a subset of the
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domain of 𝑓. If 𝑓 and 𝑔 are functions with disjoint domains and codomains, we use the 𝑓 ∪ 𝑔 for

the function that acts like 𝑓 and 𝑔.

Moreover, for an equivalence relation ∼, we use the notation [𝑥]∼ for the canonical representative

of the equivalence class containing 𝑥 . Given a set of pairs E, we denote the reflexive, symmetric,

and transitive closure with E∗
, which is an equivalence relation.

3.1.1 Operations. We now formally define the operations on the e-graph based on the previous

concepts and definitions.

Lookup Term’s Class. The find operation finds the e-class of a term 𝑡 in an e-graph 𝑔, which we

abbreviate with 𝑔[𝑡]. The operation may fail with ⊥ as it may be given a term which was never

added to the e-graph. The find operation has the signature 𝐺 ×𝑇 → 𝑉𝑐 ∪ {⊥} and is defined as

follows:

Definition 3.2 (find).

𝑔[𝑡] =


𝐸 (𝑥) if 𝑡 = 𝑎 ∧ 𝑎𝑟𝑖𝑡𝑦 (𝑎) = 0 ∧ 𝑎 ∈ 𝑉𝑛

𝐸 (𝑓 (𝑔[𝑡1], . . . , 𝑔[𝑡𝑛])) if 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑛) ∧ 𝑓 (𝑔[𝑡1], . . . , 𝑔[𝑡𝑛])
⊥ otherwise

The term membership test 𝑡 ∈ 𝑔 can be defined to be 𝑔[𝑡] ≠ ⊥.

Add Terms. Adding a term to an e-graph requires flattening the term by adding all the subterms

first and replacing them with their classes in the parent term. The function’s signature is𝐺×𝑇 → 𝐺 ,

which we abbreviate with 𝑔 ∪ 𝑡 , and it is defined as follows:

Definition 3.3 (add).

𝑡 ∈ 𝑔

𝑔 ∪ 𝑡 = 𝑔

𝑠 ∈ Σ 𝑛 = 𝑎𝑟𝑖𝑡𝑦 (𝑠) 𝑠 (𝑡1, . . . , 𝑡𝑛) ∉ 𝑔

𝑔′ = 𝑔 ∪ 𝑡1 ∪ · · · ∪ 𝑡𝑛 = (𝑉 ′
𝑐 ,𝑉

′
𝑛 , 𝐸

′)
𝑐 ∉ 𝑉 ′

𝑐 𝑡 ′ = 𝑠 (𝑔′ [𝑡1], . . . , 𝑔′ [𝑡𝑛])
𝑔 ∪ 𝑠 (𝑡1, . . . , 𝑡𝑛) = (𝑉 ′

𝑐 ∪ {𝑐},𝑉 ′
𝑛 ∪ {𝑡 ′}, 𝐸′ ∪ [𝑡 ′ ↦→ 𝑐])

Observe that the second rule also covers constants of arity 0. Now we can state add’s correctness
lemma:

Lemma 3.4 (Terms are not forgotten after being added). Let 𝑔 be an e-graph and 𝑡0, . . . , 𝑡𝑛 be
a sequence of terms, then for every 𝑖 , 𝑡𝑖 ∈ 𝑔 ∪ 𝑡0 ∪ · · · ∪ 𝑡𝑛 .

Merge Classes. An equality is asserted by merging two e-classes. Therefore, when equating

two terms, they must first be added using add and later their classes can be merged using merge.
We abbreviate the merge function with 𝑔 ∪ {𝑐1 = 𝑐2} and, by abuse of notation, we also use the

abbreviation 𝑔 ∪ {𝑡1 = 𝑡2} for 𝑔′ ∪ {𝑔′ [𝑡1] = 𝑔′ [𝑡2]} where 𝑔′ = 𝑔 ∪ 𝑡1 ∪ 𝑡2. The signature of merge
is 𝐺 ×𝑉𝑐 ×𝑉𝑐 → 𝐺 and it is defined as follows:

Definition 3.5 (merge).

𝑔 ∪ {𝑐 = 𝑐} = 𝑔

𝑐1 ≠ 𝑐2 ∈ 𝑉𝑐 𝑉𝑐 = {𝑐1, . . . , 𝑐𝑘 } 𝜎 = [𝑐1/𝑐2]
𝑁 = {𝑛 ∈ 𝑉𝑛 : 𝑐2 ∈ 𝑛}

E = {(𝐸 (𝑛1), 𝐸 (𝑛2)) : ∀𝑛1, 𝑛2 ∈ 𝑉𝑛 . 𝑛1𝜎 = 𝑛2𝜎}∗
𝐸′ = 𝐸 ↓𝑉𝑛\𝑁 𝜎 ∪ [𝑛𝜎 ↦→ [𝐸 (𝑛)]E𝜎 : 𝑛 ∈ 𝑁 ]

𝑔0 = (codom 𝐸′, dom 𝐸′, 𝐸′) 𝑔𝑖 = 𝑔𝑖−1 ∪ {𝑐𝑖𝜎 = [𝑐𝑖 ]E𝜎}
(𝑉𝑐 ,𝑉𝑛, 𝐸) ∪ {𝑐1 = 𝑐2} = 𝑔𝑘
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The merge function is defined in two rules. The first states that equating identical classes does

not change the e-graph. The second merges the e-class 𝑐2 into the e-class 𝑐1 as follows. (1) On the

first line, merge fixes an ordering on the e-classes of the e-graph and creates the substitution 𝜎

that replaces 𝑐2 with 𝑐1. (2) On the second line, merge collects all the e-nodes in the e-graph that

refer to 𝑐2 into 𝑁 because 𝑐2 will be removed at the end of merging. (3) On the third line, merge

constructs the equivalence relation E of e-classes which informally either share e-nodes directly or

indirectly via other e-classes. This is needed because after fixing an e-node, it may be discovered

to belong in two different e-classes. To handle these cases, merge must recursively union such

e-classes. (4) On the fourth line, we define the edges of the new e-graph 𝐸′
in two parts. First, we

move all the e-nodes of 𝑐2 into 𝑐1. Second, we fix all the e-nodes collected in 𝑁 and map them to the

canonical e-class per E. However, as the canoncical may be 𝑐2, we must apply it to the substitution

𝜎 . (5) On the fifth line, we fold the equalities of all the e-classes with their canonical per E. The
fold builds on the initial e-graph whose e-nodes are the domain of 𝐸′

, e-classes are the codomain

of 𝐸′
, and edges are 𝐸′

. We use this initial graph, as opposed to the expected (𝑉𝑐 ,𝑉𝑛 \ 𝑁 ∪ 𝑁𝜎, 𝐸′)
definition, to remove all empty e-classes. (6) Finally, we define the merge to be the result of the

folding described earlier.

Finally, we state merge’s correctness lemma:

Lemma 3.6. Let 𝑔 be an e-graph and 𝑔′ = 𝑔 ∪ {𝑡1 = 𝑡2}, then 𝑔′ [𝑡1] = 𝑔′ [𝑡2].
3.1.2 E-Graph Correctness. With these functions defined on the e-graph, we can now postulate its

correctness, i.e., that it encodes an equivalence relation with congruence.

