
Disequalities in E-Graphs: An Experiment
George Zakhour

University of St. Gallen
St. Gallen, Switzerland

george.zakhour@unisg.ch

Pascal Weisenburger
University of St. Gallen
St. Gallen, Switzerland

pascal.weisenburger@unisg.ch

Guido Salvaneschi
University of St. Gallen
St. Gallen, Switzerland

guido.salvaneschi@unisg.ch

Abstract
This talk explores the integration of disequalities into e-
graphs for enhancing the efficiency of automated theorem
provers. We discuss two existing approaches, which we im-
plement in the egg e-graph library, presenting preliminary
results on comparing their effectiveness. Our initial experi-
ments demonstrate the feasibility of integrating disequalities
into e-graphs implemented in egg, with promising results
suggesting improved efficiency in the proof search algorithm.
We plan to refine this approach, integrate it into our Propel
automated theorem prover, and make our extensions to egg
available to the research community.

1 Introduction
In this talk, we present our ongoing work of integrating
disequalities into e-graphs. We present the two prevalent
approaches to support disequalities and implement both in
the egg e-graph library [10], discuss them, and provide an
initial comparison.

Our prior research on the Propel automated prover [11, 12]
suggests that reasoning about disequalities is beneficial in
theorem provers. While some SMT solvers like Z3 [2] and
OpenSMT [1] integrate disequalities into their e-graphs, it is
less common for automated theorem provers to do so, with
Simplify [3] being one of the few exceptions. We believe that
integrating an e-graph as an efficient data structure to store
equivalent terms in Propel would improve it performance.
Yet, this approach requires the integration of disequalities
resoning into e-graphs – presently, Propel does not use e-
graphs to determine the equality or disequality of terms but
relies on an ad-hoc mechanism. Sections 2 and 3 describe two
alternative solutions to integrate disequalities into e-graphs.

Equality Rewriting in Propel. Propel [11, 12] is an au-
tomated theorem prover targeting fundamental algebraic
properties such as commutativity, associativity, idempotency,
reflexivity, transitivity, symmetry, and others. Propel’s core
feature is the ability to reason about such properties by (a) ap-
plying rewrite rules derived from the properties and (b) de-
ducing the equality or disequality of terms. Focusing on
algebraic properties enables Propel to successfully discover-
ing a proof for cases where other state-of-the-art automated
theorem provers and SMT solvers fail.

To prove, for example, that multiplication is commutative
G × ~ = ~ × G , Propel applies a sequence of rewrite rules

to the terms on the left-hand and right-hand side of the
equation, trying to derive an equation that is trivially true by
syntactic equality 4 = 4 . Rewrite rules are derived from the
algebraic properties of the involved functions. For example,
if multiplication × is defined in terms of addition + and the
prover successfully verified that addition is commutative, it
can use the rewrite G +~ { ~ + G when reasoning about the
definition of ×.

Internally, Propel maintains a collection of terms that were
discovered to be equal by the prover. In the current imple-
mentation, equal terms are stored as entries within a map,
whichmodels the rewrite rules from key terms to value terms
that is assigned to the respective key. The prover explores
various rewrite possibilities – prioritizing the most “promis-
ing” terms according to a heuristics – until both sides of the
equation are rewritten into identical terms.

E-Graphs With Disequalities For Propel. Instead of the
approach based on a map above, we consider leveraging
e-graphs for reasoning about the equality of terms. Yet, in
Propel, it essential to reason not only about known equalities
of terms, but also about known disequalities.
Knowing that terms are unequal allows for discharging

prove obligations early, thus pruning the search space sub-
stantially. Some algebraic properties, like the antisymmetry
of relations, crucially rely on the disequality of terms, e.g.,
a relation ' is antisymmetric if and only if for two terms G
and ~ with G ≠ ~ holds that G'~ → ¬~'G or – equivalently
– if a relation ' is known to be antisymmetric and G'~ then
either G = ~ or G ≠ ~ ∧ ¬~'G .
In such cases, reasoning about disequalities is important.

