
The PIPr Dataset of Public Infrastructure as Code Programs
Daniel Sokolowski

daniel.sokolowski@unisg.ch
University of St. Gallen

Switzerland

David Spielmann
david.spielmann@unisg.ch
University of St. Gallen

Switzerland

Guido Salvaneschi
guido.salvaneschi@unisg.ch
University of St. Gallen

Switzerland

ABSTRACT
With Programming Languages Infrastructure as Code (PL-IaC),
developers implement IaC programs in popular imperative pro-
gramming languages like Python and Typescript. Such programs
generate the declarative target state of the deployment, i.e., they
describe what to set up, not how to set it up. Despite the popular-
ity of PL-IaC, which has grown more than ten times from 2020 to
2023, we know little about how developers apply it and how IaC
programs differ from other software. Such knowledge is essential
to effectively use existing software engineering techniques and
develop new ones for PL-IaC. To shed light on PL-IaC in practice,
we present PIPr, the first systematic PL-IaC dataset. PIPr is based
on 37 712 public IaC programs on GitHub from August 2022 and
includes initial analyses, assessing the programming languages,
testing techniques, and licenses of the IaC programs. Beyond the
metadata and analysis results of all IaC programs, PIPr contains
the code of all 15 504 IaC programs whose licenses permit redistri-
bution. PIPr sets the ground for future in-depth investigations on
PL-IaC in practice.

CCS CONCEPTS
• Software and its engineering → Architecture description
languages; Software configuration management and version
control systems; Cloud computing.

KEYWORDS
Infrastructure as Code, Pulumi, AWS CDK, CDKTF, Testing
ACM Reference Format:
Daniel Sokolowski, David Spielmann, and Guido Salvaneschi. 2024. The
PIPr Dataset of Public Infrastructure as Code Programs. In 21st International
Conference on Mining Software Repositories (MSR ’24), April 15–16, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3643991.3644888

1 INTRODUCTION
Infrastructure as Code (IaC) [22] solutions use machine-readable
code for software configuration and deployment. Configuration-
management-focused solutions, e.g., Ansible [38], Chef [28], and
Puppet [33], and cloud-provisioning-focused solutions, e.g., AWS
CloudFormation [3] and Terraform [16], have been developed. Typi-
cally, developers write IaC scripts in JSON and YAML configuration

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0587-8/24/04.
https://doi.org/10.1145/3643991.3644888

Listing 1: Example Pulumi IaC program in TypeScript and
Python deploying a static website on AWS S3.2

1.1 import * as aws from "@pulumi/aws"; import pulumi
1.2 import pulumi_aws as aws
1.3
1.4 const bucket = bucket = aws.s3.Bucket("bucket",
1.5 new aws.s3.Bucket("bucket", { website=aws.s3.BucketWebsiteArgs(
1.6 website: { index_document="index.html"
1.7 indexDocument: "index.html",)
1.8 })
1.9 });
1.10 new aws.s3.BucketObject("index", { aws.s3.BucketObject("index",
1.11 bucket: bucket, bucket=bucket,
1.12 content: content=
1.13 "<!DOCTYPE html>Hello world!", "<!DOCTYPE html>Hello world!",
1.14 key: "index.html", key="index.html",
1.15 contentType: "text/html", content_type="text/html"
1.16 });)
1.17
1.18 export const url = pulumi.export("url",
1.19 bucket.websiteEndpoint; bucket.website_endpoint)

languages, which is tedious for big and complex deployments and
has led to DSLs like HCL [15] and Bicep [21].

Instead of newDSLs, Programming Languages IaC (PL-IaC) lever-
age general-purpose programming languages like Python and Type-
Script to tackle the complexity of deployments.With PL-IaC, instead
of IaC scripts, developers write IaC programs using any available
(imperative) feature of the programming languages they already
know, and the PL-IaC solution ensures declerativity, i.e., developers
only express the intended target state, not how to achieve it. For
example, Listing 1 shows the deployment of a simple static web-
site on AWS S3 in Pulumi TypeScript and Python. Both versions
are simple imperative programs that define two resources in the
declarative target state: the bucket and the bucket object hosted
in it. PL-IaC is production-ready with Pulumi [31], AWS CDK [2],
and CDKTF [14], and its popularity is increasing. Pulumi reported
a ~10× growth to 150 000 end users from 2020 to 2023 [8, 9], and
the total annual downloads of all solutions’ core packages on NPM
grew by ~15× in this time.1

As IaC programs are very close to traditional software and use
the same surface languages, there is great potential to apply exist-
ing software engineering methods—testing, verification, and static
analysis, to mention a few. Yet, we know little about IaC programs
and their differences from other software. Such insights are imper-
ative to apply existing techniques effectively and to develop new
approaches that leverage the peculiarities of this domain.

To shed light on PL-IaC in practice, we present PIPr, the first
dataset of IaC programs. PIPr comprises metadata of 37 712 IaC pro-
grams from 21 445 public GitHub repositories and shallow copies
(i.e., without history) of the ones permitting redistribution. As
the case studies of the dataset, we inspect IaC programs for their

1https://npm-stat.com/ for aws-cdk-lib, @aws-cdk/core, cdktf, and @pulumi/pulumi.
2Ownership, access, and policy resources for internet access are excluded for simplicity.

https://orcid.org/0000-0003-2911-8304
https://orcid.org/0009-0004-1715-2059
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3643991.3644888
https://doi.org/10.1145/3643991.3644888
https://doi.org/10.1145/3643991.3644888
https://npm-stat.com/

MSR ’24, April 15–16, 2024, Lisbon, Portugal Daniel Sokolowski, David Spielmann, and Guido Salvaneschi

(1) programming languages (Section 4.1), (2) testing techniques
(Section 4.2), and (3) licenses (Section 4.3).

