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ABSTRACT
Generative Artificial Intelligence (GenAI) is being adopted for a
number of Software Engineering activities, mostly centering around
coding, such as code generation, code comprehension, code reviews,
test generation, and bug fixing. Other phases in the Software Engi-
neering process have been less explored. In this paper, we argue that
more investigation is needed on the support that GenAI can provide
to the design, and operation of software systems, i.e., a number of
crucial activities, beyond coding, that are necessary to successfully
deliver and maintain software services. These include reasoning
about architectural choices and dealing with third-party platforms.

We discuss crucial aspects of AI for software systems. taking as a
use case Function as a Service (FaaS). We present several challenges,
including cold start delays, stateless functions, debugging complex-
ities, and vendor lock-in and explore the potential of GenAI tools
to mitigate FaaS challenges. Finally, we outline future research into
the application of GenAI tools for the development and deployment
of software systems.
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1 INTRODUCTION
Generative Artificial Intelligence (GenAI) is gaining significant at-
tention in software development. GenAI tools such as OpenAI’s
ChatGPT 1 and GitHub Copilot 2 are at the forefront of this revolu-
tion, offering developers suggestions and assisting them in generat-
ing code snippets. These tools have shown impressive speed gains
for many common developer tasks. The adoption of GenAI is ex-
pected to grow, with a Gartner report predicting that by 2026, more
1https://openai.com/chatgpt
2https://docs.github.com/en/copilot
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than 80% of enterprises will have used GenAI APIs or deployed
GenAI-Enabled Applications 3. While the use of AI for software
code has been explored in depth (e.g., code generation, compre-
hension, and fixing), comparatively less effort has been devoted
to the benefits of AI for software systems as a whole, i.e. including
architectural design, platforms and operation. We provide a first
exploration of this potential in the concrete context of Function
as a Service (FaaS) which has rapidly gained popularity over the
last years. In the FaaS model, programmers upload the code of one
or more functions to a cloud platform which respond to specific
trigger events, such as REST requests, file uploads, or database
events. Once the code is uploaded, the cloud provider takes on the
responsibility of deploying and managing the underlying resources.
This approach eliminates the need for over-provisioning to han-
dle peak resource demands, as resources automatically scale based
on actual usage. Consequently, developers are billed only for the
resources actively consumed by their applications.

Despite its several advantages, FaaS faces challenges that can
impact its development and usage. These challenges include cold
start delays, the stateless nature of functions, complexities in de-
bugging and monitoring, and perhaps most notably, vendor lock-
in [13, 20, 34, 42]. A variety of studies have tackled these issues
using different methodologies and frameworks, with the goal of im-
proving FaaS performance and easing the development process for
FaaS developers [7, 25]. These solutions involve a wide range of ap-
proaches, from pre-warming and scheduling techniques [26, 43, 44]
to the implementation of stateful functions [2, 3, 45], and the provi-
sion of troubleshooting and monitoring services [5, 19, 31]. Addi-
tionally, some have proposed cloud-agnostic models to mitigate the
risk of vendor lock-in [32, 39, 56]. Nevertheless, challenges persist
in both deployment and utilization of FaaS solutions [6, 23, 52].

In this paper, we explore the potential of GenAI for software
systems, showing how it can address these challenges for FaaS. We
propose directions for future investigations into the application of
GenAI for the development and deployment of serverless applica-
tions. Our research indicates the versatility and potential of the
GenAI tools in various phases of serverless application development.
The capabilities of GenAI tools spans a wide range, from assisting
in the identification of the optimal architectural design tailored to
specific application requirements, to speeding up the implemen-
tation of core functionalities, to providing detailed instructions
for deployments that are aligned with the specifications of FaaS
platforms. We believe that developers, by leveraging GenAI, can
navigate the complexities of serverless application development.