Yet, popular high-performance implementations of e-graphs,
such as egg [10] do not inherently support them. Next, we
consider two methods to support disequalities.

2 Method 1: Equality Embedding
This method adds support for disequalities to e-graphs by
reifying the equality relation constructed by the e-graph ex-
plicitly into the language whose terms constitute the nodes
of the e-graph. Thus, this embedding ensures the invariant
that two terms t1 and t2 are equal if and only if the terms
(eq t1 t2) and true are equal. In the rest, we use the syntax
defined by egg’s SymbolLang [5] for terms, and its correspond-
ing pattern syntax [4] for rules.

https://orcid.org/0009-0000-5042-1207
https://orcid.org/0000-0003-1288-1485
https://orcid.org/0000-0002-9324-8894

George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

This embedding is constructed by first introducing a spe-
cial symbol, eq, to represent equality, and second saturating
the e-graph with the axioms of equality: (1) reflexivity: (eq ?

x ?x) rewrites to true, (2) symmetry: (eq ?x ?y) rewrites to
(eq ?y ?x), and (3) transitivity: ?a = true = (eq ?x ?y) and ?

b = true = (eq ?y ?z) rewrites to ?a = ?b = (eq ?x ?z). Encod-
ing the knowledge that t1 and t2 are unequal is thus as
simple as equating (eq t1 t2) to false in the e-graph.
Given this encoding, two terms t1 and t2 are known to

be equal if (eq t1 t2) equals true and are known to be un-
equal if (eq t1 t2) equals false. Checking whether the given
equalities and disequalities are inconsistent, i.e., that some
contradiction exists, is as simple as checking whether true
and false are equal.

2.1 Equality Embedding with Egg
Listing 1 shows a self-contained example using the egg e-
graph library to embed some equalities and disequalities.
After adding all the provided equalities, the program checks
whether a contradiction can be found.

Listing 1. Equality Embedding in egg.
1 use egg::{*, rewrite as rw, multi_rewrite as mrw};
2
3 macro_rules! parse {($e:expr) => { $e.parse().unwrap() }}
4
5 fn main() -> () {
6 let mut g: EGraph<SymbolLang, ()> = Default::default();
7
8 [("x", "(f (f x))")
9 , ("x", "(f (f (f x)))")
10 , ("(eq (f x) x)", "false")
11].iter().for_each(|(lhs, rhs)| {
12 let id1 = g.add_expr(&parse!(lhs));
13 let id2 = g.add_expr(&parse!(rhs));
14 g.union(id1, id2);
15 });
16
17 let mut runner = Runner::default().with_egraph(g).run(&[
18 rw!("e1"; "(eq ?x ?x)" => "true"),
19 rw!("e2"; "(eq ?x ?y)" => "(eq ?y ?x)"),
20 mrw!("e3"; "?a = true = (eq ?x ?y),
21 ?b = true = (eq ?y ?z)"
22 => "?a = ?b = (eq ?x ?z)"),
23]);
24
25 let g = &mut runner.egraph;
26 let t = g.add_expr(&parse!("true"));
27 let f = g.add_expr(&parse!("false"));
28
29 let c = if g.find(t) == g.find(f) { "Y" } else { "N" };
30 println!("Contradiction: {c}");
31 }

The loop on Line 11 traverses the list of pairs on Lines 8
to 10 containing the left-hand-side and the right-hand-side of
some (dis)equality.The added (dis)equalities are G = 5 (5 (G)),
G = 5 (5 (5 (G))), and 5 (G) ≠ G . The runner on Line 17 satu-
rates the e-graph with the axioms of equalities in Lines 18
to 22. Lines 26 and 27 looks up the e-classes of the true and
false terms, respectively, and Line 30 prints Contradiction:
Y if true and false are equal; Contradiction: N otherwise.

