
JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 1

Consistent Local-First Software: Enforcing Safety
and Invariants for Local-First Applications

Mirko Köhler, George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Abstract—Local-first software embraces data replication as a
means to achieve scalability and offline availability. A crucial
ingredient of local-first software are mergeable data types, like
conflict-free replicated data types (CRDTs), which feature eventual
consistency by enabling processes to access data locally and later
merge it with other replicas in an asynchronous manner. Notably,
the merging process needs to adhere to application constraints
for correctness. Ensuring such application-level invariants poses a
challenge, as developers must reason about the replicated program
state and resort to manual synchronization of specific application
components to enforce the invariant.

This paper introduces CONLOC (Consistent Local-First Soft-
ware), a novel system designed to automatically enforce safety
and maintain invariants in local-first applications. CONLOC
effectively addresses the issue of preserving invariants in the
execution of programs with replicated data types, including
CRDTs. Our approach is able to verify the correctness of many
CRDTs examined in the literature and in implementations, such
the ones used in the Riak database. CONLOC ensures that
applications are automatically synchronized correctly, resulting in
substantial latency and throughput improvements when compared
to sequential execution, while upholding the same set of invariants.

Index Terms—replication, consistency, verification, CRDT, Java.

I. INTRODUCTION

D ISTRIBUTED applications consist of multiple processes
running in parallel on possibly geo-distributed machines.

These processes communicate changes to coordinate and
achieve a common global view of the application state. For
the coordination strategy, applications have the choice between
two options. First, they may coordinate often using a consensus
algorithms like Paxos [1], [2] for example, to agree on an order
of operations at the expense of increasing latency and impeding
efficient execution. Second, they may coordinate occasionally
and operate locally on replicas, allowing for rapid progress
at the expense of encountering and handling temporary data
inconsistencies or in some cases, permanent conflicts.

Local-first software [3] is software where processes interact
solely with local replicas and eventually merge their modifica-
tions and resolve conflicts. This solution enhances first latency
since access to local replicas is fast, second scalability since
clients access replicas in parallel, and third offline availability
since processes can function solely on local data [4].

Mirko Köhler is with Technische Universität Darmstadt, Germany. E-mail:
koehler@cs.tu-darmstadt.de

George Zakhour is with the Universität St. Gallen, Switzerland. E-mail:
george.zakhour@unisg.ch

Pascal Weisenburger is a post-doctoral researcher at the Universität St.
Gallen, Switzerland. E-mail: pascal.weisenburger@unisg.ch

Guido Salvaneschi is a professor at the Universität St. Gallen, Switzerland.
E-mail: guido.salvaneschi@unisg.ch

The design of local-first applications, however, poses funda-
mental challenges compared to centralized systems where data
is stored in a single place. A major problem is resolving state
modification conflicts; when multiple processes concurrently
modify their local replicas. Over time, numerous approaches [5],
[6] have emerged that use mergeable replicated data types
to ensure convergence by design. Most notably, conflict-free
replicated data types (CRDTs) [7], [8].

CRDTs enable automatic conflict resolution. Implemen-
tations across a broad range of data structures exist: lists
and sets [9], [10], trees [11], JSON data [12], and rich text
documents [13]. In practice, they have been adopted to ensure
scalability by Facebook in the Apollo low-latency “consistency
at scale” database [14], by PayPal to manage compliance
statuses between data centers with dynamic infrastructures [15],
by TomTom to propagate navigation data among a user’s
devices [16], and by numerous databases [17], [18], [19].

These data types implement Eventual Consistency [20]:
replicas can be temporarily inconsistent but eventually converge
when the replicas communicate all the changes. We refer to
Eventually Consistent operations as Weak.

While Eventual Consistency boosts availability and perfor-
mance, it might compromise correctness. For example, in
an online shopping scenario, a buyer may locally record
a successful payment, while the seller locally records a
cancellation. Only after merging, the buyer will see the
cancellation, i.e., they may temporarily see the approval before
the system eventually reaches consistency.