PIPr, including all scripts, is long-time archived under the Open
Data Commons Attribution License (ODC-By) v1.0 on Zenodo [42].
The dataset builds the ground for future studies on PL-IaC in prac-
tice and the differences and similarities between such programs and
traditional software. Investigating these issues is crucial to trans-
ferring existing software engineering techniques and developing
new ones that are optimized for PL-IaC.

2 RELATEDWORK AND DATASETS
All PL-IaC solutions provide example programs.345 They are pub-
lic on GitHub with explicit open-source licenses. PIPr contains
their metadata and code from August 2022. Beyond these, the only
datasets of IaC programs we know were created by us to evaluate
µs [43]. They contain 64 Pulumi TypeScript programs using stack
references [44] and simple benchmarking programs [45] in Pulumi
TypeScript, AWS CDK TypeScript, and µs. We are not aware of
other research analyzing IaC programs for PL-IaC solutions.

Various studies examined IaC scripts for Ansible, Chef, and Pup-
pet. Most—despite some claiming the opposite—published at most
their analysis scripts and results, but not all IaC scripts they ana-
lyzed [7, 18, 19, 24–27, 34–37, 39, 41, 47]. In contrast, Sotiropoulos
et al. [46] provided the 33 studied Puppet scripts, and Saavedra and
Ferreira [40] published the most comprehensive dataset of 108 509
Ansible, 70 939 Chef, and 17 037 Puppet scripts, containing unpub-
lished IaC scripts of earlier studies [35, 37]. Further, Opdebeeck
et al. [24] built a dataset of Ansible Galaxy ecosystem metadata, in-
cluding abstract structural representations of over 125 000 Ansible
roles and 800 000 changes.

PIPr is the first systematic PL-IaC dataset. It provides the code of
15 504 redistributable IaC Programs and metadata of all 37 712 IaC
programs we found on GitHub in August 2022, including the pro-
grams’ programming languages, testing techniques, and licenses.

3 DATASET CONSTRUCTION
Figure 1 provides an overview of PIPr’s construction, analysis, and
distribution, which we now describe in detail.

3.1 Repository Identification
We searched for platforms hosting AWS CDK, Pulumi, and CDKTF
programs—the only three established PL-IaC solutions. We chose
GitHub as the data source of PIPr because we did not find another
platform publicly hosting many IaC programs—even AWS CDK,
Pulumi, and CDKTF themselves are publicly maintained on GitHub.

We identified GitHub repositories with IaC programs by search-
ing for IaC program configuration files. By design, in PL-IaC solu-
tions, each IaC program has one configuration file named cdk.json,
cdktf.json, Pulumi.yml, or Pulumi.yaml. Munaiah et al. [23]
summarized techniques to query GitHub, including Boa [10] and
the discontinued GHTorrent [13]. We used the GitHub REST Code
Search API [11]—despite having to cope with its severe limitations

3https://github.com/aws-samples/aws-cdk-examples
4https://github.com/pulumi/examples
5https://developer.hashicorp.com/terraform/cdktf/examples-and-guides/examples

23 428 repositories identified 87 repositories failed cloning

23 341 repositories downloaded 1 896 repositories without program

14 341 non-redistributable repositories21 445 repositories analyzed

7 104 shallow repository copies
23 428 repositories’ metadata
37 712 programs’ metadata
18 384 testing files’ metadata

87 unanalyzed repositories’ metadata
1 896 program-less repositories’ metadata
7 277 non-program-related testing files

candidates’ metadata

Search

A
na
ly
sis

D
ist
rib

ut
io
n

Figure 1: Flow diagram quantifying the dataset creation.

that we will discuss next—because it is the only solution that allows
up-to-date searches for file names across GitHub.

Our study addresses the API’s limitations [11]. First, the API
only returns files in repositories that (i) are not a fork or a fork
with more stars than their parent, (ii) have fewer than 500 000 files,
and (iii) saw activity or were returned in search results in the last
year. Further, the searched files must be (iv) on the default branch
(v) and smaller than 384 KB. Inheriting these criteria ensures we do
not analyze irrelevant (i, iii, iv) and technically not tractable (ii, v)
repositories. Second, the API’s results are incomplete and unstable:
it (a) only returns up to 1 000 results per query, (b) returns varying
query result counts across responses, and (c) returns varying results
for the same result page that are often fewer than expected and
repeating results from previous pages. To address (a), we recursively
divided the queries by file size until each sub-query has at most
990 results; for (b), we only accepted a changed result count if we
received it five consecutive times; for (c), we requested the pages
with default size (max. 30 results) up to 200 times until the combined
responses contained the expected number of new results.

The search started on August 16, 2022, and was distributed over
two GitHub accounts. It required two weeks due to retrying upon
incomplete results and API rate limiting. We recorded the metadata
for all 23 428 identified repositories. We downloaded a shallow
recursive copy of each repository’s default branch using git clone
on August 31 and September 1, 2022. 87 repositories could not be
downloaded (one retry), most of them due to missing permissions.