Since the provided set of equalities and disequalities are
not consistent the output of the program is, as expected,
Contradiction: Y, i.e., a contradiction exists. Changing the
disequality on Line 10 into an equality makes the equations
consistent and the output is Contradiction: N, i.e., no con-
tradiction exists. Similarly, the equality on Line 8 may also
be changed into a disequality to eliminate the contradiction.

2.2 The method in the Wild
Z3 [2] utilizes an e-graph to store equalities when solving
in the Uninterpreted Functions (UF) theory. To support dise-
qualities, a common input for SMT solvers, Z3 resorts to an
embedding technique that is in essence the one above.

Listing 2 shows an excerpt from Z3’s e-graph implementa-
tion of a method that checks if two given terms are unequal.1

Listing 2. Excerpt of Z3’s check for disequality.
1 bool egraph::are_diseq(enode* a, enode* b) {
2 enode* ra = a->get_root(), * rb = b -> get_root();
3 // ...
4 enode* r = tmp_eq(ra, rb);
5 if (r && r->get_root()->value == l_false)
6 return true;
7 return false;
8 }

On Line 2, Z3 uses its union-find data structure [6] to com-
pute the e-classes of the given e-nodes. On Line 4, it searches
for the e-class of a language-level equality expression with
the input’s e-classes on either side. On Line 5, it checks
whether that e-class is the same as the e-class containing
falsum whose canonical representative is l_false.

3 Method 2: Disequality Edges
E-graphs were introduced by Nelson in his PhD thesis on pro-
gram verification [7]. As disequalities are common in state-
ments pertaining to program verifications it is no surprise
that Nelson designed e-graphs in a way that disequalities be
easily represented.
E-graphs – ignoring disequalities – have two kinds of

edges: (1) node–class edges encoding the fact that a node
belongs to some class (equivalence), and (2) class–node edges
encoding that a hole in the node can be occupied by any
member of the class (congruence). To support disequalities
additional structure was added to the e-graph: class–class
edges that encode that the two classes may not be merged,
i.e., that their members are unequal.

Figure 1 shows an example of how a contradiction can be
found. Section 3.1 describes through code definitions how the
e-graph use disequality edges, i.e., forbid lists, by extending
egg.

1https://github.com/Z3Prover/z3/blob/9425c4/src/ast/euf/euf_egraph.cpp#
L685-L697

https://github.com/Z3Prover/z3/blob/9425c4/src/ast/euf/euf_egraph.cpp#L685-L697
https://github.com/Z3Prover/z3/blob/9425c4/src/ast/euf/euf_egraph.cpp#L685-L697

Disequalities in E-Graphs: An Experiment

[0]

0

[1]

1

[2]

2

(a) An e-graph with three
nodes (square): 0,1, 2 each
in their own class (circle):
[0], [1], [2] respectively.

[0]

0

[1]

1

[2]

2

≠

(b) Adding 1 ≠ 2 connects the
two classes [1] and [2] with a
disequality edge (dotted with ≠
above).

[0]

0 1

[2]

2

≠

(c) Adding 0 = 1 and merg-
ing [1] into [0] the disequality
edge between [1] and [2] be-
comes between [0] and [2].

[0]

0 1 2

≠

(d) Adding 0 = 2 and merg-
ing [2] into [0] the disequality
edge becomes a self-loop indi-
cating a contradiction.

Figure 1. Disequality edges help in finding the contradiction in 1 ≠ 2 , 0 = 1, and 0 = 2 .

3.1 Adding Support for Disequality Edges in egg
We describe the minimal required additions for introducing
support for disequality edges in egg.

Adding the forbid List. Our implementation follows Nel-
son’s encoding of disequality edges as forbid lists in e-classes [7].
Thus, the first addition is to be done on the EClass struct2 by
adding a forbid field as shown in Listing 3.

Listing 3. Adding the forbid field to EClass.
1 pub struct EClass<L, D> {
2 // ...
3 /// The eclasses known to be unequal to this one.
4 pub forbid: Vec<Id>,
5 // ...
6 }

The forbid field is implemented as a list of e-class identi-
fiers Id.