To ensure correctness, such situations require a stronger
consistency level where operations are executed as if they were
on a single centralized system regardless of data distribution,
i.e., requiring immediate coordination between the buyer and
seller. We refer to operations that require that all nodes have
a consistent view of the data at all times [2] through strict
serializability [21] as Strong.

Sadly, Strong consistency sacrifices several advantages of
local-first software such as offline availability. Hence, it is
crucial that only as few operations as possible operate with
Strong consistency. For this reason, when using mergeable
data types, developers carefully choose the operations that
need Strong consistency – for those, they manually implement
coordination on top of the default Eventual Consistency.

A common approach to reason about software correctness
is to consider application invariants. Yet, enforcing invariants
on replicated data as required by local-first software is
complex since modifications can be executed concurrently on
different replicas. For example, a bank account should always
have a positive balance. An implementation with only Weak

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 2

operations cannot consistently ensure a non-negative balance,
as concurrent withdrawals may result in a negative balance
when merged everywhere. Thus, it is not enough that invariants
are satisfied for the local state, instead they must also hold
when states are merged.

In summary, when enforcing invariants with local-first
software, developers must reason about the local state of a
process and about concurrent modifications. To enforce such
invariants, additional synchronization is needed.

The decision to employ Strong or Weak, however, is a
balancing act: specifying the wrong consistency to operations
may introduce bugs, and excessive synchronization reduces the
application’s availability; a Strong operation labeled Weak will
be buggy, and a Weak operation labeled Strong will sacrifice
the ability to provide continuous operations [22].

In this paper, we introduce a technique to automate the
correct labeling of Strong and Weak operations. We introduce
CONLOC, a system to enforce correct execution of local-
first software with mergeable data types, such as CRDTs,
ensuring that application invariants hold when executing
operations concurrently. Our system uses techniques from
software verification to deduce the correct consistency level
for each method, enforcing the application-level invariants.

Our approach is the first to provide the combination of
the following crucial features: (1) Unlike functional data
structures [23], [24], [25], CONLOC targets imperative languages
with mutable data. (2) Unlike approaches that only provide a
verification framework for Weak execution [25], [26], [27], [28],
CONLOC not only provides a verification framework, but also a
code generation system and a middleware to ensure the correct
execution of applications mixing Weak and Strong operations.
(3) In contrast to other approaches [29], [30], CONLOC focuses
on state-based replication, which requires a different treatment
than operation-based replication (Section VI-C).

To this end, the verification capitalizes on object encapsula-
tion provided by object-oriented languages, such as the widely
adopted C++, C#, Java, and Kotlin. For the purposes of this
work, our focus is primarily directed towards Java due to its
prevalence [31]. In summary, our contributions are as follows:
• We design CONLOC, a system to ensure application-level

invariants (i.e., expressed in the domain of the application,
like “the bank account should be positive”) to provide
safe local-first software with mergeable data types. CON-
LOC automatically synthesizes correct synchronization of
operations, thereby guaranteeing safe execution.

• We implement CONLOC for Java, and develop the verifica-
tion of invariants on top of the Z3 SMT solver.

• We evaluate CONLOC on case studies from literature,
implement a new CRDT library, and migrate the Riak
CRDT library to CONLOC. The results demonstrate that
adopting CONLOC in existing applications requires limited
effort, the verification is efficient and CONLOC improves
the performance of such applications compared to a correct
but conservative baseline using Strong operations only.

II. TOWARDS SAFE LOCAL-FIRST APPS

We motivate our approach with a running example of a
distributed account that holds client credits for an online shop.

1 public class CreditAccount {
2 public final ReplicatedCounter credits;
3

4 public CreditAccount() {
5 credits = new Counter(/*initial value*/ 0);
6 }
7

8 public int getValue() {
9 return credits.getValue();

10 }
11

12 public void deposit(int val) {
13 if (val < 0) throw new Exception();
14 credits.increment(val);
15 }
16

17 public void withdraw(int val) {
18 if (val < 0 || val > getValue())
19 throw new Exception();
20 credits.decrement(val);
21 }
22

23 public void merge(CreditAccount other) {
24 credits.merge(other.credits);
25 }
26 }

Fig. 1: Distributed implementation of CreditAccount.

