
Unleashing the Giants: Enabling Advanced Testing for
Infrastructure as Code

Daniel Sokolowski
daniel.sokolowski@unisg.ch

University of St. Gallen
Switzerland

David Spielmann
david.spielmann@unisg.ch
University of St. Gallen

Switzerland

Guido Salvaneschi
guido.salvaneschi@unisg.ch
University of St. Gallen

Switzerland

ABSTRACT
Infrastructure as Code (IaC) programs are written in imperative
programming languages like Python or TypeScript while declar-
atively defining the target state of software deployments, which
the IaC solution then sets up, e.g., Pulumi and AWS CDK. Through
a repository mining study and analysis, we noticed that testing
IaC programs poses a dilemma: current techniques are either slow
and expensive or require prohibitively high development effort. To
solve this issue, we introduce Automated Configuration Testing
(ACT), enabling efficient testing with low development effort. ACT
automates the tedious aspects of unit testing IaC programs and
is extensible through a plugin system for test generators and ora-
cles. ACT is already effective with simple type-based plugins, and
leveraging existing giants, i.e., advanced test generation and oracle
techniques, in new plugins will further boost its effectiveness.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Software functional properties; Orchestration languages.

KEYWORDS
Property-based Testing, Fuzzing, Infrastructure as Code, DevOps

ACM Reference Format:
Daniel Sokolowski, David Spielmann, and Guido Salvaneschi. 2024. Unleash-
ing the Giants: Enabling Advanced Testing for Infrastructure as Code. In
2024 IEEE/ACM 46th International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion ’24), April 14–20, 2024, Lisbon, Portugal.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3639478.3643078

1 INTRODUCTION
Infrastructure provisioning and application deployment are increas-
ingly complex tasks that require automation to ensure organizations
can adopt their applications quickly and frequently to changing
requirements. Infrastructure as Code (IaC) [15] is the DevOps tech-
nology to automate deployments. With state-of-the-art declarative
IaC, developers only describe the target state of their deployment,
and the IaC solution achieves it by comparing the current infras-
tructure with the target state, deriving the required actions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04
https://doi.org/10.1145/3639478.3643078

With the recent IaC solutions Pulumi [17], AWS CDK [1], and
CDKTF [9], developers describe the target state of deployments in
IaC programs written in languages like Python, TypeScript, or Java,
as opposed to IaC scripts in JSON, YAML, or similar DSLs. Using
these advanced languages provides themwith powerful abstractions
to tackle the increasing complexity of their deployments—besides
familiarity and existing tooling. Despite only being available since
2018, the popularity of writing IaC programs is steadily increasing,
a trend which we expect to continue and further accelerate.

2 THE DILEMMA OF IAC PROGRAM TESTING
The reliability of IaC programs is vital because faulty deployments
can cause entire systems to malfunction and severe security vul-
nerabilities. As IaC programs use widely adopted programming
languages with mature ecosystems, a whole array of existing qual-
ity assurance techniques is directly applicable, especially for testing.
However, in a previous study on public IaC programs on GitHub,
we found that only 25% implement tests, dropping to 1% for Pu-
lumi [21]. We focus on Pulumi because it is the most expressive
solution for IaC programs. It is the only one allowing comput-
ing on output configuration of just deployed resources in the IaC
program—a powerful feature that, unfortunately, impedes testing.

To find out why developers do not write tests, we analyzed IaC
program testing techniques and identified a dilemma: integration
testing is very slow and resource-intensive for IaC programs. The
only reliable alternative is unit testing, which is quick. However,
due to the declarative nature of IaC programs, developing effective
unit tests requires tremendous effort. Developers must (1) mock all
resource definitions, oftenmost of the IaC program code. Themocks
must (2) validate the input configuration for each defined resource,
making themocks test oracles. Further, they have to (3) provide post-
deployment output configuration for each defined resource, which
is accessible in the remaining IaC program execution and, thus,
test input, making the mocks also test generators. Implementing
both good oracles and generators is tedious and replicates the logic
of the IaC program and the infrastructure, causing a lot of tightly
coupled testing code and slowing down future changes.