3https://shorturl.at/qBIQU

https://orcid.org/0000-0001-9761-6319
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3664646.3664767
https://doi.org/10.1145/3664646.3664767
https://openai.com/chatgpt
https://docs.github.com/en/copilot
https://doi.org/10.1145/3664646.3664767
https://shorturl.at/qBIQU


AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Nafise Eskandani and Guido Salvaneschi

2 BACKGROUND AND RELATEDWORK
2.1 GenAI for Software Development
GenAI has seen significant evolution with the introduction of the
Prompt paradigm and Reinforcement Learning from Human Feed-
back (RLHF), in combination with pre-trained Large Language Mod-
els (LLMs) [16]. These techniques have enabled GenAI to transition
from task-specific to gradually adopting a more general pattern [15].
RLHF, in particular, has enabled GenAI to adapt to the specific needs
and preferences of individuals.

One of the most notable examples of GenAI tools – OpenAI’s
ChatGPT – is capable of generating code, crafting narratives, facili-
tating machine translation and conducting semantic analysis [55].
Derived from the generative pre-training transformer (GPT), Chat-
GPT belongs to the family of transformer-based LLMs [14, 49]. Users
engage with GenAI tool like ChatGPT via “prompts” [27] that (1)
provide the LLM with a context for its operation, and (2) guide its
generation of responses. The construction of these prompts is a
critical aspect of GenAI, as users can tailor them to achieve specific
outcomes.

In software development, GenAI has become increasingly pop-
ular, providing assistance to numerous managerial and technical
project activities. Tools like GitHub Copilot, for instance, leverage
the power of GenAI to automate and improve various aspects of
software development, from code generation to project manage-
ment [9]. These tools can learn from past data and developer feed-
back to make recommendations, further improving the efficiency
of software development processes [33].

An increasing number of research studies have focused on lever-
aging GenAI for software development tasks, including require-
ments engineering, design, and testing [9, 10, 36, 37, 41]. Researchers
have explored the use of GenAI tools for retrieving requirements
information [40, 60] and generating architectural designs [1, 17].
Additionally, GenAI has been investigated for code generation, pro-
gram repair, and code summarization [38, 46, 47, 57], as well as its
potential to improve software testing process [35]. The results of
these studies highlight the effectiveness of GenAI tools in software
development. Yet, despite such investigations, the use of GenAI
tools across different phases of software development remains a
relatively unexplored area [38].

2.2 FaaS in a Nutshell
The key feature of FaaS model is its ability to abstract away the
complexities of infrastructure management, allowing developers
to focus solely on writing and deploying code. This approach not
only facilitates autoscaling, but also reduces operational costs. Ap-
plications range from web and mobile backends to real-time data
processing, IoT, and even machine learning inference [11]. Its elas-
tic scalability makes it ideal for handling unpredictable workloads,
while its pay-as-you-go pricingmodel alignswell with cost-effective
resource allocation strategies. Developing a serverless application
involves several phases, that remain consistent across different FaaS
platforms, with differences in implementation. In the following, we
discuss some of the key phases.

Application Design: This phase involves identifying the re-
quirements and goals of the application. This includes understand-
ing the domain, defining the functionality, and outlining the user

experience. The architectural pattern of the application can then
be designed to integrate diverse services and functions into a cohe-
sive unit that fulfills these requirements. This architecture further
outlines the interconnections among these services and functions
to ensure the correct data flow within the application.

The stateless nature of serverless architecture poses challenges
in maintaining application state across invocations [4, 12]. This
often results in a dependency on external services for managing
state, introducing delays and complexity [48]. Therefore, selecting
an appropriate architectural pattern is essential to align with the
quality attributes specified by the application requirements.

Function Development: Following the architectural design,
the focus shifts to implementing the core functionality of the ap-
plication. This is where the actual programming takes place. Each
function is developed to execute a distinct task, adhering to a state-
less and event-driven paradigm. The event-driven paradigm of
FaaS combined with decentralized structure of serverless appli-
cations compound these challenges [24]. Particularly, managing
asynchronous events, preserving event sequence, and tracing data
flow across multiple functions and services become significantly
complicated, consequently increasing debugging and performance
optimization efforts [13, 42].