Moving forbid Lists After Unioning. When equating
two terms, the e-class of one is removed and all its children
are added to the e-class of the other. We must also treat the
forbid lists similarly by appending the forbid list of the re-
moved one to the forbid list of the other. In egg, the function
responsible for performing the union is the perform_union

method of the EGraph structure.3 Line 7 of Listing 4 is the
necessary addition to that function.

Listing 4. Updating the forbid list.
1 fn perform_union(
2 // ...
3) -> bool {
4 // ...
5 concat_vecs(&mut class1.nodes, class2.nodes);
6 concat_vecs(&mut class1.parents, class2.parents);
7 concat_vecs(&mut class1.forbid, class2.forbid);
8 // ...
9 }

Updating all the class2 references in its forbid list to
class1 is not necessary since egg keeps all the identifiers of
all classes, removed or not, in the union-find data structure.
2https://github.com/egraphs-good/egg/blob/3231b86/src/eclass.rs
3https://github.com/egraphs-good/egg/blob/3231b86/src/egraph.rs

AddingDisequalities. To add a disequality to the e-graph,
we define a new function disunion to be implemented for
the EGraph structure. The function’s definition is in Listing 5.

Listing 5. Adding a disequality.
1 pub fn disunion(&mut self, id1: Id, id2: Id) {
2 let id1 = self.find(id1);
3 let id2 = self.find(id2);
4 self.classes.get_mut(&id1).unwrap().forbid.push(id2);
5 self.classes.get_mut(&id2).unwrap().forbid.push(id1);
6 }

On Lines 2 and 3 we find the identifier of the e-classes of
the arguments. On Lines 4 and 5 we push to the forbid list
of each e-class – which must exist by the post-condition of
find – the identifier of the other.

Checking Disequalities. Listing 6 defines the function
are_unequal for EGraph which can be used to check if two
terms are known to be unequal.

Listing 6. Checking a disequality.
1 pub fn are_unequal(&self, id1: Id, id2: Id) -> bool {
2 let mut id1 = self.find(id1);
3 let mut id2 = self.find(id2);
4
5 if self.classes[&id1].forbid.len() >
6 self.classes[&id2].forbid.len() {
7 std::mem::swap(&mut id1, &mut id2);
8 }
9
10 self.classes[&id1].forbid.iter().any(|id| {
11 self.find(*id) == id2
12 })
13 }

On Lines 2 and 3, we find the e-class identifiers of both
arguments. On Line 7, we swap the identifiers if the forbid list
of the first is longer than the second, ensuring that we search
over the smaller list and making searching asymptotically
faster [7]. Finally, on Line 10, we check whether any of the e-
class identifiers in the first’s forbid list is equal to the second’s
identifier. Recall that when unioning two e-classes we never
update the identifier of the removed e-class in the forbid lists
of the other e-classes. To this end, we always find the root
identifier in the union-find data structure of every identifier

https://github.com/egraphs-good/egg/blob/3231b86/src/eclass.rs
https://github.com/egraphs-good/egg/blob/3231b86/src/egraph.rs

George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

in the forbid list before comparing. This check is known to
be constant amortized time [9] and does not introduce any
runtime overhead.

Checking Consistency. Finally, in Listing 7, we define
the is_consistent for EGraph which can be used to check
that no contradiction exists.

Listing 7. Consistency checking.
1 pub fn is_consistent(&self) -> bool {
2 self.classes.values().all(|eclass| {
3 let eclass_id = self.find(eclass.id);
4 eclass.forbid.iter().all(|id| {
5 self.find(*id) != eclass_id;
6 })
7 })
8 }

The is_consistent function simply checks that the root
e-class identifiers of all the known e-classes – removed and
not – are different from all the root e-class identifiers of the
e-classes in their forbid list.