First, we define the equivalence relation induced by an e-graph as follows:

Definition 3.7 (E-graph equivalence relation). Let 𝑔 be an e-graph, then ∼𝑔 is the following relation:

𝑡 ∉ 𝑔

𝑡 ∼𝑔 𝑡

𝑡1 ∈ 𝑔 𝑡2 ∈ 𝑔 𝑔[𝑡1] = 𝑔[𝑡2]
𝑡1 ∼𝑔 𝑡2

As expected, the following lemma holds:

Lemma 3.8. ∼𝑔 is an equivalence relation.

Finally, we state in Theorem 3.10 that ∼𝑔 is also Σ-congruent, which we define as follows:

Definition 3.9. An equivalence relation ∼ is Σ-congruent when, for every 𝑡1 ∼ 𝑡 ′
1
, · · · , 𝑡𝑛 ∼ 𝑡 ′𝑛 holds

𝑓 (𝑡1, . . . , 𝑡𝑛) ∼ 𝑓 (𝑡 ′
1
, . . . , 𝑡 ′𝑛) for 𝑓 ∈ Σ and 𝑎𝑟𝑖𝑡𝑦 (𝑓 ) = 𝑛.

Theorem 3.10. Given a set of equalities of terms E = {𝑡1 = 𝑡 ′
1
, . . . , 𝑡𝑛 = 𝑡 ′𝑛} and the empty e-graph

𝑔∅ = (∅, ∅, ·), then ∼𝑔∅∪E is Σ-congruent.

In the following, we use our reasoning framework to establish that the equivalence relation

induced by an empty e-graph seeded with a set of equalities E is the expected one: It is neither too

big, e.g., equating terms that should not necessarily be equal, nor too small, e.g., not deriving the

equivalence of two terms in the reflexive, symmetric, transitive, and congruent closure of E.
We accomplish this result by showing that the expected relation implies the e-graph’s relation

and vice-versa. To that end, we define the usual partial-order over equivalence relations as follows:

Definition 3.11. Let ∼1 and ∼2 be two equivalence relations over the same set 𝑇, then ∼1⊑∼2 if for

every 𝑡 ∈ 𝑇 holds [𝑡]∼1
⊆ [𝑡]∼2

, i.e., when the equivalence class of every term 𝑡 w.r.t. ∼1 is a subset

of the equivalence class of 𝑡 w.r.t. ∼2.

To prove that one equivalence relation is less than the other, we can use the following lemma:

Lemma 3.12. ∼1⊑∼2 if and only if for every 𝑠, 𝑡 , 𝑠 ∼1 𝑡 implies 𝑠 ∼2 𝑡 .
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Lemma 3.13 states that the minimal element of equivalence relations is syntactic equality: the

equivalence relation with as many equivalence classes as terms, each class containing a single term.

To avoid notational confusion, instead of = we denote syntactic equality with ∅∗, the reflexive,
symmetric, and transitive closure of the empty set.

Lemma 3.13. For every equivalence relation ∼ holds ∅∗ ⊑∼.

With these lemmas, we can state the completeness theorem in Theorem 3.14:

Theorem 3.14. Let E be a set of equalities and 𝑔∅ = (∅, ∅, ·) be the empty e-graph. Let E★ be the
reflexive, symmetric, transitive, and Σ-congruent closure of E. Then, E★ ⊑∼𝑔∅∪E .

Theorem 3.15 is the soundness theorem that states that the equivalence relation induced from

an e-graph is the smallest congruent equivalence relation:

Theorem 3.15. Let E, 𝑔∅ , and E★ be as in Theorem 3.14. Let ∼ be a Σ-congruent equivalence relation
such that E★ ⊑∼, then ∼𝑔∅∪E ⊑ ∼.

The following corollary that combines both theorems with the antisymmetry of ⊑ easily follows.

Corollary 3.16. Let E, 𝑔∅ , and E★ be as in Theorem 3.14. Then, E★ =∼𝑔∅∪E .

3.2 E-Graphs with Embeddings
With disequalities, we assume that the e-graph will be seeded with an equality set E = {𝑡1 =

𝑡 ′
1
, · · · , 𝑡𝑛 = 𝑡 ′𝑛} and a disequality set D = {𝑡1 ≠ 𝑡 ′

1
, . . . , 𝑡𝑚 ≠ 𝑡 ′𝑚}.

3.2.1 Embedding Framework. Embeddings assumes that the following special symbols exist in the

alphabet Σ: 𝑒𝑞 with 𝑎𝑟𝑖𝑡𝑦 (𝑒𝑞) = 2, ⊤ with 𝑎𝑟𝑖𝑡𝑦 (⊤) = 0 and ⊥ with 𝑎𝑟𝑖𝑡𝑦 (⊥) = 0.

Adding support for disequalities amounts to treating D = {𝑡1 ≠ 𝑡 ′
1
, . . . , 𝑡𝑚 ≠ 𝑡 ′𝑚} as an additional

equality set E− = {𝑒𝑞(𝑡1, 𝑡 ′1) = ⊥, . . . , 𝑒𝑞(𝑡𝑚, 𝑡 ′𝑚) = ⊥} that the e-graph is seeded with.

The theorems and lemmas from the previous part must also be instantiated with E−
for the

results to hold true.

We do not formalize a full saturation engine, but describe a specialized approach for saturating

embeddings. First, the engine must guarantee that the semantics of the embedded equality match the

e-graph’s treatment of equality, i.e., if the embedded equality of two e-classes is true in e-graph, then

they must be merged. This is done by saturating the e-graph with ∀𝑡1, 𝑡2, 𝑒𝑞(𝑡1, 𝑡2) = ⊤ → 𝑡1 = 𝑡2.

Second, it must guarantee that 𝑒𝑞 is symmetric. Third, it must guarantee that 𝑒𝑞 is reflexive. Finally,

it must perform double negation elimination.

We define the core of the embedding saturation in the following definition:

Definition 3.17. The core of the embedding saturation is defined by the function 𝑠𝑒𝑚 : 𝐺 → 𝐺 as

stated below with the assumption that ⊤ and ⊥ are in the e-graph.