Environment and Resource Configuration: The next step is
defining the infrastructure requirements, such as databases, storage,
and event source mappings. These settings can be defined either
through the cloud console provided by the FaaS platform or via a
configuration file using a data serialization language such as JSON
or YAML – hence supporting version control and repeatability.

Managing dependencies for each function can be complex [53].
Functions may require different versions of the same library, lead-
ing to conflicts. Additionally, each FaaS platform offers unique
features and services, such as the maximum execution time for a
function, the number of concurrent executions, and the size of the
deployment package. These limits can constrain the design of the
application [59]. Migration to another provider becomes cumber-
some, involving code modifications and potential functionality loss
due to platform-specific features.

Application Deployment: This phase involves packaging the
functions and their dependencies, and uploading them to the FaaS
platform, which takes care of server management, scaling, and ca-
pacity planning, allowing the application to be event-responsive
and highly available. A well-known challenge of FaaS is cold start:
a function invocation incurs additional latency when the function
is not already loaded in memory [18]. The impact on the perfor-
mance can be significant, particularly for latency-sensitive applica-
tions [48]. Also, pricing structures and SLAs vary among platforms,
complicating cost estimation and performance optimization. The
cognitive overhead of navigating the documentation of the plat-
forms further exacerbates these challenges [13].

ApplicationMonitoring and Debugging: The final phase is to
set up monitoring and debugging mechanisms. Monitoring involves
tracking the performance of the application, including function in-
vocations, execution times, and error rates. This can be achieved
using the tools provided by the chosen FaaS platform. Debugging
and monitoring of serverless applications involves examining the
performance of the application, as well as log outputs for each func-
tion invocation to pinpoint the root cause of any issues. Given the
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distributed nature of serverless applications, traditional debugging
methods may not be effective, necessitating the use of specialized
serverless debugging tools and practices.

3 GENAI FOR SERVERLESS APPLICATIONS
3.1 Preliminary Experiment
Conducting thorough experiments is essential for evaluating the
effectiveness of GenAI tools in software system development. As an
initial step toward this goal, we outlined an experiment to assess the
impact of these tools on designing and deploying serverless appli-
cations. The experiment focuses on three scenarios, each designed
to address a common use cases of serverless applications.
• The first scenario is a web service handling requests from
clients and processing each in a serverless function.

• The second scenario is an online retail platformwith separate
endpoints for user authentication, product catalogmanagement,
order processing, and customer support.

• The third scenario focuses on an image processing applica-
tion, dynamically resizing uploaded images and storing pro-
cessed data in a database.
We created prompts for GPT4 in four formats: (1) plain text, (2)

structured text, (2) JSON configuration, and (4) code templates, and
requested deployment on Azure Functions.

Among other findings, we observed that the model selects an ap-
propriate architecture based on application requirements. However,
the choice of prompt format significantly impacts result correct-
ness and quality. For instance, plain text prompts generate accurate
design and code for basic web services, but struggle with more
complex scenarios. The granularity of the prompt also impacts the
outcome. For instance, a gradual approach tends to bemore effective
than providing all requirements at once. Additionally, the model
lacks emphasis on security best practices; it hard-codes service keys
in the suggested code. Such initial findings from a limited setup
necessitate further validation and exploration. In the following, we
propose potential research directions for these investigations.

3.2 Promising Solutions
GenAI models can leverage extensive domain knowledge enabling
them to execute tasks across a diverse array of fields [58]. In soft-
ware system development, this domain knowledge can help improv-
ing the development and deployment process by identifying the
appropriate architectural pattern, determining triggers and bind-
ings for serverless functions, as well as configuring the serverless
environment. Based on the preliminary results from Section 3.1
we discuss how AI can address some of the challenges associated
with FaaS in development phases mentioned in Section 2.2. Table 1
shows concrete examples of such mitigations.

