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ABSTRACT
Infrastructure as Code (IaC) programs are written in imperative
programming languages like Python or TypeScript while declar-
atively defining the target state of software deployments, which
the IaC solution then sets up, e.g., Pulumi and AWS CDK. Through
a repository mining study and analysis, we noticed that testing
IaC programs poses a dilemma: current techniques are either slow
and expensive or require prohibitively high development effort. To
solve this issue, we introduce Automated Configuration Testing
(ACT), enabling efficient testing with low development effort. ACT
automates the tedious aspects of unit testing IaC programs and
is extensible through a plugin system for test generators and ora-
cles. ACT is already effective with simple type-based plugins, and
leveraging existing giants, i.e., advanced test generation and oracle
techniques, in new plugins will further boost its effectiveness.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
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1 INTRODUCTION
Infrastructure provisioning and application deployment are increas-
ingly complex tasks that require automation to ensure organizations
can adopt their applications quickly and frequently to changing
requirements. Infrastructure as Code (IaC) [15] is the DevOps tech-
nology to automate deployments. With state-of-the-art declarative
IaC, developers only describe the target state of their deployment,
and the IaC solution achieves it by comparing the current infras-
tructure with the target state, deriving the required actions.
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With the recent IaC solutions Pulumi [17], AWS CDK [1], and
CDKTF [9], developers describe the target state of deployments in
IaC programs written in languages like Python, TypeScript, or Java,
as opposed to IaC scripts in JSON, YAML, or similar DSLs. Using
these advanced languages provides themwith powerful abstractions
to tackle the increasing complexity of their deployments—besides
familiarity and existing tooling. Despite only being available since
2018, the popularity of writing IaC programs is steadily increasing,
a trend which we expect to continue and further accelerate.

2 THE DILEMMA OF IAC PROGRAM TESTING
The reliability of IaC programs is vital because faulty deployments
can cause entire systems to malfunction and severe security vul-
nerabilities. As IaC programs use widely adopted programming
languages with mature ecosystems, a whole array of existing qual-
ity assurance techniques is directly applicable, especially for testing.
However, in a previous study on public IaC programs on GitHub,
we found that only 25% implement tests, dropping to 1% for Pu-
lumi [21]. We focus on Pulumi because it is the most expressive
solution for IaC programs. It is the only one allowing comput-
ing on output configuration of just deployed resources in the IaC
program—a powerful feature that, unfortunately, impedes testing.

To find out why developers do not write tests, we analyzed IaC
program testing techniques and identified a dilemma: integration
testing is very slow and resource-intensive for IaC programs. The
only reliable alternative is unit testing, which is quick. However,
due to the declarative nature of IaC programs, developing effective
unit tests requires tremendous effort. Developers must (1) mock all
resource definitions, oftenmost of the IaC program code. Themocks
must (2) validate the input configuration for each defined resource,
making themocks test oracles. Further, they have to (3) provide post-
deployment output configuration for each defined resource, which
is accessible in the remaining IaC program execution and, thus,
test input, making the mocks also test generators. Implementing
both good oracles and generators is tedious and replicates the logic
of the IaC program and the infrastructure, causing a lot of tightly
coupled testing code and slowing down future changes.

3 AUTOMATED CONFIGURATION TESTING
To solve the dilemma of IaC program testing, we envisioned Auto-
mated Configuration Testing (ACT) [19] inspired by property-based
testing [3] and fuzzing [23] techniques. ACT automates the tedious
work of implementing unit tests by automatically mocking all re-
source definitions. ACT leverages a plugin interface for the involved
aspects of the mocks, i.e., test generation and oracles, allowing the
reuse and exchange of various techniques (Figure 1). At this high de-
gree of automation, ACT efficiently tests the IaC program under test
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Figure 1: ACT components and their interaction.

by running it automatically in many configurations quickly. ACT
sends every resource input configuration to the generator plugin,
providing the resources’ output configuration to use in the rest of
the execution, and to all oracle plugins, verifying them. For general-
ized properties, developers can reuse plugins centrally maintained
by the community, enabling IaC program testing without writing
additional testing code. To additionally test for application-specific
properties, ACT implementations can provide efficient ways to
specialize oracles and generators, e.g., inline specification syntax.

As the first implementation of ACT targeting Pulumi TypeScript,
we present ProTI1 [20] based on the testing framework Jest [14]
and the property-based testing library fast-check [5]. As the first
generators and oracles, we provide type-based ACT plugins lever-
aging resource types from Pulumi package schemas. Even though
these plugins are simplistic and not very precise, our evaluation
with thousands of Pulumi TypeScript programs from GitHub and
artificial benchmarks shows that ACT is effective. A single ProTI
test run typically takes hundreds of milliseconds, allowing testing
IaC programs in hundreds to thousands of configurations quickly,
effectively finding bugs—even in corner cases.

4 STANDING ON THE SHOULDERS OF GIANTS
FOR ADVANCED IAC PROGRAM TESTING

ACT’s effectiveness depends on the generators and oracles. While
our simple type-based plugins are already useful, advanced tech-
niques promise a significant boost for the whole approach. At this
point, existing and novel advanced automated testing techniques
can be integrated into ProTI (ACT), effectively preventing mal-
functioning and insecure deployments. In initial experiments, we
already demonstrated that such integration is suitable and sim-
ple, where we implemented slim wrapper plugins integrating the
Daikon invariant detector [6] and the Radamsa fuzzer [10]. We now
outline ideas and approaches for future explorations.

So far, the test generation we have used is purely random and
uninformed of the program and previous test runs. For better test
input generation strategies, the automated testing literature pro-
posed various approaches, including techniques leveraging test
coverage and feedback information [8, 12, 16] as well as search-
and grammar-based techniques [13, 22].

The problem of finding good test oracles is not limited to IaC pro-
gram testing, either. Our current type-based oracles are imprecise
and cannot cover validation across properties or take other con-
texts into account. However, there are oracle strategies that should
be explored in this domain. Promising directions are finding IaC
properties for differential [7], metamorphic [2], intramorphic [18],
and learning-based testing approaches [4, 11].
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