𝑠𝑒𝑚(𝑔) =



𝑠𝑒𝑚(𝑔 ∪ {𝑐1 = 𝑐2}) if 𝑐1 ≠ 𝑐2 ∧ 𝑒𝑞(𝑐1, 𝑐2) ∼𝑔 ⊤
𝑠𝑒𝑚(𝑔 ∪ {𝑒𝑞(𝑐2, 𝑐1) = ⊥}) if 𝑒𝑞(𝑐1, 𝑐2) ∼𝑔 ⊥ ∧ 𝑒𝑞(𝑐2, 𝑐1) ∉ 𝑔

𝑠𝑒𝑚(𝑔 ∪ {𝑒𝑞(𝑐, 𝑐) = ⊤}) if 𝑒𝑞(𝑐, 𝑐) ∉ 𝑔

𝑠𝑒𝑚(𝑔 ∪ {𝑐1 = 𝑐2}) if 𝑒𝑞(𝑐,⊥) ∼𝑔 ⊥ ∧ 𝑔[𝑒𝑞(𝑐1, 𝑐2)] = 𝑐

𝑔 otherwise

We can now state the correctness theorem of the embedding saturation:

Theorem 3.18. Let 𝑔∅ = (∅, ∅, ·) be the empty e-graph, E be a set of equalities, and D be a set of
disequalities. Let E− be the translation of D into equality embeddings. Let 𝑔′ = 𝑠𝑒𝑚(𝑔∅ ∪ {⊤,⊥} ∪
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E ∪ E−). Then, for all e-classes 𝑐1, 𝑐2 of 𝑔′, holds 𝑒𝑞(𝑐1, 𝑐2) ∼𝑔′ ⊤ if and only if 𝑐1 = 𝑐2. And, for all
e-classes 𝑐1, 𝑐2 of 𝑔′, if 𝑒𝑞(𝑐1, 𝑐2) ∼𝑔′ ⊥ then 𝑒𝑞(𝑐2, 𝑐1) ∼𝑔′ ⊥.

Moreover we can state the following cost claim of equality embedding:

Theorem 3.19. Let 𝑔∅ = (∅, ∅, ·) be the empty e-graph, E andD be a set of equalities and disequalities
respectively. Let E− be the embedding ofD. Let (𝑉𝑐 ,𝑉𝑛, 𝐸) = 𝑠𝑒𝑚(𝑔∅ ∪ {⊤,⊥}∪E) and (𝑉 ′

𝑐 ,𝑉
′
𝑛 , 𝐸

′) =
𝑠𝑒𝑚((𝑉𝑐 ,𝑉𝑛, 𝐸) ∪ E−). Then, |𝑉 ′

𝑐 | ≤ |𝑉𝑐 | and |𝑉𝑛 | + |𝑉𝑐 | ≤ |𝑉 ′
𝑛 | ≤ |𝑉𝑛 | + |𝑉𝑐 | + |D|.

The theorem states that the number of e-classes never increases as any new term added to the

e-graph will be merged with an existing class. The number, however, may decrease, but only by

using the double negation elimination saturation rule. The other rule that may decrease the number

of e-classes is equality lifting in the first case of 𝑠𝑒𝑚 which, at first glance, may not apply as all

equalities are equated to ⊥ in E−
. However, such an equality may be embedded within a double

negation elimination that will trigger that first rule. For example the following disequality leads

the saturation engine to use all four saturation rules: 𝑒𝑞(𝑒𝑞(𝑐1, 𝑐2),⊥) ≠ ⊥.
The theorem also describes the new nodes introduced by 𝑠𝑒𝑚 to belong to one of two sets: those

embedding the reflexivity of 𝑒𝑞 for each e-class of which there is |𝑉𝑐 |, and those embedding the

commutativity of 𝑒𝑞 of which there may be up to |D|. Note that 𝑉𝑛 already contains a copy of

D and thus the upper bound must add only a second commutated copy. The upper bound on 𝑉𝑛
is tight in the case when D does not include the symmetric and reflexive version of any of its

disequalities, while the lower bound is tight when D is empty.

These bounds also hint at the runtime cost of saturation since each call performs a single merge.

Thus, it follows that embedding saturation performs up to |𝑉𝑐 | + |D| merges.

3.2.2 Equality Embedding (EE). The use of equality embedding is to find contradictions, i.e., when

⊤ ∼𝑔 ⊥. This is the case when an equality of the shape 𝑒𝑞(𝑐, 𝑐) = ⊥ is discovered.

This hints at a potential improvement, particularly to the third case in the definition of 𝑠𝑒𝑚,

where the reflexive property of 𝑒𝑞 can be embedded for 𝑐 when 𝑐 occurs in a disequality embedding.

We define the optimization:

Definition 3.20. The optimized core of the embedding saturation is defined by the function 𝑠𝑒𝑚𝐸𝐸 :

𝐺 → 𝐺 as stated below with the assumption that ⊤ and ⊥ are in the graph.

𝑠𝑒𝑚𝐸𝐸 (𝑔) =



𝑠𝑒𝑚𝐸𝐸 (𝑔 ∪ {𝑐1 = 𝑐2}) if 𝑐1 ≠ 𝑐2 ∧ 𝑒𝑞(𝑐1, 𝑐2) ∼𝑔 ⊤
𝑠𝑒𝑚𝐸𝐸 (𝑔 ∪ {𝑒𝑞(𝑐2, 𝑐1) = ⊥}) if 𝑒𝑞(𝑐1, 𝑐2) ∼𝑔 ⊥ ∧ 𝑒𝑞(𝑐2, 𝑐1) ∉ 𝑔

𝑠𝑒𝑚𝐸𝐸 (𝑔 ∪ {𝑒𝑞(𝑐, 𝑐) = ⊤}) if 𝑒𝑞(𝑐, 𝑐) ∉ 𝑔 ∧ ∃𝑐′, 𝑒𝑞(𝑐, 𝑐′) ∼𝑔 ⊥ ∨ 𝑒𝑞(𝑐′, 𝑐) ∼𝑔 ⊥
𝑠𝑒𝑚𝐸𝐸 (𝑔 ∪ {𝑐1 = 𝑐2}) if 𝑒𝑞(𝑐,⊥) ∼𝑔 ⊥ ∧ 𝑔[𝑒𝑞(𝑐1, 𝑐2)] = 𝑐

𝑔 otherwise

The cost improvement of this optimization is reflected in the following adaptation of the cost

claim:

Theorem 3.21. Let 𝑔∅ = (∅, ∅, ·) be the empty e-graph, E andD be a set of equalities and disequalities
respectively. Let E− be the embedding ofD. Let (𝑉𝑐 ,𝑉𝑛, 𝐸) = 𝑠𝑒𝑚𝐸𝐸 (𝑔∅∪{⊤,⊥}∪E) and (𝑉 ′

𝑐 ,𝑉
′
𝑛 , 𝐸

′) =
𝑠𝑒𝑚𝐸𝐸 ((𝑉𝑐 ,𝑉𝑛, 𝐸) ∪ E−). Then, |𝑉 ′

𝑐 | ≤ |𝑉𝑐 | and |𝑉𝑛 | +min( |𝑉𝑐 |, |D|) ≤ |𝑉 ′
𝑛 | ≤ |𝑉𝑛 | +min( |𝑉𝑐 |, |D|) +

|D|.

It follows as a corollary that, when D = ∅, equality embedding has no cost on the e-graph.