3.2 Repository Analysis
In the analysis, we identified all IaC programs in the downloaded
repositories. We searched all cdk.json, cdktf.json, Pulumi.yml,
and Pulumi.yaml files that are not in a node_modules folder, yield-
ing 39 255 files. 105 are not parsable, and 892 do not contain a
certain set of fields, i.e., they do not define the IaC program’s run-
time, which is the only information PL-IaC solutions require to
run an IaC program. For AWS CDK, this means there is no app
field; for Pulumi, there is no runtime field; and for CDKTF, there
is neither app nor language. Further, we removed 469 files whose
path contains a string from a denylist of 28 entries. The list was
manually created to identify dependency and PL-IaC solution imple-
mentation paths and 77 files due to implausible runtime values. For
the remaining 37 712 IaC programs, we extracted the runtime, the
PL-IaC solution, and, if present, the program name and description.

As the first applications of this dataset, we analyzed all IaC
programs for their programming language, testing techniques, and
licenses (Section 4). The results are included in PIPr.

https://github.com/aws-samples/aws-cdk-examples
https://github.com/pulumi/examples
https://developer.hashicorp.com/terraform/cdktf/examples-and-guides/examples

The PIPr Dataset of Public Infrastructure as Code Programs MSR ’24, April 15–16, 2024, Lisbon, Portugal

Repository
ID : integer
url : string
downloaded : boolean
name : string
description : string
licenses : list of string
redistributable : boolean
created : datetime
updated : datetime
pushed : datetime
fork : boolean
forks : integer
archive : boolean
programs : list of string

Program
ID : string
repository : integer
directory : string
solution : enum
language : enum
name : string
description : string
runtime : string
testing : list of enum
tests : list of strings

Testing File
file : string
language: enum
techniques : list of enum
keywords : list of enum
program : string

1 * 0..1 *

Solutions: AWS CDK | CDKTF | Pulumi
Languages: csharp | go | haskell | java | javascript | python | typescript | yaml
Testing & Techniques: awscdk | awscdk_assert | awscdk_snapshot | cdktf | cdktf_snapshot

| cdktf_tf | pulumi_crossguard | pulumi_integration | pulumi_unit | pulumi_unit_mocking
Keywords: /go/auto | /testing/integration | @AfterAll | @BeforeAll | @Test | @aws-cdk

| @aws-cdk/assert | pulumi.runtime.test | @pulumi/ | @pulumi/policy
| @pulumi/pulumi/automation | Amazon.CDK | Amazon.CDK.Assertions | Assertions_

| HashiCorp.Cdktf | IMocks | Moq | NUnit | PolicyPack(| ProgramTest | Pulumi
| Pulumi.Automation | PulumiTest | ResourceValidationArgs | ResourceValidationPolicy

| SnapshotTest() | StackValidationPolicy | Testing | Testing_ToBeValidTerraform(
| ToBeValidTerraform(| Verifier.Verify(| WithMocks(| [Fact] | [TestClass] | [TestFixture]

| [TestMethod] | [Test] | afterAll(| assertions | automation | aws-cdk-lib | aws-cdk-lib/assert
| aws_cdk | aws_cdk.assertions | awscdk | beforeAll(| cdktf | com.pulumi | def test_ | describe(

| github.com/aws/aws-cdk-go/awscdk | github.com/hashicorp/terraform-cdk-go/cdktf
| github.com/pulumi/pulumi | integration | junit | pulumi | pulumi.runtime.setMocks(

| pulumi.runtime.set_mocks(| pulumi_policy | pytest | setMocks(| set_mocks(| snapshot
| software.amazon.awscdk.assertions | stretchr | test(| testing | toBeValidTerraform(

| toMatchInlineSnapshot(| toMatchSnapshot(| to_be_valid_terraform(| unittest | withMocks(

Figure 2: Schema of the PIPrmetadata and results.

3.3 Distribution
PIPr [42] is long-term archived on Zenodo. Figure 2 describes the
schema of the CSV files repositories.csv, programs.csv, and
testing-files.csv, which contain the metadata of:
• 23 428 repositories (Section 3.1), of which 87 failed to download,
and in 21 445 (1 896), we found (not) an IaC program (Section 3.2).

• 37 712 IaC programs (Section 3.2) with their programming lan-
guage (Section 4.1), testing (Section 4.2), and licenses (Section 4.3).

• 18 384 testing file candidates (Section 4.2), of which we identified
a testing technique in 13 631 files; 11 107 in an IaC program.

Further, PIPr contains copies of 7 104 repositories with IaC pro-
grams (58GB of code). Lastly, we release all creation and analysis
scripts, execution logs, and additional documentation.

4 CASE STUDIES
To showcase the use of PIPr, we answer these research questions:
RQ1:Which programming languages are used in IaC programs?
RQ2:Which testing techniques are employed in IaC programs?
RQ3:Which licenses are applied to public IaC programs?

4.1 Languages of IaC Programs
To answer RQ1, we map each IaC program’s runtime configuration
value to a programming language using regular expressions. For
less popular languages where the IaC program reuses the runtime
of another language, we assign the program to the main language
of the runtime because identifying them based on the runtime con-
figuration is not reliable and would lead to additional insignificant
minorities with low confidence in the results (Table 1). We map all
non-TypeScript NodeJS, e.g., CoffeeScript and Scala.js, programs to
JavaScript, JVM programs to Java, and .NET programs to C#.