3.2 In the Wild
OpenSMT [1], like Z3 [2], uses an e-graph to store equalities
when solving in the UF theory. Unlike Z3, it also stores dis-
equalities using disequality edges as described in Nelson’s
PhD thesis with the help of a forbid list. Listing 8 shows
an excerpt from OpenSMT’s e-graph implementation where
disequalities are inserted and processed by the e-graph.4

Listing 8. Excerpt of OpenSMT’s disequality handling.
1 bool Egraph::assertNEq (Enode * x, Enode * y, Enode * r)
2 {
3 Enode * p = x->getRoot();
4 Enode * q = y->getRoot();
5 // ...
6 Elist * pdist = new Elist;
7 pdist->e = p;
8 // ...
9 if (q->getForbid() == NULL)
10 // ...
11 q->setForbid(pdist);
12 else
13 // ...
14 q->getForbid()->link = pdist;
15 // ...
16 }

The disequality handler takes two e-nodes x and y to assert
as unequal with the e-node r being the reason, i.e. the justi-
fication or explanation [8], on Line 2. The last argument is
useful when explanations are generated. But for the sake of
explaining the excerpt it can be ignored. In Lines 3 and 4, the
e-class of each argument is computed using the union-find
data structure. To add x into the forbid list of y, an empty
linked list is created on Line 6 whose head is assigned on
Line 7 the e-class of x. In Line 9, the forbid list of the e-class
of y is checked for emptiness. If it is empty, it is set to the

4https://github.com/formalmethods/opensmt/blob/c7f18acd/src/egraph/
EgraphSolver.C#L923-L996

list created earlier using the setForbid method. If it is not
empty, it is appended to the existing forbid list on Line 14.
The logic to add y into the forbid list of x is identical and
hidden under Line 15.

4 Evaluation
To evaluate the two methods described in Sections 2 and 3,
we conducted the following two experiments.

Setting. We generated 30K pairs of expressions in egg’s
SymbolLang language [5] with maximum depth 5. The ex-
pressions range over the numbers 1 to 5 (inclusive) and over
applications of three functions, f, g, and h of arity 1, 2, and
3, respectively. One example of such a pair is the following:
(f (f (h 4 2 1))) and (f (h (g 5 1)(f (h 2 4 3))(g 5 5))).

We fix a ratio between the pairs int the 30 K to be treated
as disequalities and those to be treated as equalities. As Sym-
bolLang handles the numerals 1, 2, 3, 4, and 5 as symbols
and not integers – i.e., they are not inherently different for
SymbolLang – we always start by seeding the empty e-graph
with the pairwise disequality of all the numerals.

Experiment 1. As we are interested in finding whether a
set of (dis)equalities is consistent, we benchmark the time it
takes to check the consistency of the e-graph while varying
the ratio of disequalities. More precisely, for the Equality
Embedding method, we benchmark the execution time of
Line 29 of Listing 1, and for the Disequality Edges method,
we benchmark the execution time of the is_consistent()

function of Listing 7. The results are in Figure 2.

0 10 20 30 40 50 60 70 80 90 100
050

500

1,000

1,500

2,000

Ratio of disequalities (%)

Ti
m
e
to

ch
ec
k
fo
rc

on
tr
ad
ic
tio

ns
(`
s)

Equality Embedding (Section 2)
Disequality Edges (Section 3)

Figure 2. Time to deduce the consistency of an e-graph
seeded with 30 K pairs of expressions with a given disequali-
ties/equalities ratio.

https://github.com/formalmethods/opensmt/blob/c7f18acd/src/egraph/EgraphSolver.C#L923-L996
https://github.com/formalmethods/opensmt/blob/c7f18acd/src/egraph/EgraphSolver.C#L923-L996

Disequalities in E-Graphs: An Experiment

The execution time of both methods is generally constant
where Equality Embedding hovers around 20 `s while Dis-
equality Edges hovers around 1.9ms. Thus, Equality Em-
bedding is two orders of magnitude faster than Disequality
Edges. We attribute this difference to the fact that Disequal-
ity Edges’ consistency check must traverse the forbid lists
of every class and look up for each identifier the root one
in the union-find data structure, while Equality Embedding
only checks the root identifier of two e-classes.