Finally, we state the correctness theorem of equality embedding:
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Theorem 3.22. Let 𝑔∅ = (∅, ∅, ·) be the empty e-graph, E andD be a set of equalities and disequalities
respectively. Let E− be the embedding ofD. LetD𝑠 be the symmetric closure ofD. Let 𝑔 = 𝑠𝑒𝑚𝐸𝐸 (𝑔∅∪
{⊤,⊥} ∪ E ∪ E−). Then, E★ ∩ D𝑠 ≠ ∅ if and only if ⊤ ∼𝑔 ⊥.
3.2.3 Optimized Embedding Framework (OEE). The main observation for the optimization offered

by OEE is that a contradiction can be found while performing equality saturation: Instead of

guaranteeing that ⊤ ∼𝑔 ⊥, saturation can stop when it first encounters 𝑒𝑞(𝑐, 𝑐) ∼𝑔 ⊥.
Definition 3.23. The equality embedding saturation for OEE is defined as follows:

𝑠𝑒𝑚𝑂𝐸𝐸 (𝑔) =


𝑠𝑒𝑚𝑂𝐸𝐸 (𝑔 ∪ {𝑐1 = 𝑐2}) if 𝑐1 ≠ 𝑐2 ∧ 𝑒𝑞(𝑐1, 𝑐2) ∼𝑔 ⊤ ∧ �𝑐, 𝑒𝑞(𝑐, 𝑐) ∼𝑔 ⊥
𝑠𝑒𝑚𝑂𝐸𝐸 (𝑔 ∪ {𝑐1 = 𝑐2}) if 𝑒𝑞(𝑐,⊥) ∼𝑔 ⊥ ∧ 𝑔[𝑒𝑞(𝑐1, 𝑐2)] = 𝑐

𝑔 otherwise

There are two modifications compared to Definition 3.20: The saturation rules that add reflexive

and symmetric equalities are removed and an additional guard is added that guarantees that, as

soon as a contradiction – in its new form – is found, the saturation is done.

As we modified the check for contradiction, the correctness theorem must be restated as follows:

Theorem 3.24. Let 𝑔∅ = (∅, ∅, ·) be the empty e-graph, E andD be a set of equalities and disequalities
respectively. Let E− be the embedding ofD. LetD𝑠 be the symmetric closure ofD. Let𝑔 = 𝑠𝑒𝑚𝑂𝐸𝐸 (𝑔∅∪
{⊤,⊥} ∪ E ∪ E−). Then, E★ ∩ D𝑠 ≠ ∅ if and only if there exists an e-class 𝑐 in the e-graph such that
𝑒𝑞(𝑐, 𝑐) ∼𝑔 ⊥.

The bounds on the cost theorem are improved by the fact that reflexive and symmetric terms

are not added anymore. In fact, the additional guard does not contribute an improvement as in the

worse-case scenario – when no contradiction exists – the guard is always satisfied.

Theorem 3.25. Let 𝑔∅ = (∅, ∅, ·) be the empty e-graph, E and D be a set of equalities and disequal-
ities respectively. Let E− be the embedding of D. Let (𝑉𝑐 ,𝑉𝑛, 𝐸) = 𝑠𝑒𝑚𝑂𝐸𝐸 (𝑔∅ ∪ {⊤,⊥} ∪ E) and
(𝑉 ′

𝑐 ,𝑉
′
𝑛 , 𝐸

′) = 𝑠𝑒𝑚𝑂𝐸𝐸 ((𝑉𝑐 ,𝑉𝑛, 𝐸) ∪ E−). Then, |𝑉 ′
𝑐 | ≤ |𝑉𝑐 | and |𝑉𝑛 | ≤ |𝑉 ′

𝑛 | ≤ |𝑉𝑛 | + |D|.
3.2.4 Negated Equality Embedding (NEE). The main observation of NEE is that in the absence

of user-provided equality embeddings, all embeddings in the e-graph will always have the form

𝑒𝑞(𝑐1, 𝑐2) = ⊥. Thus by embedding disequality instead, the existence of a disequality e-node of the

form 𝑛𝑒 (𝑐, 𝑐) is enough to signal a contradiction.

The result is drastic as no saturation is needed anymore. This greatly simplifies the statement of

the correctness theorem as follows.

Theorem 3.26. Let 𝑔∅ = (∅, ∅, ·) be the empty e-graph, E be a set of equalities, and D be a set of
disequalities. Let N≠ = {𝑛𝑒 (𝑡1, 𝑡2) : 𝑡1 ≠ 𝑡2 ∈ D} be the disequality embedding terms. Let D𝑠 be the
symmetric closure of D. Let 𝑔 = 𝑔∅ ∪N≠ ∪ E. Then, E★ ∩D𝑠 ≠ ∅ if and only if 𝑛𝑒 (𝑐, 𝑐) ∈ 𝑔 for some
e-class 𝑐 in 𝑔.

The cost theorem is equally simpler to state.

Theorem 3.27. Let 𝑔∅ = (∅, ∅, ·) be the empty e-graph, E be a set of equalities, and D be a set
of disequalities. Let N≠ = {𝑛𝑒 (𝑡1, 𝑡2) : 𝑡1 ≠ 𝑡2 ∈ D} be the disequality embedding e-nodes. Let
(𝑉𝑐 ,𝑉𝑛, 𝐸) = 𝑔∅ ∪ E, and (𝑉 ′

𝑐 ,𝑉
′
𝑛 , 𝐸

′) = (𝑉𝑐 ,𝑉𝑛, 𝐸) ∪ N≠. Then, |𝑉 ′
𝑐 | = |𝑉𝑐 | + |N≠ | and |𝑉𝑛 | ≤ |𝑉 ′

𝑛 | ≤
|𝑉𝑛 | + |N≠ |.
The additional cost in the number of e-classes results from the fact that the disequality e-nodes

are never stated to be equal to any other expression, i.e., each exists in its own e-class and this

e-class only has a single e-node: the disequality one.
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At first glance, the cost in the number of e-nodes may appear identical to the one in Theorem 3.25.

However, observe that the previous cost theorem does not provide a bound with respect to the first

saturation loop, but rather only with respect to the second. The additional e-classes introduced

in the first round is thus not accounted for. As no saturation is done in NEE, these additional

unaccounted ones no longer exist.

3.3 Die-Graphs: E-Graphs with Disequality Edges
A die-graph is an e-graph with an additional set storing the disequality edges. We do not represent

disequality edges using a function, but rather through a general relation since an e-class may be

unequal to multiple other e-classes. Moreover, since disequality enjoys symmetry and congruence,

i.e., if 𝑡1 = 𝑡2 and 𝑡3 ≠ 𝑡1, then 𝑡3 ≠ 𝑡2, the disequality relation is one among e-classes rather than

e-nodes.

Therefore, we define die-graphs formally as follows:

Definition 3.28. A die-graph is a quadruple (𝑉𝑐 ,𝑉𝑛, 𝐸, 𝐷) such that (𝑉𝑐 ,𝑉𝑛, 𝐸) is an e-graph and

𝐷 ⊆ 𝑉𝑐 ×𝑉𝑐 .

All operations defined earlier on e-graphs can be applied as-is to die-graphs by leaving 𝐷

unchanged, with the exception of merging.

To state that two e-classes are unequal, the die-graph adds an undirected edge between both

e-classes. The operation to do so is disequate : 𝐺 ×𝑉𝑐 ×𝑉𝑐 → 𝐺 and, per the notational convention

we built thus far, we use 𝑔 ∪ {𝑐1 ≠ 𝑐2} as an abbreviation for this function. Moreover, 𝑔 ∪ {𝑡1 ≠ 𝑡2}
is an abbreviation for 𝑔′ ∪ {𝑔′ [𝑡1] ≠ 𝑔′ [𝑡2]} where 𝑔′ = 𝑔 ∪ {𝑡1, 𝑡2}.