Table 1: IaC programs on GitHub by solution and language.

Language Pulumi AWS CDK CDKTF Total

TypeScript 6 081 14 639 525 21 245
Python 2 927 5 521 162 8 610
C# 1 835 563 28 2 426
Go 1 834 338 73 2 245
JavaScript 35 1 844 5 1 884
Java 75 1 035 34 1 144
YAML 157 0 0 157
Haskell 1 0 0 1

Total 12 945 23 940 827 37 712

Table 1 summarizes the results. TypeScript is, with 56 % (21 245)
of the IaC programs, by far the most popular language across all
PL-IaC solutions. Python is popular, too, with 23 % (8 610). Further,
there is a significant amount of Pulumi C# and Go programs (each
14% of the Pulumi programs) and AWS CDK JavaScript and Java
programs (8 % and 4% of the AWS CDK programs).

4.2 Testing Techniques of IaC Programs
To answer RQ2, we first researched the available testing tech-
niques for IaC programs. All PL-IaC solutions support unit test-
ing [4, 17, 32]. Additionally, Pulumi features policy testing with
CrossGuard [30] and an integration testing library [29].

Our method to identify testing files in repositories is similar
to other studies [5, 20, 23]. We created a list of 34 keywords that
are specific to PL-IaC testing code (e.g., @aws-cdk/assert and
setMocks(), 14 common keywords in PL-IaC code (e.g., @aws-cdk
and @pulumi/), and 26 common keywords in testing code (e.g.,
describe(and test(). Potential PL-IaC testing files are those that
contain at least one PL-IaC-testing-specific keyword or one out of
72 combinations of the remaining keywords in non-comment lines,
as well as all files that are named PulumiPolicy.yaml. We found
65 156 files and extracted their path and keywords. We manually
inspected this data and the full content of some files to (1) identify
which file extensions to ignore, (2) validate and apply the file path
filtering we applied in Section 3.2, and (3) create a function that
maps to a testing technique the remaining 18 384 files based on their
keywords and file extensions. We identified a testing technique in
13 631 files and related 11 107 files to an IaC program based on their
file path by matching the nearest IaC program in a parent folder.

Table 2 summarizes the results. For each technique, it shows the
number of files in PIPr and IaC programs containing one. We report
adoption in absolute numbers and relative to all programs of the
respective PL-IaC solution and language, e.g., 1 % (118) of the Pulumi
programs use unit testing, 51 of them are in TypeScript (1 % of the
Pulumi TypeScript programs), of which 38 use runtime mocking.
Only 25 % of the PL-IaC programs implement tests. Further, testing
is far more common for CDK programs (38 % for AWS CDK and 15 %
for CDKTF). Only 1 % of the Pulumi programs implement tests.

4.3 Licenses of IaC Programs
To answer RQ3, we applied Licensee [1] to all repositories. We chose
Licensee because GitHub recommends and uses it [12]. Licensee
analyses all files commonly containing license information, e.g.,
LICENSE and README, for license content or references to licenses,
using the license database of https://choosealicense.com/.

https://choosealicense.com/

MSR ’24, April 15–16, 2024, Lisbon, Portugal Daniel Sokolowski, David Spielmann, and Guido Salvaneschi

Table 2: Number of IaC programs applying testing techniques
in total and by language. # programs (% of programs in group).

Testing Technique Files Total TypeScript Python C#
Go JavaScript Java

Pu
lu
m
i

Unit Testing 259 118 (1 %) 51 (1 %) 27 (1 %) 22 (1 %)
15 (1 %) 0 (0 %) 3 (4 %)

with Runtime 149 100 (1 %) 38 (1 %) 26 (1 %) 20 (1 %)
Mocking 15 (1 %) 0 (0 %) 1 (1 %)

CrossGuard 399 33 (0 %) 29 (0 %) 4 (0 %) 0 (0 %)
0 (0 %) 0 (0 %) 0 (0 %)

Integration 677 22 (0 %) 12 (0 %) 8 (0 %) 0 (0 %)
Testing 2 (0 %) 0 (0 %) 0 (0 %)

AW
S
CD

K

Unit Testing 12 102 9 152 (38 %) 7 116 (49 %) 1 141 (21 %) 12 (2 %)
151 (45 %) 328 (18 %) 404 (39 %)

with AWS CDK 10 436 8 161 (34 %) 6 967 (48 %) 772 (14 %) 11 (2 %)
Assertions 40 (12 %) 320 (17 %) 51 (5 %)

with Snapshot 1 338 819 (3 %) 788 (5 %) 10 (0 %) 0 (0 %)
Testing 0 (0 %) 13 (1 %) 8 (1 %)

CD
KT

F

Unit Testing 194 121 (15 %) 81 (15 %) 21 (13 %) 4 (14 %)
10 (14 %) 0 (0 %) 5 (15 %)

with Snapshot 80 36 (4 %) 29 (6 %) 1 (1 %) 2 (7 %)
Testing 2 (3 %) 0 (0 %) 2 (6 %)

with Terraform 23 23 (3 %) 14 (3 %) 1 (1 %) 1 (4 %)
Compatibility 6 (8 %) 0 (0 %) 1 (3 %)

Total 13 631 9 435 (25 %) 7 284 (34 %) 1 196 (14 %) 38 (2 %)
177 (8 %) 328 (17 %) 412 (36 %)

We did not find a license in 67 % (14 330) of the repositories. The
most popular are MIT and Apache 2.0, which are used by 3 545
(17 %) and 1 988 (9 %) repositories. Only 11 repositories prohibit
redistribution explicitly. In PIPr, we redistribute all repositories with
an IaC program that have at least one and only licenses permitting
redistribution. Table 3 shows the redistributed IaC programs by PL-
IaC solution, language, and how many use testing, e.g., we provide
51 % (3 084) of the Pulumi TypeScript programs; 53 of them test.