Selection of Architectural Patterns: Popular GenAI models
have significant knowledge of architectural patterns, including the
strengths, weaknesses, and appropriate use cases for each pattern.
Such understanding enables GenAI tools to select the most suitable
pattern based on the specific requirements of the application. For
example, if an application requires heavy data processing, GenAI
may choose the Fan-out and Fan-in pattern which aims to efficiently
distribute and aggregate tasks. Furthermore, GenAI tools have the
ability to translate these patterns into actual serverless application

architectures. This involves defining the functions, events, and
resources of the application, and configuring their interactions
according to the chosen pattern.

Adapted definitions for platforms: LLMs used in popular
GenAI tools are trained on data that is publicly available from all
FaaS platforms and can generate platform-specific instructions and
code. This capability of GenAI is particularly beneficial in mitigat-
ing the cognitive overhead associated with the FaaS model. Cru-
cially, by generating instructions and code tailored to each platform,
GenAI can reduce the complexities and dependencies associated
with requirements of a specific vendor. Also, GenAI tools can enable
developers to rapidly transform the code and deployment instruc-
tions for a FaaS platform to another application deployment on a
different platform possibly with different requirements. This feature
is particularly useful in today’s diverse cloud environment, where
applications often need deployment across multiple platforms.

Smart Pre-warming: To mitigate the cold start delays of the
FaaS model, GenAI tools can predict the demand pattern of server-
less functions and pre-warm the function accordingly. Leveraging
machine learning algorithms, GenAI tools analyze historical usage
data and predict future demand patterns. This ensures that server-
less functions are pre-warmed and ready to execute as soon as they
are invoked. Furthermore, GenAI models are capable of continuous
learning and adaptation to changes in the usage pattern, ensuring
optimal function performance over time.

Enhanced Observability: GenAI models can predict bugs of
a serverless application and generate corrective measures. For in-
stance, they can create synthetic data that mirrors the behavior of
distributed functions, enabling developers to simulate and analyze
various scenarios without a live environment. This proactive ap-
proach allows for the early detection of anomalies, reducing the
time spent on debugging. Furthermore, GenAI can enhance moni-
toring by generating visualizations and reports based on collected
data, providing insights into the application’s performance. These
capabilities can significantly improve the process of serverless appli-
cation development and deployment. By automating the selection
and implementation of serverless patterns, GenAI can help devel-
opers create efficient and cost-effective serverless applications. Yet,
the effectiveness of GenAI ’s designs ultimately depends on its
understanding of the application requirements and its ability to
accurately map these requirements to the appropriate pattern.

4 OPEN RESEARCH DIRECTIONS
Prompt engineering is critical in GenAI models. The prompt – the
model’s input – can significantly influence the output. Prompt en-
gineering involves modifying both the structure and content of the
prompt [8]. Structural modifications include changing the prompt
length or the arrangement of instances in it. Content modifications
is about phrasing, the choice of illustrations, or the directives given.
Previous studies [28, 29, 50] indicate that the model’s behavior is
significantly influenced by the phrasing and sequence of examples.

Prompt formats for GenAI models, include plain text, code tem-
plates, and images. This flexibility allows a diverse range of ap-
plications and use-cases. As seen in our experiment (Section 3.1)
serverless applications can be specified in various ways: require-
ments can be articulated in text, with code templates provided
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Table 1: The potential of GenAI to address FaaS challenges in different development phases

Development Phase Challenge GenAI-based Mitigation

Application Design Stateless functions Optimal architectural pattern based on application requirements
Function Development Event-driven paradigm Code generation according to the chosen architectural pattern
Environment Configuration Vendor lock-in Configuration adaptation across divers FaaS platforms
Application Deployment Cold start Smart pre-warming by predicting demand patterns
Monitoring and Debugging Distributed functions Predicting issues, generating corrective measures, visualizations, and reports

for function implementations. Additionally, configuration for the
deployment environment can be supplied in JSON or YAML files.

Prompt Format vs Architectural Complexity: The impact
of the prompt format on the quality of the generated application
is an interesting ground for research. A crucial research question
is: “How does the prompt format interact with the complexity of
the architectural design for generating serverless applications?” For
instance, it may be more appropriate to provide text for developing
a simple web service with a single function. Yet, a complex data
processing application with several functions and external services
may benefit more from a combination of text and an image that is
conveying the architecture.