We formally define disequate as follows:

Definition 3.29. Let (𝑉𝑐 ,𝑉𝑛, 𝐸, 𝐷) be a die-graph, then
(𝑉𝑐 ,𝑉𝑛, 𝐸, 𝐷) ∪ {𝑐1 ≠ 𝑐2} = (𝑉𝑐 ,𝑉𝑛, 𝐸, 𝐷 ∪ {(𝑐1, 𝑐2), (𝑐2, 𝑐1)})

When the merge operation is given two different e-classes, it is guaranteed that one of them

will be removed from the e-graph. As the set of disequality edges must be a subset of the cartesian

product of e-classes, merge cannot leave 𝐷 as-is and it must be redefined. In Definition 3.30, we

recreate the merge definition from Definition 3.5 with the necessary changes highlighted in gray:

Definition 3.30 (merge).

𝑔 ∪ {𝑐 = 𝑐} = 𝑔

𝑐1 ≠ 𝑐2 ∈ 𝑉𝑐 𝑉𝑐 = {𝑐1, . . . , 𝑐𝑘 } 𝜎 = [𝑐1/𝑐2]
𝑁 = {𝑛 ∈ 𝑉𝑛 : 𝑐2 ∈ 𝑛}

E = {(𝐸 (𝑛1), 𝐸 (𝑛2)) : ∀𝑛1, 𝑛2 ∈ 𝑉𝑛 . 𝑛1𝜎 = 𝑛2𝜎}∗
𝐸′ = 𝐸 ↓𝑉𝑛\𝑁 𝜎 ∪ [𝑛𝜎 ↦→ [𝐸 (𝑛)]E𝜎 : 𝑛 ∈ 𝑁 ]

𝑔0 = (codom 𝐸′, dom 𝐸′, 𝐸′, 𝐷𝜎 ) 𝑔𝑖 = 𝑔𝑖−1 ∪ {𝑐𝑖𝜎 = [𝑐𝑖 ]E𝜎}
(𝑉𝑐 ,𝑉𝑛, 𝐸) ∪ {𝑐1 = 𝑐2} = 𝑔𝑘

Cost. The cost of the disequality edges follows from Definitions 3.29 and 3.30 and can be formu-

lated as follows:

Theorem 3.31. Let 𝑔∅ = (∅, ∅, ·) be the empty e-graph, 𝑔′∅ = (∅, ∅, ·, ∅) be the empty die-graph, E
be a set of equalities, and D be a set of disequalities. Let (𝑉𝑐 ,𝑉𝑛, 𝐸) = 𝑔∅ ∪ E = (𝑉𝑐 ,𝑉𝑛, 𝐸) and let
(𝑉 ′

𝑐 ,𝑉
′
𝑛 , 𝐸

′, 𝐷) = 𝑔′∅ ∪ E ∪ D. Then, 𝑉 ′
𝑐 = 𝑉𝑐 , 𝑉 ′

𝑛 = 𝑉𝑛 , 𝐸′ = 𝐸, and |D| ≤ |𝐷 | ≤ 2|D|.

The bound on the size of disequality edges is tight: |𝐷 | = |D| when D is equal to its symmetric

closure and |𝐷 | = 2 · |D| when no disequality is present in its symmetric form.

Finally we can prove the correctness theorem of the die-graph:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 77. Publication date: January 2025.



77:14 George Zakhour, Pascal Weisenburger, Jahrim Gabriele Cesario, and Guido Salvaneschi

Theorem 3.32. Let 𝑔∅ = (∅, ∅, ·, ∅) be the empty die-graph, E be a set of equalities, and D be a set
of disequalities. Let (𝑉𝑐 ,𝑉𝑛, 𝐸, 𝐷) = 𝑔∅ ∪ E ∪ D. Let E★ be the reflexive, symmetric, transitive, and
Σ-congruent closure of E and let D𝑠 be the symmetric closure of D. Then, E★ ∩ D𝑠 ≠ ∅ if and only if
there exists 𝑐 ∈ 𝑉𝑐 such that (𝑐, 𝑐) ∈ D.

3.3.1 Comparison of Embeddings and Disequality Edges. Theorems 3.21, 3.25, 3.27 and 3.31 give

grounds on which embeddings and disequality edges can be compared w.r.t. memory usage.

For all embedding techniques, we must choose between either increasing the number of e-nodes

(OEE) linearly in the size of disequalities or increasing the number of e-classes (NEE) linearly

in the size of disequalities. Instead, with disequality edges, the number of e-nodes and e-classes

remain constant at the cost of storing separately a pair of e-classes for each disequality. Therefore,

disequality edges perform better memory-wise.

A similar argument can be made for an improved run time with disequality edges. For EE and

OEE, saturation must be done and takes an order of iterations linear to the number of disequalities.

While NEE does not perform saturation, and thus incurs no fundamental cost on the basic operations

of the e-graph, the cost is transferred to e-matching and invariant maintenance where the set of

e-classes and e-nodes are searched.

4 Implementation
We implement DieGraph as an extension of the egg Rust library [Willsey et al. 2021], which

implements e-graphs as follows: E-graphs are defined in the EGraph struct, which includes a vector

of e-classes classes. E-classes are defined in the EClass struct, which includes a unique identifier

id of type Id, a vector of e-class identifiers parents, and a vector of its e-node members nodes.

E-nodes are instances of the Language trait, which offers a symbol and an array of e-class arguments.

Notably, the EGraph contains a unionfind field that efficiently records the history of e-class

merges using a union-find data structure [Galler and Fisher 1964; Hopcroft and Ullman 1973]. With

this approach, egg avoids updating e-class identifiers in the e-graph operations that require to do

so. Instead, the update can be delayed to run on-demand using the find(id) method, which is

known to be constant amortized time [Tarjan 1975].

Adding the forbid List. Our implementation encodes disequality edges as “forbid lists” in e-

classes as proposed by Nelson [1980]. Thus, at the core of the implementation is a change to the

EClass struct1 that adds a forbid field which is a list of e-class identifiers Id, as shown in Listing 1.

Listing 1. Adding the forbid field to EClass.
1 pub struct EClass<L, D> {
2 // ...
3 /// The eclasses known to be unequal to this one.
4 pub forbid: Vec<Id>,
5 // ...
6 }

Moving forbid Lists After Unioning. When equating two terms, the e-class of one is removed

and all its children are moved to the e-class of the other. Analogously, all of the e-classes in the

forbid list of the former are moved to forbid list of the latter. In egg, the perform_union method

of the EGraph structure2 is responsible for performing the union. Line 7 of Listing 2 presents the

necessary addition to that function.

1
https://github.com/egraphs-good/egg/blob/3231b86/src/eclass.rs

2
https://github.com/egraphs-good/egg/blob/3231b86/src/egraph.rs
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Generally, all identifiers in every forbid list must be updated since unioning removes e-classes.

This update is expensive: At best, it is on the order of the size of the forbid list and, at worst, on the

order of the number of e-classes. However, thanks to the union-find in EGraph, we can avoid this

update.