5 LIMITATIONS AND THREATS TO VALIDITY
PIPr is limited to the CDKs and Pulumi and the testing techniques
provided by the PL-IaC solutions. We carefully researched other
PL-IaC solutions and testing techniques but found none. Further,
PIPr is based on a snapshot in August 2022 and does not contain
historical data, limiting its direct use for longitudinal studies.

The internal validity of studies on PIPr may be impacted by
using the GitHub REST Code Search API, inheriting its inclusion
criteria that eliminate old projects and forks. The API also prevents
reproduction, as new data is continuously added and old, unpopular
results are removed, on top of its reliability issues (cf. Section 3.1).
Another threat is caused by identifying PL-IaC programs based
on project file names. To mitigate this issue, we ensured that the
files are valid by parsing them and checking their content for plau-
sibility. The identification of IaC programs may be impacted by
our list of exclusion file path fragments to filter. This aspect also
applies to the testing file identification for RQ2, which is further
threatened by keyword searches and manually selecting the key-
words. Also, mapping testing files to projects based on their file
paths may cause mistakes because we systematically miss if testing
files are managed separately; however, we could not find that this is
common. Relatedly, the internal validity for RQ2 may be threatened
because the project may still use the testing technique even if we
did not find a testing file in an IaC program. The identification of
the programming language in RQ1 relies on regular expressions.

Table 3: Redistributable IaC programs by PL-IaC solution and
language. # programs with license permitting redistribution
(% of programs with any license) of which #T use testing.

Language Pulumi AWS CDK CDKTF Total

TypeScript 3 084 (51 %) 53 T 5 131 (35 %) 2 230 T 401 (76 %) 60 T 8 616 (41 %) 2 343 T
Python 1 201 (41 %) 18 T 2 085 (38 %) 264 T 64 (40 %) 11 T 3 350 (39 %) 293 T
C# 633 (34 %) 19 T 299 (53 %) 10 T 13 (46 %) 3 T 945 (39 %) 32 T
Go 624 (34 %) 7 T 193 (57 %) 88 T 25 (34 %) 7 T 842 (38 %) 102 T
JavaScript 29 (83 %) 0 T 1 092 (59 %) 115 T 4 (80 %) 0 T 1 125 (60 %) 115 T
Java 49 (65 %) 3 T 442 (43 %) 166 T 16 (47 %) 4 T 507 (44 %) 173 T
YAML 119 (76 %) 0 T 0 (–) 0 T 0 (–) 0 T 119 (76 %) 0 T
Haskell 0 (0 %) 0 T 0 (–) 0 T 0 (–) 0 T 0 (0 %) 0 T

Total 5 739 (44 %) 100 T 9 242 (39 %) 2 873 T 523 (63 %) 85 T 15 504 (41 %) 3 058 T

The results are limited by mapping some languages to the primary
language of their runtime, e.g., Scala to Java. Lastly, for RQ3, we
inherit the limitations and validity constraints of Licensee [1].

A threat to the external validity is that we only analyze public
projects on GitHub, which may not be generally representative,
e.g., for proprietary software. Further, PL-IaC solutions and their
use evolve quickly, and we capture data up to August 2022 that was
retrievable through the GitHub REST Code Search API; therefore,
PIPr may not generalize to older and recent PL-IaC.

6 USE CASES
PIPr is the first systematic dataset for PL-IaC and a suitable basis for
future studies on (1) PL-IaC itself, (2) its relation to IaC approaches,
and (3) its relation to software in general. All three areas are im-
portant to enhance the development of IaC programs, while (2) and
(3) are imperative to applying and specializing existing techniques
and tools to PL-IaC. We now present concrete research ideas.

Assessing the code of the IaC programs in PIPr helps to un-
derstand the nature and issues of PL-IaC programs. Researchers
can apply static and dynamic analyses and benchmark new lin-
ters, libraries, and language improvements to detect and mitigate
common error sources.

Assessing the target state of IaC programs in PIPr sheds light
on the configuration errors of (syntactically) valid IaC programs.
For example, researchers can generate target states by running the
programs and checking them for correctness against oracles, like
CVEs and best practices. Further, one can trace errors back to their
origin in the imperative program to detect the issues to address.

Replicating IaC studies (cf. Section 2) for PL-IaC on PIPr
enables synergies with research on other IaC technologies. Re-
searchers can explore, e.g., whether known IaC code smells exist
in IaC programs, if current linters are effective [26, 35, 36, 39–41],
and the applicability of IaC code quality metrics [6, 7].