A. Version 1: Distributed Implementation

Figure 1 shows the account that stores credits. The
CreditAccount class represents a customer’s credit account with
three operations: retrieving (Line 8), depositing (Line 12), and
withdrawing credits (Line 17). Internally, CreditAccount utilizes
a mutable counter (Line 2) with increment, decrement, and get
operations. Depositing and withdrawing mutates the object’s
state as opposed to returning a new (modified) counter as one
might expect in a functional implementation.

Both operations check that the argument (val) adheres to the
precondition; depositing or withdrawing a negative amount is
disallowed, and withdrawing is possible when enough credits
exist (Line 19). Therefore the application invariant is that the
CreditAccount balance is non-negative, i.e., getValue() >= 0.

Clients, logically single-threaded, connect to the application
and perform operations on CreditAccount. Each client accesses
a single replica, i.e., an instance of CreditAccount hosted
on its own server. Replicas accept operations and apply
them locally. However, replicas have to remain consistent
with each other. One solution is to immediately coordinate
the states at every client access (Figure 2a). For example,
when replica R1 deposits 2 credits, R2 must wait until the
operation is finished. In this case, whenever an operation
is requested, the replicas coordinate until the operation is
executed on all replicas, resulting in a sequential execution of
operations (Strong consistency). While this solution satisfies
the application invariant, it compromises availability.

Instead, to ensure availability, we drop immediate coordina-
tion and allow replicas to asynchronously propagate their state
to other replicas (Weak consistency). Upon receiving a state,
a replica merges it into its own using some strategy which is
called by the middleware as part of the state propagation.

Rather than devising a merge strategy from the ground
up, we use a CRDT as ReplicatedCounter. By design, CRDTs
support Eventual Consistency: local states can be immediately
modified and sent later, still ensuring that replicas eventually
converge to a consistent state. The CRDT counter’s merge
strategy retains a mutable data structure that associates each

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 3

R1 R2
0 0

2

7

2

15

7

merge

inc(2)

merge

15

inc(5)

merge

inc(8)

(a) Sequential.

R1 R2
0 0

10 5

15

15

deposit(5)

merge

merge

deposit(10)

(b) Asynchronous.

R1 R2
10 10

3 2

-5

-5

withdraw(8)

merge

merge

withdraw(7)

(c) Unsafe execution.

Fig. 2: Execution of replicated data types.

individual replica with the number of increments applied to it.
The merge method of the CreditAccount can then simply call
the underlying counter’s merge function (Line 23).

Figure 2b shows a potential execution of an account:
Both replicas start with state 0. R1 deposits 10 credits; R2
concurrently deposits 5. As updates change the local state, R1
has 10 credits and R2 has 5. Eventually, R1 sends its state to
R2, which merges it with its own, resulting in 15. After R2
sends its state to R1, both replicas hold the (correct) state 15.

While a CRDT provides the required availability and merge
logic, ensuring that the credit account cannot be negative poses
a challenge. As with Strong consistency, one could implement
withdraw to call the respective decrement operation on the
CRDT only when the withdrawn amount is within limits of
the account. However, with Weak consistency, this approach
leads to a flawed application. Consider Figure 2c, in which
both replicas are initially in state 10. R1 withdraws 7 while R2
withdraws 8. Both operations pass the check in the withdraw
method since there are sufficient credits. Then R1 sends its
state to R2. However, when R2 merges that state the result is
−5, violating the invariant. So, checking the credits amount
before withdrawal (Figure 1, Line 19) is only valid with Strong
consistency where all operations are applied sequentially.

The solution is to limit the withdraw method – which is
the one with the potential to violate the invariant – to Strong
consistency, i.e., to prevent it from being called concurrently
and avoiding withdrawals by two processes at the same time.
While there exist solutions that can reduce the amount of
coordination such as Bounded Counters [32], the need for
coordination can not be removed completely.