Adding Disequalities. To add a disequality to the e-graph, DieGraph finds the identifier of the

e-classes and pushes each in the forbid list of the other. DieGraph exposes the function disunion

to the user, which is defined in Listing 3.

Checking Disequalities. Listing 4 defines the function are_unequal for EGraph which can be used

to check if two terms are known to be unequal in DieGraph. It finds the e-class identifiers of both
arguments, then searches the smaller of the two forbid lists for the identifier of the e-class with the

larger forbid list.

Checking Consistency. To check for consistency, i.e., that no contradiction exists, DieGraph
implements the function is_consistent as shown in Listing 5. For each e-class, the function

checks that its identifier does not appear in its forbid list after fixing the identifiers using the

union-find as mentioned earlier.

Listing 2. Updating the forbid list.
1 fn perform_union(
2 // ...
3 ) -> bool {
4 // ...
5 concat_vecs(&mut class1.nodes, class2.nodes);
6 concat_vecs(&mut class1.parents, class2.parents);
7 concat_vecs(&mut class1.forbid, class2.forbid);
8 // ...
9 }

Listing 3. Adding a disequality.
1 pub fn disunion(&mut self,
2 id1: Id, id2: Id) {
3 let id1 = self.find(id1);
4 let id2 = self.find(id2);
5 self.classes.get_mut(&id1).unwrap()
6 .forbid.push(id2);
7 self.classes.get_mut(&id2).unwrap()
8 .forbid.push(id1);
9 }

Listing 4. Checking a disequality.
1 pub fn are_unequal(&self, id1: Id, id2: Id) -> bool {
2 let mut id1 = self.find(id1);
3 let mut id2 = self.find(id2);
4

5 if self.classes[&id1].forbid.len() >
6 self.classes[&id2].forbid.len() {
7 std::mem::swap(&mut id1, &mut id2);
8 }
9

10 self.classes[&id1].forbid.iter().any(|id| {
11 self.find(*id) == id2
12 })
13 }

Listing 5. Consistency checking.
1 pub fn is_consistent(&self) -> bool {
2 self.classes.values().all(|c| {
3 let cid = self.find(c.id);
4 c.forbid.iter().all(|id| {
5 self.find(*id) != cid;
6 })
7 })
8 }

5 Evaluation
In this section, we compare the three equality embedding approaches and disequality edges (as

discussed in Section 2.2).

First, we use automated theorem proving as a case study where disequalities arise during

pattern matching (Section 5.1). Second, we use SMT solving as a case study where disequalities

come from interpreting the result of the SAT solver (Section 5.2). Third, we perform a parameter

analysis on all equality embeddings and on disequality edges, showing the effect of the number of

asserted disequalities on the number of e-nodes and e-classes, and on the time to build the e-graph
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Fig. 5. Cumulative Comparison Between DE and EE for Inductive Prover Benchmarks.
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Fig. 6. Histogram for Ratios Between DE and EE for Inductive Prover Benchmarks.

(Section 5.3). Last, we profile the disequality handling in a widely used industry-strength SMT

solver (Section 5.4).

5.1 Inductive Theorem Prover Case Study
This case study is based on the inductive theorem prover Propel [Zakhour et al. 2024a]. Propel

focuses on a set of fundamental algebraic laws, such as commutativity, associativity, idempotence,

etc. We replaced Propel’s implementation of equalities, disequalities, and saturation with a die-

graph. In the experiments, we compare the DE (disequality edges) and the EE, OEE, and NEE

(embedding) approaches.

We used Propel’s 128 benchmark theorems [Zakhour et al. 2023], which contain the subset of the

TIP 2015 benchmarks for inductive theorem provers [Claessen et al. 2015] that checks the algebraic

properties supported by Propel.

Results. The cumulative charts in Figure 5 show the number of completed benchmarks (y-axis)

given a certain number of resources (x-axis). The resources that we consider are: the time (Figure 5a),

the number of e-classes (Figure 5b) and the number of e-nodes (Figure 5c). In these charts, the faster

the line grows the better the approach is as it completes more benchmarks with fewer resources.

The results show that, in all metrics, disequality edges outperform the embeddings.

The histograms in Figure 6 show the improvements and regressions of DE over the other

approaches (NEE, OEE and EE) w.r.t. a certain cost. In particular, they represent the number of

benchmarks (y-axis) for a certain range of improvement/regression (x-axis). In these charts, one

approach is better than another when the bars before one are few and small while those after one

are many and high.
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Fig. 7. Cumulative Comparison Between DE and EE for SMT Benchmarks.
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Fig. 8. Histogram for Ratios Between DE and EE for SMT Benchmarks.

The results show that in the vast majority of cases, DE exhibits slight to substantial improvements

over all embeddings. The outliers are benchmarks which require a small amount of e-nodes during

proof search.

5.2 SMT Case Study
For this case study we implemented an SMT solver for the EUF (Equality and Uninterpreted Func-

tions) theory. Its backend uses MiniSat [Eén and Sörensson 2003] for solving boolean propositions

and an e-graph for handling EUF propositions. The e-graph implementation can be swapped to use

egg or our implementation as described in Section 4.

Our implementation does not aim to be competitive. In particular, we do not implement fully-

fledged equality saturation since it is not strictly necessary to explore disequalities in e-graphs.

Instead, it is crucial that the variants of the solver are identical in all regards but their treatment of

disequality, so that we can accurately compare the different approaches on the same data.

We run our solver on the well-known SMT-LIB benchmark [Barrett et al. 2015] for EUF, which

amounts to a total of 7 590 benchmark files. We use a timeout of five seconds for every benchmark

which is enough to report on 6 441 of the benchmarks.

Results. Similarly to the inductive prover case study (Section 5.1), the cumulative charts in Figure 7

show the number of completed benchmarks (y-axis) given a certain number of resources (x-axis).

The results are consistent across all resources and show that DE costs less than NEE, which costs

less than OEE, which costs less than EE.

The histograms in Figure 8 show the improvements (greater than one on the x-axis) or regressions

(less than one on the x-axis) of DE over the other approaches (NEE, OEE and EE) w.r.t. a certain cost.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 77. Publication date: January 2025.



77:18 George Zakhour, Pascal Weisenburger, Jahrim Gabriele Cesario, and Guido Salvaneschi

0K 2K 4K 6K 8K 10K

10

15

20

25

30

Number of Disequalities

Ti
m
e
(s
)

DE

NEE

OEE

EE

(a) Time.

0K 2K 4K 6K 8K 10K

1 360K

1 365K

1 370K

1 375K

Number of Disequalities
C
la
ss
es

(b) Classes.

0K 2K 4K 6K 8K 10K

1 460K

1 480K

1 500K

Number of Disequalities

N
od

es

(c) Nodes.

Fig. 9. Comparison Between DE and EE for Different Ratios of Disequalities.

The single high bar at one indicates that DE performs similar to an embedding approach for these

cases. Most cases, however, show modest to significant improvements. NEE performs better than

EE and OEE as it generates fewer e-nodes. However, it is still outperformed by DE. We attribute

this result to the higher overhead of maintaining the e-graph invariant that NEE suffers from.