Studying software engineering processes like testing and
reviewing for IaC programs highlights inefficiencies in applying
PL-IaC within software organizations. Researchers can combine
PIPrwith additional data, e.g., pull requests and issues from GitHub
and Jira, for longitudinal studies.

Comparing PL-IaC with other software contributes to un-
derstanding the differences between PL-IaC and traditional appli-
cations, effectively enabling a vast array of existing software en-
gineering knowledge for IaC programs. Researchers can compare

The PIPr Dataset of Public Infrastructure as Code Programs MSR ’24, April 15–16, 2024, Lisbon, Portugal

insights from the longitudinal studies above and, e.g., code metrics,
used language features (distributions), and evolution patterns.

7 CONCLUSION
PIPr [42] is an open-source dataset containing metadata of 37 712
public IaC programs onGitHub and the source code of the 15 504 IaC
programs whose licenses permit redistribution. The metadata in-
cludes information about the used programming languages, applied
testing techniques, and licenses. PIPr enables studies on PL-IaC and
its differences from other software, which is vital to applying exist-
ing and developing new techniques for IaC programs effectively.

ACKNOWLEDGMENTS
This work has been co-funded by the Swiss National Science Foun-
dation (SNSF, No. 200429).

REFERENCES
[1] n.d.. Licensee: A Ruby Gem to Detect UnderWhat License a Project Is Distributed.

https://licensee.github.io/licensee/. Accessed: 2023-11-30.
[2] Amazon Web Services. n.d.. Cloud Development Framework: AWS Cloud Devel-

opment Kit. https://aws.amazon.com/cdk/. Accessed: 2023-11-29.
[3] Amazon Web Services. n.d.. Infrastructure as Code Provisioning Tool: AWS

CloudFormation. https://aws.amazon.com/cloudformation/. Accessed: 2023-11-
29.

[4] Amazon Web Services. n.d.. Testing Constructs: AWS Cloud Development Kit
(AWS CDK) v2. https://docs.aws.amazon.com/cdk/v2/guide/testing.html. Ac-
cessed: 2023-11-29.

[5] Luis Cruz, Rui Abreu, and David Lo. 2019. To the Attention of Mobile Software
Developers: GuessWhat, Test Your App! Empir. Softw. Eng. 24, 4 (2019), 2438–2468.
https://doi.org/10.1007/S10664-019-09701-0

[6] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian Andrew Tam-
burri. 2020. Toward a Catalog of Software Quality Metrics for Infrastructure
Code. J. Syst. Softw. 170 (2020), 110726. https://doi.org/10.1016/J.JSS.2020.110726

[7] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri.
2022. Within-project Defect Prediction of Infrastructure-as-Code Using Product
and Process Metrics. IEEE Trans. Software Eng. 48, 6 (2022), 2086–2104. https:
//doi.org/10.1109/TSE.2021.3051492

[8] Joe Duffy. 2020. Pulumi Raises Series B to Build the Future of Cloud Engineering.
https://www.pulumi.com/blog/series-b/. Accessed: 2023-11-30.

[9] Joe Duffy. 2023. Building the Best Infrastructure as Code with $41M Series C
Funding. https://www.pulumi.com/blog/series-c/. Accessed: 2023-11-30.

[10] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.
Boa: A Language and Infrastructure for Analyzing Ultra-large-scale Software
Repositories. In 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, David Notkin, Betty H. C. Cheng, and
Klaus Pohl (Eds.). IEEE Computer Society, 422–431. https://doi.org/10.1109/ICSE.
2013.6606588

[11] GitHub. n.d.. Github Docs: Searching Code (Legacy). https://docs.github.com/
en/search-github/searching-on-github/searching-code. Accessed: 2023-11-30.

[12] GitHub. n.d.. Licensing a Repository. https://docs.github.com/en/repositories/
managing-your-repositorys-settings-and-features/customizing-your-
repository/licensing-a-repository. Accessed: 2023-11-30.

[13] Georgios Gousios. 2013. The GHTorrent Dataset and Tool Suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories, MSR ’13, San
Francisco, CA, USA, May 18-19, 2013, Thomas Zimmermann, Massimiliano Di
Penta, and Sunghun Kim (Eds.). IEEE Computer Society, 233–236. https://doi.
org/10.1109/MSR.2013.6624034

[14] HashiCorp. n.d.. CDK for Terraform. https://developer.hashicorp.com/terraform/
cdktf. Accessed: 2023-11-29.

[15] HashiCorp. n.d.. HCL. https://github.com/hashicorp/hcl. Accessed: 2023-11-30.
[16] HashiCorp. n.d.. Terraform. https://www.terraform.io/. Accessed: 2023-11-29.
[17] HashiCorp. n.d.. Unit Tests: CDK for Terraform. https://developer.hashicorp.

com/terraform/cdktf/test/unit-tests. Accessed: 2023-11-29.
[18] Mohammad Mehedi Hassan and Akond Rahman. 2022. As Code Testing: Charac-

terizing Test Quality in Open Source Ansible Development. In 15th IEEE Confer-
ence on Software Testing, Verification and Validation, ICST 2022, Valencia, Spain,
April 4-14, 2022. IEEE, 208–219. https://doi.org/10.1109/ICST53961.2022.00031

[19] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. 2013.
Testing Idempotence for Infrastructure as Code. In Middleware 2013 - ACM/I-
FIP/USENIX 14th International Middleware Conference, Beijing, China, December
9-13, 2013, Proceedings (Lecture Notes in Computer Science, Vol. 8275), David M.