3 AUTOMATED CONFIGURATION TESTING
To solve the dilemma of IaC program testing, we envisioned Auto-
mated Configuration Testing (ACT) [19] inspired by property-based
testing [3] and fuzzing [23] techniques. ACT automates the tedious
work of implementing unit tests by automatically mocking all re-
source definitions. ACT leverages a plugin interface for the involved
aspects of the mocks, i.e., test generation and oracles, allowing the
reuse and exchange of various techniques (Figure 1). At this high de-
gree of automation, ACT efficiently tests the IaC program under test

https://orcid.org/0000-0003-2911-8304
https://orcid.org/0009-0004-1715-2059
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3639478.3643078
https://doi.org/10.1145/3639478.3643078


ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Daniel Sokolowski, David Spielmann, and Guido Salvaneschi

ACT
(ProTI)

IaC Program
under Test

Generator
Plugin

output configs.
Oracle
Plugins

input configs.

input configs.
output configs.

input configs.
test results

runs

Figure 1: ACT components and their interaction.

by running it automatically in many configurations quickly. ACT
sends every resource input configuration to the generator plugin,
providing the resources’ output configuration to use in the rest of
the execution, and to all oracle plugins, verifying them. For general-
ized properties, developers can reuse plugins centrally maintained
by the community, enabling IaC program testing without writing
additional testing code. To additionally test for application-specific
properties, ACT implementations can provide efficient ways to
specialize oracles and generators, e.g., inline specification syntax.

As the first implementation of ACT targeting Pulumi TypeScript,
we present ProTI1 [20] based on the testing framework Jest [14]
and the property-based testing library fast-check [5]. As the first
generators and oracles, we provide type-based ACT plugins lever-
aging resource types from Pulumi package schemas. Even though
these plugins are simplistic and not very precise, our evaluation
with thousands of Pulumi TypeScript programs from GitHub and
artificial benchmarks shows that ACT is effective. A single ProTI
test run typically takes hundreds of milliseconds, allowing testing
IaC programs in hundreds to thousands of configurations quickly,
effectively finding bugs—even in corner cases.

4 STANDING ON THE SHOULDERS OF GIANTS
FOR ADVANCED IAC PROGRAM TESTING

ACT’s effectiveness depends on the generators and oracles. While
our simple type-based plugins are already useful, advanced tech-
niques promise a significant boost for the whole approach. At this
point, existing and novel advanced automated testing techniques
can be integrated into ProTI (ACT), effectively preventing mal-
functioning and insecure deployments. In initial experiments, we
already demonstrated that such integration is suitable and sim-
ple, where we implemented slim wrapper plugins integrating the
Daikon invariant detector [6] and the Radamsa fuzzer [10]. We now
outline ideas and approaches for future explorations.

So far, the test generation we have used is purely random and
uninformed of the program and previous test runs. For better test
input generation strategies, the automated testing literature pro-
posed various approaches, including techniques leveraging test
coverage and feedback information [8, 12, 16] as well as search-
and grammar-based techniques [13, 22].

The problem of finding good test oracles is not limited to IaC pro-
gram testing, either. Our current type-based oracles are imprecise
and cannot cover validation across properties or take other con-
texts into account. However, there are oracle strategies that should
be explored in this domain. Promising directions are finding IaC
properties for differential [7], metamorphic [2], intramorphic [18],
and learning-based testing approaches [4, 11].

ACKNOWLEDGMENTS
This work has been co-funded by the Swiss National Science Foun-
dation (SNSF, No. 200429).

REFERENCES
[1] Amazon Web Services. [n. d.]. Cloud Development Framework: AWS Cloud

Development Kit. https://aws.amazon.com/cdk/. Accessed: 2024-01-15.
[2] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.

Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges
and Opportunities. ACM Comput. Surv. 51, 1 (2018), 4:1–4:27. https://doi.org/10.
1145/3143561

[3] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proc. of the 5th ACM SIGPLAN ICFP ’00,
Montreal, Canada, 2000. ACM, 268–279. https://doi.org/10.1145/351240.351266

[4] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri. 2022.
TOGA: ANeural Method for Test Oracle Generation. In Proc. of the 44th IEEE/ACM
ICSE 2022, Pittsburgh, PA, USA, 2022. ACM, 2130–2141. https://doi.org/10.1145/
3510003.3510141

[5] Nicolas Dubien. [n. d.]. fast-check: Official Documentation. https://fast-check.
dev/. Accessed: 2024-01-15.

[6] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon System for
Dynamic Detection of Likely Invariants. Sci. Comput. Program. 69, 1-3 (2007),
35–45. https://doi.org/10.1016/j.scico.2007.01.015

[7] Robert B. Evans and Alberto Savoia. 2007. Differential Testing: A New Approach
to Change Detection. In Proc. of the 6th ACM SIGSOFT ESEC/FSE, 2007, Dubrovnik,
Croatia, 2007. ACM, 549–552. https://doi.org/10.1145/1287624.1287707

[8] Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Benjamin C.
Pierce. 2021. Do Judge a Test by Its Cover - Combining Combinatorial and
Property-based Testing. In Proc. of the 30th ESOP, part of ETAPS,Luxembourg, 2021,
Vol. 12648. Springer, 264–291. https://doi.org/10.1007/978-3-030-72019-3_10

[9] HashiCorp. [n. d.]. CDK for Terraform. https://developer.hashicorp.com/
terraform/cdktf. Accessed: 2024-01-15.