Architectural Details vsResult AccuracyThe level of detail in
a prompt can also influence the output. For example, prompts can be
used in two different ways for serverless applications. (1) They can
specify the requirements, asking the LLM to generate code for the
serverless function and instructions for deploying the application.
This approach enables a high degree of customization, tailoring the
generated code and instructions to the specific requirements in the
prompt. (2) Prompts can refer to a particular serverless architectural
pattern, requesting the LLM to generate code and instructions for
it. This is a more general method that relies on predefined patterns
rather than specific requirements and can be highly efficient for
common use cases, allowing rapid generation of functional code.

Investigating the relationship between the level of detail in a
prompt and the result can yield valuable insights. For instance,
efficient prompt patterns [54] for common use cases of the FaaS
model can be reused to generate applications for similar scenarios,
saving time and resources. The research question is: “Does referring
to services from a specific FaaS platform in the prompt influence the
accuracy of the generated application when the request is to deploy
the application to a different platform?” This question arises from
the observation that the context in the prompt may bias the gen-
eration towards the mentioned platform, potentially affecting the
correctness of a deployment on a different platform. The investi-
gation can involve a comparative study of application generation
with and without mentioning specific FaaS services, followed by
an evaluation of the success of deployment.

Prompt Decomposition vs Application Decomposition:
GenAI models have demonstrated the ability to perform more com-
plex reasoning tasks when provided with a sequence of reasoning
steps. This approach, known as Chains-of-Thought prompting [51],
illustrates the effect of breaking down a complex task into simpler
steps. This capability of GenAI models can be particularly use-
ful in the development of serverless applications, where complex
tasks need to be decomposed into serverless functions. A promising
line of research can investigate the optimal number, granularity,
and sequence of prompts for designing, developing, and deploying

serverless applications. One potential research question can be:
“How does prompt granularity affect the generated output for with
multi-function serverless applications?” This line of research can
also explore how different developers respond to prompts with
varying granularities, potentially leading to personalized prompt
recommendations for individual developer’s needs and preferences.

Innovation vs Reliability: A key aspect that affects the qual-
ity of GenAI models is “hallucination” [22]. This term is used to
describe situations where the AI produces content that is imag-
inative or fictional in nature. While this can sometimes lead to
creative and innovative outputs, it can also result in outputs that
are not grounded in reality or factual information. This is a common
concern in the field of AI, as it can impact the reliability and trust-
worthiness of the generated content. In serverless application devel-
opment, hallucination can have several implications. For example,
the model may suggest managed services that have been deprecated
or were never available by a serverless platform. Another example
can be adding non-existent or unnecessary requirements for the
application. The model may suggest implementing certain features
or functionalities that are not relevant to the application’s purpose
or the developer’s needs. Despite the extensive research [21, 30, 61]
conducted on harmonizing creativity with factual accuracy, the
challenge persists and requires further investigations. A potential
research question can be: “What are the impacts of hallucination on
serverless application development?”

Result Correctness vs Software Quality Attributes: Another
line of research can explore software quality attributes of the gen-
erated serverless applications. Software quality attributes are the
features and characteristics that affect a software’s ability to meet
its objectives. These attributes include performance efficiency, reli-
ability, usability, maintainability, portability, and security. Each of
these attributes contributes to the overall quality of the software,
and their importance can vary depending on the specific require-
ments of the software. For example, a research can explore: “How
does the serverless architectural pattern influence the performance
efficiency of the generated applications?”.

5 SUMMARY
AI support for software development has been largely studied for
activities related to coding the application logic. Less attention has
been devoted to the issues that emerge when engineering software
systems, including architecture trade offs, platforms, and opera-
tions. This paper provides a preliminary discussion and a roadmap
for adopting AI in engineering software systems, taking FaaS and
serverless application development as a use case and discussing the
challenge that emerge in this domain, such as FaaS architectural de-
sign, cold start delays, stateless functions, debugging complexities,
and vendor lock-in.
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