Experiment 2. One difference between Equality Embed-
ding (Section 2) and Disequality Edges (Section 3) is that the
former requires performing e-matching [13] and saturating
the e-graph – both expensive operations – while the former
does not.Therefore, starting with an e-graph containing only
the disequalities between the numerals, we benchmark, for
both methods, the time for building the whole e-graph and
checking the consistency of the resulting graph. We plot the
results in Figure 3.

0 10 20 30 40 50 60 70 80 90 100
0.8
1

2

3

4

5

Ratio of disequalities (%)

Ti
m
e
to

bu
ild

th
e
e-
gr
ap
h
an
d

ch
ec
k
fo
rc

on
tr
ad
ic
tio

ns
(s
)

Equality Embedding (Section 2)
Disequality Edges (Section 3)

Figure 3. The time to build and deduce the consistency of
an e-graph seeded with 30K pairs of expressions a given
disequalities/equalities ratio.

The time for the Equality Embedding method increases
from 1 s to 4 s, and from 0.86 s to 0.96 s for the Disequal-
ity Edges method. As expected, the cost of performing e-
matching and saturating the e-graph becomes apparent.While
the Equality Embedding method seems to execute in con-
stant time, in reality it is not: we observe a subtle increase in
run time which we attribute to the increasing length of each
node’s forbid list. As the number of disequalities increases,
more classes are added to forbid lists, and the method copies
forbid lists from one e-class into the other at every union.

Experiment 3. Saturation in Equality Embedding intro-
duces additional nodes to the e-graph which in turn intro-
duces additional e-classes. For example, every equality term

is duplicated with the arguments swapped as a consequence
of the symmetry of equality. On the other hand, Disequality
Edges introduces no new nodes and no new e-classes. To
this end, we plot the number of e-classes and nodes in the
e-graph of all trials in Figure 4.

0 10 20 30 40 50 60 70 80 90 100
2

3

4

5

·105

Ratio of disequalities (%)
N
um

be
ro

fe
-c
la
ss
es

an
d
e-
no

de
si
n
th
e
e-
gr
ap
h

Nodes of Equality Embedding (Section 2)
Classes of Equality Embedding (Section 2)

Nodes of Disequality Edges (Section 3)
Classes of Disequality Edges (Section 3)

Figure 4. The number of e-classes (circles) and e-nodes (cir-
cle) of the e-graph seeded with 30K pairs of expressions a
given disequalities/equalities ratio.

As expected, the numbers of e-classes and e-nodes in the
Equality Embedding method increase while those of Dise-
quality Edges are constant. Also, we observe that the number
of e-classes in the Equality Embedding is much greater than
the one in Disequality Edges and is only slightly smaller
than the number e-nodes. One consequence is that e-classes
in the Equality Embedding method are small: they do not
contain many nodes and thus the power of the resulting
e-graph becomes questionable. We attribute this difference
to the fact that the Equality Embedding method synthesizes
many terms, each necessitating their own e-classes.

4.1 Results
Our experiments show that checking the consistency of an e-
graph using the Equality Embedding method is two-orders of
magnitude faster than theDisequality Edgesmethod. Yet, this
speed-up is shadowed by the expensive process of building
the e-graph, whether through fixing to maintain its invariant
or through saturation. Moreover, e-graphs are incremental
data structures; rebuilding is a common and frequent oper-
ation. Thus, this operation dominates the overall run time,
rendering Equality Embedding less efficient then Disequality
Edges.

We believe that we can further improve our implementa-
tion of is_consistent() from Listing 7: While unioning two
e-classes, the check for consistency can be performed and

George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

cached in a field in the e-graph which is_consistent() can
simply return.