[10] Aki Helin. [n. d.]. Radamsa: A General-purpose Fuzzer. https://gitlab.com/akihe/
radamsa. Accessed: 2024-01-15.

[11] Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand.
2022. Perfect Is the Enemy of Test Oracle. In Proc. of the 30th ACM ESEC/FSE,
Singapore, 2022. ACM, 70–81. https://doi.org/10.1145/3540250.3549086

[12] Dongge Liu, Gidon Ernst, Toby Murray, and Benjamin I. P. Rubinstein. 2020.
LEGION: Best-first Concolic Testing. In 35th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2020, Melbourne, Australia, September
21-25, 2020. IEEE, 54–65. https://doi.org/10.1145/3324884.3416629

[13] Andreas Löscher and Konstantinos Sagonas. 2017. Targeted Property-based
Testing. In Proc. of the 26th ACM SIGSOFT (ISSTA), Santa Barbara, CA, USA, 2017.
ACM, 46–56. https://doi.org/10.1145/3092703.3092711

[14] Meta Platforms. [n. d.]. Jest: Delightful JavaScript Testing. https://jestjs.io/.
Accessed: 2023-11-29.

[15] Kief Morris. 2021. Infrastructure as Code: Dynamic Systems for the Cloud Age
(second ed.). O’Reilly Media, Inc., Sebastopol, CA, USA.

[16] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-directed Random Test Generation. In Proc. of the 29th ICSE, Minneapolis,
MN, USA, 2007. IEEE, 75–84. https://doi.org/10.1109/ICSE.2007.37

[17] Pulumi. [n. d.]. Pulumi: Infrastructure as Code in Any Programming Language.
https://github.com/pulumi/pulumi. Accessed: 2024-01-15.

[18] Manuel Rigger and Zhendong Su. 2022. Intramorphic Testing: A New Approach
to the Test Oracle Problem. In Proc. of the 2022 ACM SIGPLAN Onward!, Auckland,
New Zealand, 2022, Christophe Scholliers and Jeremy Singer (Eds.). ACM, 128–136.
https://doi.org/10.1145/3563835.3567662

[19] Daniel Sokolowski and Guido Salvaneschi. 2023. Towards Reliable Infrastructure
as Code. In Companion Proc. of the 20th ICSA, L’Aquila, Italy, 2023. IEEE, 318–321.
https://doi.org/10.1109/ICSA-C57050.2023.00072

[20] Daniel Sokolowski, David Spielmann, and Guido Salvaneschi. 2023. ProTI: Au-
tomated Unit Testing of Pulumi TypeScript Infrastructure as Code Programs.
https://doi.org/10.5281/zenodo.10028479

[21] Daniel Sokolowski, David Spielmann, and Guido Salvaneschi. 2024. The PIPr
Dataset of Public Infrastructure as Code Programs. In Accepted at IEEE/ACM MSR.
Accepted.

[22] Dominic Steinhöfel and Andreas Zeller. 2022. Input Invariants. In Proc. of the
30th ACM ESEC/FSE, Singapore, 2022. ACM, 583–594. https://doi.org/10.1145/
3540250.3549139

[23] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2023. Fuzzing: Breaking Things with Random Inputs. https://www.
fuzzingbook.org/html/Fuzzer.html. Accessed: 2023-11-30.

1https://proti-iac.github.io

https://aws.amazon.com/cdk/
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3143561
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://fast-check.dev/
https://fast-check.dev/
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/1287624.1287707
https://doi.org/10.1007/978-3-030-72019-3_10
https://developer.hashicorp.com/terraform/cdktf
https://developer.hashicorp.com/terraform/cdktf
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://doi.org/10.1145/3540250.3549086
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1145/3092703.3092711
https://jestjs.io/
https://doi.org/10.1109/ICSE.2007.37
https://github.com/pulumi/pulumi
https://doi.org/10.1145/3563835.3567662
https://doi.org/10.1109/ICSA-C57050.2023.00072
https://doi.org/10.5281/zenodo.10028479
https://doi.org/10.1145/3540250.3549139
https://doi.org/10.1145/3540250.3549139
https://www.fuzzingbook.org/html/Fuzzer.html
https://www.fuzzingbook.org/html/Fuzzer.html
https://proti-iac.github.io

	Abstract
	1 Introduction
	2 The Dilemma of IaC Program Testing
	3 Automated Configuration Testing
	4 Standing on the Shoulders of Giants for Advanced IaC Program Testing
	Acknowledgments
	References