Eyers and Karsten Schwan (Eds.). Springer, 368–388. https://doi.org/10.1007/978-
3-642-45065-5_19

[20] Matej Madeja, Jaroslav Porubän, Michaela Bacíková, Matús Sulír, Ján Juhár, Sergej
Chodarev, and Filip Gurbál. 2021. Automating Test Case Identification in Java
Open Source Projects on GitHub. Comput. Informatics 40, 3 (2021). https:
//doi.org/10.31577/CAI_2021_3_575

[21] Microsoft Azure. n.d.. Bicep. https://github.com/Azure/bicep. Accessed: 2023-
11-30.

[22] Kief Morris. 2021. Infrastructure as Code: Dynamic Systems for the Cloud Age
(second ed.). O’Reilly Media, Inc., Sebastopol, CA, USA.

[23] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for Engineered Software Projects. Empir. Softw. Eng. 22, 6 (2017),
3219–3253. https://doi.org/10.1007/S10664-017-9512-6

[24] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2021. Andromeda: A
Dataset of Ansible Galaxy Roles and Their Evolution. In 18th IEEE/ACM Interna-
tional Conference on Mining Software Repositories, MSR 2021, Madrid, Spain, May
17-19, 2021. IEEE, 580–584. https://doi.org/10.1109/MSR52588.2021.00078

[25] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2022. Smelly Variables
in Ansible Infrastructure Code: Detection, Prevalence, and Lifetime. In 19th
IEEE/ACM International Conference on Mining Software Repositories, MSR 2022,
Pittsburgh, PA, USA, May 23-24, 2022. ACM, 61–72. https://doi.org/10.1145/
3524842.3527964

[26] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2023. Control and Data
Flow in Security Smell Detection for Infrastructure as Code: Is ItWorth the Effort?.
In 20th IEEE/ACM International Conference on Mining Software Repositories, MSR
2023, Melbourne, Australia, May 15-16, 2023. IEEE, 534–545. https://doi.org/10.
1109/MSR59073.2023.00079

[27] Ruben Opdebeeck, Ahmed Zerouali, Camilo Velázquez-Rodríguez, and Coen
De Roover. 2021. On the Practice of Semantic Versioning for Ansible Galaxy
Roles: An Empirical Study and a Change Classification Model. J. Syst. Softw. 182
(2021), 111059. https://doi.org/10.1016/j.jss.2021.111059

[28] Progress. n.d.. Chef Software DevOps Automation Solutions. https://chef.io.
Accessed: 2023-11-29.

[29] Pulumi. n.d.. Integration Testing for Pulumi Programs. https://www.pulumi.com/
docs/using-pulumi/testing/integration/. Accessed: 2023-11-29.

[30] Pulumi. n.d.. Policy as Code for Any Cloud with Pulumi: Pulumi CrossGuard.
https://www.pulumi.com/crossguard/. Accessed: 2023-11-29.

[31] Pulumi. n.d.. Pulumi: Infrastructure as Code in Any Programming Language.
https://github.com/pulumi/pulumi. Accessed: 2023-11-29.

[32] Pulumi. n.d.. Testing of Pulumi Programs. https://www.pulumi.com/docs/using-
pulumi/testing/. Accessed: 2023-11-29.

[33] Puppet. n.d.. Puppet Infrastructure & IT Automation at Scale. https://puppet.com/.
Accessed: 2023-11-29.

[34] Giovanni Quattrocchi and Damian Andrew Tamburri. 2022. Predictive Main-
tenance of Infrastructure Code Using "Fluid" Datasets: An Exploratory Study
on Ansible Defect Proneness. J. Softw. Evol. Process. 34, 11 (2022). https:
//doi.org/10.1002/smr.2480

[35] Akond Rahman, Chris Parnin, and Laurie A. Williams. 2019. The Seven Sins:
Security Smells in Infrastructure as Code Scripts. In Proceedings of the 41st Inter-
national Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE /
ACM, 164–175. https://doi.org/10.1109/ICSE.2019.00033

[36] Akond Rahman, Md. Rayhanur Rahman, Chris Parnin, and Laurie A. Williams.
2021. Security Smells in Ansible and Chef Scripts: A Replication Study. ACM
Trans. Softw. Eng. Methodol. 30, 1 (2021), 3:1–3:31. https://doi.org/10.1145/3408897

[37] Akond Rahman and Laurie A.Williams. 2019. Source Code Properties of Defective
Infrastructure as Code Scripts. Inf. Softw. Technol. 112 (2019), 148–163. https:
//doi.org/10.1016/j.infsof.2019.04.013

[38] Red Hat. n.d.. Ansible Is Simple IT Automation. https://www.ansible.com/.
Accessed: 2023-11-29.