5 Conclusion and Future Work
Our work on Propel [11, 12] suggests that disequalities can
be beneficial in theorem provers. Also, the original work on
e-graphs accounted for disequalities [7]. In this work, we
present preliminary results on integrating e-graphs into the
egg high-performance e-graph library. Our initial results
indicate that Disequality Edges (Method 2, Section 3) may
be more efficient for our use case. We plan to continue our
evaluation and our work to efficiently support disequalities
in e-graphs and integrate such data structure into the Pro-
pel theorem prover. We believe that our extensions to egg
could already be valuable to other researchers and we plan
to release them to the community.

References
[1] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei

Tsitovich. 2010. The OpenSMT Solver. In Tools and Algorithms for the
Construction and Analysis of Systems, Javier Esparza and Rupak Ma-
jumdar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 150–153.
https://doi.org/10.1007/978-3-642-12002-2_12

[2] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer-Verlag,
Berlin/Heidelberg, Germany, 337–340. https://doi.org/10.1007/978-3-
540-78800-3_24

[3] David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: A
Theorem Prover for Program Checking. J. ACM 52, 3 (May 2005),
365–473. https://doi.org/10.1145/1066100.1066102

[4] egg Documentation. 2019. Pattern in egg. https://docs.rs/egg/latest/
egg/struct.Pattern.html Accessed: 2024-04-12.

[5] egg Documentation. 2019. SymbolLang in egg. https://docs.rs/egg/
latest/egg/struct.SymbolLang.html Accessed: 2024-04-12.

[6] Bernard A. Galler and Michael J. Fisher. 1964. An Improved Equiv-
alence Algorithm. Commun. ACM 7, 5 (May 1964), 301–303. https:
//doi.org/10.1145/364099.364331

[7] Charles Gregory Nelson. 1980. Techniques for Program Verification.
Ph. D. Dissertation. Stanford, CA, USA.

[8] Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-Producing
Congruence Closure. In Term Rewriting and Applications, Jürgen Giesl
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 453–468.

[9] Robert Endre Tarjan. 1975. Efficiency of a Good But Not Linear Set
Union Algorithm. J. ACM 22, 2 (April 1975), 215–225. https://doi.
org/10.1145/321879.321884

[10] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast and Ex-
tensible Equality Saturation. Proceedings of the ACM on Program-
ming Languages 5, POPL, Article 23 (Jan. 2021), 29 pages. https:
//doi.org/10.1145/3434304

[11] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2023.
Type-Checking CRDT Convergence. Proceedings of the ACM on
Programming Languages 7, PLDI, Article 162 (June 2023), 24 pages.
https://doi.org/10.1145/3591276

[12] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2024.
Automated Verification of Fundamental Algebraic Laws. Proceedings
of the ACM on Programming Languages 8, PLDI, Article 178 (June
2024), 24 pages. https://doi.org/10.1145/3656408

[13] Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary Tatlock.
2022. Relational e-matching. Proceedings of the ACM on Programming
Languages 6, POPL, Article 35 (Jan. 2022), 22 pages. https://doi.org/
10.1145/3498696

https://doi.org/10.1007/978-3-642-12002-2_12
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1066100.1066102
https://docs.rs/egg/latest/egg/struct.Pattern.html
https://docs.rs/egg/latest/egg/struct.Pattern.html
https://docs.rs/egg/latest/egg/struct.SymbolLang.html
https://docs.rs/egg/latest/egg/struct.SymbolLang.html
https://doi.org/10.1145/364099.364331
https://doi.org/10.1145/364099.364331
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3591276
https://doi.org/10.1145/3656408
https://doi.org/10.1145/3498696
https://doi.org/10.1145/3498696

	Abstract
	1 Introduction
	2 Method 1: Equality Embedding
	2.1 Equality Embedding with Egg
	2.2 The method in the Wild

	3 Method 2: Disequality Edges
	3.1 Adding Support for Disequality Edges in egg
	3.2 In the Wild

	4 Evaluation
	4.1 Results

	5 Conclusion and Future Work
	References