Overall, our empirical results for SMT are in line with the results for the inductive prover and our

analytical results, suggesting that disequality edges substantially outperform equality embedding.

There are consistent improvements of DE over NEE, OEE, and EE in terms of the running time, the

number of e-classes, and the number of e-nodes across both SMT solving and inductive theorem

proving.

5.3 Parameter Analysis
We further perform a parameter analysis for all the equality embedding approaches and the

disequality edges, varying the number of asserted disequalities from 0 to 10 000 for synthetically

generated benchmarks.

For the disequality edge approach, we use our implementation as described in Section 4 and for

the embedding approaches we use egg.

We generate 110 K pairs of s-expressions with a maximum depth of 5. The first 100 K pairs are

asserted as equalities. The remaining 10 K pairs are disequality candidates, which are chosen to be

subexpressions of the first 100 K equalities. The atoms of the s-expressions range over the numbers

1 to 5 (inclusive) and over three functions, f, g, and h of arity 1, 2, and 3, respectively. An example

of such a pair is the following: (h 4 2 1) and (f (h (g 5 1)(f (h 2 4 3))(g 5 5))).

For each variant, we start with an empty e-graph in which we assert the equality of all 100 K pair

of expressions. As s-expressions treat the numerals 1, 2, 3, 4, and 5 as symbols and not integers, we

then assert the pairwise disequality of all the five numerals.

Figure 9a shows the full time required to populate the empty e-graphwith the first 100 K equalities

and the varying number of disequalities (x-axis), followed by saturation for EE and OEE and the

check for consistency. The graph shows clearly the cost of saturation to be around 3.5 seconds.

Moreover, it is also clear that EE and OE perform similarly, as do NEE and DE.

NEE, on the other hand, can be clearly distinguished in Figure 9b, which shows that it is the

only technique that shows an increase in its number of e-classes linearly with the number of

disequalities.

Figure 9c illustrates clearly the progressive improvement sketched in Section 2: OE optimizes

the number of nodes required for EE by removing a saturation rule, NEE does the same w.r.t. OE,

and DE removes the e-node encoding all together.
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(b) Z3 Disequality Time Ratio.

Fig. 10. Histogram for Z3 Running EUF Benchmarks.

These plots are consistent with Theorems 3.21, 3.25, 3.27 and 3.31, which state that the number

of classes is constant for EE, OEE, and DE but grows linearly for NEE. And the number of nodes

grows linearly for EE, OEE, and NEE but remains constant for DE.

5.4 Disequalities in Existing Tools
In this section, we evaluate the run time cost of e-matching in the e-graph, e-graph saturation and

– in particular – the treatment of disequality in real-world solvers. We are thus interested in the

following questions: (1) How much of the total runtime is spent manipulating the e-graph and

(2) how much of the total runtime is spent reasoning about disequalities.

To answer these questions, we compiled Z3 v4.13.0 with debug and instrumentation enabled. We

ran Z3 on the 7 590 SMT-LIB EUF benchmark [Barrett et al. 2015] with a five second timeout. The

generated profile for each benchmark contains the percentage of time spent in each function. We

manually inspected the 1 385 different functions that the solver spent more than 0.01 % of its time

in. We identified 205 functions that manipulate e-graphs, among which six handle disequalities.

In Figure 10a, we plot the number of benchmark files that spent a given percentage of its runtime

manipulating an e-graph. In Figure 10b, we plot the percentage of running time manipulating

disequalities. In the latter plot, we exclude the files that spent less than 5% of their time on

disequalities leaving 1 453 or 19 % of the benchmark files.

The average time spent manipulating an e-graph is 33.8 %, while the average time spent manip-

ulating disequalities is 4 % across all benchmarks and 10% across those spending more than 5%

of their time on disequalities. This indicates that Z3 might benefit from treating disequalities like

OpenSMT does and use DE instead of embedding.

The contributors of the e-graph implementations of Z3 and OpenSMT confirmed that the respec-

tive e-graphs were designed with a focus on correctly representing disequalities. Yet, so far there has

been no performance comparison between different approaches. We believe further investigation

is needed to fill this gap, for example, adapting Z3 to use DE would allow us to reach more decisive

results.

6 Discussion: Disequalities in State-of-the-Art SMT Solvers
During our work on DieGraph, we observed that industry-strength SMT solvers use different

approaches for representing disequalities: Z3 [de Moura and Bjørner 2008] and CVC5 [Barbosa

et al. 2022] use an embedding approach close to NEE, while OpenSMT [Bruttomesso et al. 2010]

uses DE. In this section we elaborate on the implementation choices of each of these tools.
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Z3. E-graphs in Z3 are defined in the euf::egraph class and its e-nodes are defined in the

euf::enode class. E-classes do not have their own representation as a class. Instead, they are

represented by their canonical e-node.

E-nodes in Z3 have a m_is_equality boolean flag that indicates whether the e-node embeds an

equality or not. Similar to EE and OEE, Z3maintains both l_true and l_false e-nodes, representing

truth or falsehood. When the EUF solver is alerted by the SAT solver that an e-node representing an

equality is false – by setting the e-node’s m_value to l_false – the new_diseq method is called

on the e-graph. If the SAT solver alerts the EUF solver that such an e-node is instead true, the

arguments of the embedded equality are merged in the e-graph. Crucially, these equality embedding

e-nodes are never merged with the e-nodes representing truth or falsehood, similar to NEE. Instead,

the m_value indicates whether the equality is true or not. Thus, Z3 embeds both equality and

disequality.

While propagating equalities, when two e-classes become equal, they are unioned in the e-graph

as expected, but their equality is also communicated back to the SAT solver. In particular, if both

sides of a disequality become equal, the SAT solver discovers the contradiction and halts the search

for a model with the unsat result.

cvc5. E-graphs in CVC5 are defined in the EqualityEngine class and its e-nodes are defined in

EqualityNode and identified with EqualityNodeId. Similar to Z3, e-classes are not represented by

their own class. Instead, the identifier of the canonical e-node is used.

A disequality is added by calling EqualityEngine::assertEquality with an AST-like node

representing an equality with negative polarity. Internally, this method merges the given node with

the e-node representing false.

While merging and propagating equalities, the method propagateTriggerTermDisequalities

of EqualityEngine is called. It loops over all the disequalities and checks if any of them have equal

arguments, i.e., violate equality’s reflexivity. If that is the case, propagation stops, merge returns

false, an inconsistency flag is raised, and thereafter the method consistent() returns false.

OpenSMT. As the previous two solvers, OpenSMT also does not define an e-class and represents

each e-class with its canonical e-node.

The Enode class uses the same implementation technique proposed by Nelson [1980] to encode

disequality edges by keeping a forbid list. Asserting a disequality between two e-nodes is done

via the assertNeq method of the Egraph, which adds each e-node to the forbid list of the other’s

root. The unmergable method of Egraph takes two e-nodes and checks if they cannot be merged

by traversing their forbid lists.