[39] Sofia Reis, Rui Abreu, Marcelo d’Amorim, and Daniel Fortunato. 2022. Leveraging
Practitioners’ Feedback to Improve a Security Linter. In 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2022, Rochester, MI, USA,
October 10-14, 2022. ACM, 66:1–66:12. https://doi.org/10.1145/3551349.3560419

[40] Nuno Saavedra and João F. Ferreira. 2022. GLITCH: Automated Polyglot Security
Smell Detection in Infrastructure as Code. In 37th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2022, Rochester, MI, USA, October
10-14, 2022. ACM, 47:1–47:12. https://doi.org/10.1145/3551349.3556945

[41] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your
Configuration Code Smell?. In Proceedings of the 13th International Conference
on Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016,
Miryung Kim, Romain Robbes, and Christian Bird (Eds.). ACM, 189–200. https:
//doi.org/10.1145/2901739.2901761

[42] Daniel Sokolowski, David Spielmann, and Guido Salvaneschi. 2023. PIPr: A
Dataset of Public Infrastructure as Code Programs. https://doi.org/10.5281/
zenodo.10173400

[43] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021. Automat-
ing Serverless Deployments for DevOps Organizations. In ESEC/FSE ’21: 29th

https://licensee.github.io/licensee/
https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/cdk/v2/guide/testing.html
https://doi.org/10.1007/S10664-019-09701-0
https://doi.org/10.1016/J.JSS.2020.110726
https://doi.org/10.1109/TSE.2021.3051492
https://doi.org/10.1109/TSE.2021.3051492
https://www.pulumi.com/blog/series-b/
https://www.pulumi.com/blog/series-c/
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1109/ICSE.2013.6606588
https://docs.github.com/en/search-github/searching-on-github/searching-code
https://docs.github.com/en/search-github/searching-on-github/searching-code
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1109/MSR.2013.6624034
https://developer.hashicorp.com/terraform/cdktf
https://developer.hashicorp.com/terraform/cdktf
https://github.com/hashicorp/hcl
https://www.terraform.io/
https://developer.hashicorp.com/terraform/cdktf/test/unit-tests
https://developer.hashicorp.com/terraform/cdktf/test/unit-tests
https://doi.org/10.1109/ICST53961.2022.00031
https://doi.org/10.1007/978-3-642-45065-5_19
https://doi.org/10.1007/978-3-642-45065-5_19
https://doi.org/10.31577/CAI_2021_3_575
https://doi.org/10.31577/CAI_2021_3_575
https://github.com/Azure/bicep
https://doi.org/10.1007/S10664-017-9512-6
https://doi.org/10.1109/MSR52588.2021.00078
https://doi.org/10.1145/3524842.3527964
https://doi.org/10.1145/3524842.3527964
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1016/j.jss.2021.111059
https://chef.io
https://www.pulumi.com/docs/using-pulumi/testing/integration/
https://www.pulumi.com/docs/using-pulumi/testing/integration/
https://www.pulumi.com/crossguard/
https://github.com/pulumi/pulumi
https://www.pulumi.com/docs/using-pulumi/testing/
https://www.pulumi.com/docs/using-pulumi/testing/
https://puppet.com/
https://doi.org/10.1002/smr.2480
https://doi.org/10.1002/smr.2480
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1145/3408897
https://doi.org/10.1016/j.infsof.2019.04.013
https://doi.org/10.1016/j.infsof.2019.04.013
https://www.ansible.com/
https://doi.org/10.1145/3551349.3560419
https://doi.org/10.1145/3551349.3556945
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.5281/zenodo.10173400
https://doi.org/10.5281/zenodo.10173400

MSR ’24, April 15–16, 2024, Lisbon, Portugal Daniel Sokolowski, David Spielmann, and Guido Salvaneschi

ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Athens, Greece, August 23-28, 2021, Diomidis
Spinellis, Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta (Eds.).
ACM, 57–69. https://doi.org/10.1145/3468264.3468575

[44] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021. Pulumi
TypeScript Stack References to µs Converter. https://doi.org/10.5281/zenodo.
4902171

[45] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021. µs Per-
formance Evaluation. https://doi.org/10.5281/zenodo.4902330

[46] Thodoris Sotiropoulos, Dimitris Mitropoulos, and Diomidis Spinellis. 2020. Practi-
cal Fault Detection in Puppet Programs. In ICSE ’20: 42nd International Conference

on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rother-
mel and Doo-Hwan Bae (Eds.). ACM, 26–37. https://doi.org/10.1145/3377811.
3380384

[47] Eduard van der Bent, Jurriaan Hage, Joost Visser, and Georgios Gousios. 2018.
How Good Is Your Puppet? An Empirically Defined and Validated Quality Model
for Puppet. In 25th International Conference on Software Analysis, Evolution and
Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018, Rocco Oliveto,
Massimiliano Di Penta, and David C. Shepherd (Eds.). IEEE Computer Society,
164–174. https://doi.org/10.1109/SANER.2018.8330206

https://doi.org/10.1145/3468264.3468575
https://doi.org/10.5281/zenodo.4902171
https://doi.org/10.5281/zenodo.4902171
https://doi.org/10.5281/zenodo.4902330
https://doi.org/10.1145/3377811.3380384
https://doi.org/10.1145/3377811.3380384
https://doi.org/10.1109/SANER.2018.8330206

	Abstract
	1 Introduction
	2 Related Work and Datasets
	3 Dataset Construction
	3.1 Repository Identification
	3.2 Repository Analysis
	3.3 Distribution

	4 Case Studies
	4.1 Languages of IaC Programs
	4.2 Testing Techniques of IaC Programs
	4.3 Licenses of IaC Programs

	5 Limitations and Threats to Validity
	6 Use Cases
	7 Conclusion
	Acknowledgments
	References