Rebuilding the e-graph invariants is done with the mergeLoop method of Egraph, which is the

method that finds contradictions if two unmergeable e-nodes are to be merged.

7 Related Work
E-graphs were introduced as a data structure for reasoning about program equivalence [Nelson

1980]. Later, the possibility of compactly representing program spaces has led to an increasing

interest in the use of e-graphs for program optimization [Bytecode Alliance 2016; Joshi et al. 2002].

E-graphs address two fundamental problems: the construction of the program space, and retriev-

ing elements from such space. We discuss the operations related to these problems in Section 3.1.1.

The key insight of Tate et al. [2009] is the use of equational, monotone rewrites (equality saturation)

for building the program space. Based on this insight, equality saturation has been used successfully

for program manipulation. Some noticeable applications in program optimization include tensor

graphs [Yang et al. 2021], vectorization for signal processors [VanHattum et al. 2021], linear algebra

optimization [Wang et al. 2020], and improved accuracy for floating point expressions [Panchekha
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et al. 2015]. In program synthesis, e-graphs have been used to synthesize CAD models [Nandi et al.

2020] and for library learning, that is extracting common structure from a corpus of programs into

reusable library functions [Cao et al. 2023].

The egg library [Willsey et al. 2021] is a Rust implementation of e-graphs. It introduces e-class

analyses, which allow simple semantic analyses over e-graphs, overcoming the issue that sound

rewrite rules are difficult to define in a purely syntactic way. Subsequent work [Zhang et al. 2023]

further improved expressivity by allowing rules to be defined compositionally.

While the key problem solved by e-graphs is construction and retrieving, several authors studied

the related proof problem which is about not only showing that two terms are equivalent but also

exhibiting a proof that they are [Flatt et al. 2022; Nieuwenhuis and Oliveras 2005].

E-Graph Extensions. While, in this paper, we studied an extended model of e-graphs with direct

support for disequalities, other researchers have augmented e-graphs with additional features,

which we discuss next. Program Expression Graphs (PEGs) have been applied in the context of

compiler optimizations [Tate et al. 2009]. The resulting data structure, an E-PEG includes operator

nodes and built-in nodes for representing conditionals and loops as well as dataflow edges that

specify where operator nodes get their arguments from, and groups together PEG nodes that are

equal into equivalence classes.

More recently, relational e-matching [Zhang et al. 2022] reduces pattern matching over e-graphs

to relational queries – borrowing techniques from database query execution – to make the matching

procedure orders of magnitude faster and guarantee a complexity bound in the matching algorithm.

Yet, this method explicitly keeps both the e-graph and its relational representation. Later, Datalog

was combined with e-matching in egglog [Zhang et al. 2023], a fixpoint reasoning system that unifies

Datalog and equality saturation (EqSat). Egglog views the whole equality saturation algorithm

in a relational setting avoiding the synchronization between the two representations of e-graphs.

Egglog supports efficient incremental execution (through classical techniques of incremental view

maintenance in databases), cooperating analyses, and lattice-based reasoning line Datalog as well

as term rewriting, efficient congruence closure, and extraction of optimized terms like EqSat.

Equality-Constrained Tree Automata (ECTA) [Gissurarson et al. 2023; Koppel et al. 2022] are a

data structure that compactly represents a program spaces combining Version-Space Algebras [Lau

et al. 2000, 2003] and Finite Tree Automata [Adams and Might 2017] with “entanglement”, which

enables the choices of terms from e-classes to depend on choices done in other e-classes.

Colored e-graphs [Singher and Shachar 2024] are an extension to e-graphs, motivated by the

limits of e-graphs in handling of case splitting, e.g., when equality reasoning requires multiple in-

consistent assumptions to reach a single conclusion. Colored e-graphs represent all of the coarsened

congruence relations in a single structure, resulting in a memory-efficient equivalent of multiple

copies of an e-graph. Colored e-graphs maximize sharing between different cases and track which

conclusion is true under which assumption, resulting into multiple “color-coded” layers on top of

the original e-graph.

E-Graphs in Theorem Provers and SMT Solvers. Disequalities in SMTs and theorem provers natu-

rally arise from the treatment of negation in equality predicates in equality logic and by pattern

matching in term algebras [Echenim and Peltier 2020]. E-graphs have been successfully used for

equality reasoning in SMT solvers and theorem provers [Barbosa et al. 2022; de Moura and Bjørner

2008; Detlefs et al. 2005] for theories such as QF UF, linear algebra, and bit-vectors. E-matching has

been also adopted for quantifier instantiation [Niemetz et al. 2021], which is exploratory in nature

and requires efficient methods [de Moura and Bjørner 2007]. In SMT solvers, the SAT core handles

the boolean structure with the standard in CDCL(T) algorithms and the theory solver handles the

literals that appear in the formula.
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E-Graph Formalisms. De Moura [2008] applies formal treatment to e-graphs. Yet, their goal

was not to develop a formal reasoning framework for e-graphs. Hence, central aspects like the

congruence-closure algorithm are only described using natural language. Further, many of the

definitions are specific to SMT solving, while e-graphs have more general applications. Additionally,

the formalism leaves open how disequalities are represented, e.g., as an additional set on the side, as

the formalism suggests but which would be inefficient, or embedded like Z3 does, etc. Overall, the

formalism cannot be used out-of-the-box to prove theorems about the performance of disequality

edges vs. embedding approaches. Instead, the key of our formalism is to define the essential concepts

of e-graphs, such as e-nodes and e-classes.

The formalism by Nelson [1980] is very specific, essentially defining a concrete imperative

implementation. Instead, our formalism is a specification of the properties that an implementation

has to satisfy, yielding a more elegant formal model with simpler proofs. For example, Nelson’s

correctness argument is a two-pages long proof [Nelson 1980, p. 361–362] whereas our formalism

achieves the same result using a sequence of smaller lemmas, each with an elementary proof.

Further, their analysis covers correctness and time complexity but not space complexity, as our

formalism does.

8 Conclusion
In this paper, we have introduced a formal reasoning framework for e-graphs and the first formal-

ization of an extension to e-graphs that directly supports disequalities. Our formal treatment allows

us to prove the correctness of e-graphs and their disequality extension as well as an analytical

model of their performance. To demonstrate the practical benefits of this approach, we implemented

these ideas in DieGraph, based on the state-of-the-art egg Rust library. The evaluation in both

an SMT solver and an automated inductive theorem prover using standard benchmarks shows

that direct disequality support outperforms traditional widely-used disequality encoding methods.

Our study of profiling the Z3 SMT solver on standard benchmarks reveals that the solver spends a

non-negligible amount of time handling disequalities, suggesting it might benefit from disequality

edges.
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Artifact Availability
The artifact is available on Zenodo [Zakhour et al. 2024b]. It includes the implementation of Die-
Graph on top of the egg e-graphs library [Willsey et al. 2021], the modification of Propel [Zakhour

et al. 2023, 2024a] to use e-graphs with and without disequality edges, and our SMT solver for the

EUF theory. Moreover, all the benchmarks provided in Section 5 have dedicated scripts which can

be executed to verify our reported results. The included README file provides a guide on how to

reproduce and interpret the output of the benchmarks.
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