Overall, the goal is to adopt Weak consistency as much as
possible without violating any application invariants. Yet, decid-
ing the appropriate consistency level is not straightforward and
requires knowledge about the merge strategy. To demonstrate,
consider the case of a CRDT with a reset operation, in addition
to the operations already discussed, which sets the credits back
to 0. The reset method cannot violate the invariant by itself
as it can never yield a negative balance. A developer may
thus conclude that reset can always be executed concurrently
with other operations and assign it Weak consistency. Yet, this
is wrong. When reset occurs concurrently with withdraw the
balance can become negative. Consequently, the concurrent
execution violates the invariant even if a sequential execution
(withdraw followed by reset) does not. In a correct solution, to
preserve the invariant, reset executes with Strong consistency.

1 public class CreditAccount {
2 public final ReplicatedCounter credits;
3

4 //@ invariant getValue() >= 0;
5
6 /* Initial Precondition on Constructor */
7 //@ ensures getValue() == 0;
8 public CreditAccount() { /* ... */ }
9

10 //@ ensures \result == \old(credits.getValue());
11 public int getValue() { /* ... */ }
12

13 //@ requires val >= 0;
14 //@ assignable credits;
15 //@ ensures stateful(credits.increment(val));
16 public void deposit(int val) { /* ... */ }
17

18 //@ requires 0 <= val && val <= getValue();
19 //@ assignable credits;
20 //@ ensures stateful(credits.decrement(val));
21 public void withdraw(int val) { /* ... */ }
22

23 //@ requires (\sum int i; i >= 0 && i < numOfReplicas();
Math.max(credits.incs[i], o.credits.incs[i]) −
Math.max(credits.decs[i], o.credits.decs[i])) >= 0;

24 //@ ensures stateful(credits.merge(other.credits));
25 public void merge(CreditAccount o) { /*...*/ }
26 }

Fig. 3: Credit account with invariants.

In summary, CRDTs enhance availability and ensure that
replicas eventually converge by design. However, maintaining
application invariants requires additional synchronization logic.
Too many synchorizations eliminates the benefits of CRDTs,
while too few synchronizations leads to buggy applications.

B. Version 2: Safe Local-First Applications

We design CONLOC, a system to ensure the safety of
replicated operations with mergeable data types and application
invariants. CONLOC automatically verifies which methods
require Strong consistency and where Weak consistency suffices.
Thus, CONLOC enhances an application to run as a local-
first application (i.e. Weak) where possible but imposes
synchronization (i.e. Strong) when safety requires it.

Similar to Version 1, developers employ a CRDT counter.
With CONLOC they further provide the invariant as well as
pre- and postconditions of operations and the merge method as
annotations. Figure 3 shows the CreditAccount example with
additional annotations (based on JML [33]).

Initially, developers define the invariant, asserting that the
account balance is not negative (Line 4) which CONLOC ensures
is upheld even under concurrent execution. As the getValue

method is pure – deterministic and non-mutating – it can freely
appear in invariants, pre-, and postconditions.

For each method, developers specify pre- and postconditions.
Preconditions (requires keyword) define when a method can be
execute. For instance, deposit requires that the amount is non-
negative (Line 13). Postconditions (ensures keyword) define
the effect of a method on the return value and state. In the
postcondition of getValue (Line 10), \result is the return value
and \old refers to the object before method execution. The
stateful construct captures the effect of calling another method.
In the example, we assert that the state of credits after deposit

is the same as executing increment on credits (Line 15).
Developers also specify which fields are mutated (assignable

keyword), e.g., the credit field in deposit (Line 14), and no field

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 4

x, f,m,C ∈ Identifiers, lit ∈ Literals
ClassDecl ::= class C {@inv FieldDecl∗ MthdDecl∗}

@inv ::= invariant e;

FieldDecl ::= T f;
MthdDecl ::= @mthd T0 m(T1 x) { java_stmt∗ }

@mthd ::= requires e; assignable assign∗; ensures e

assign ::= f | f[x] | f[⋆]
e ::= lit | x | e == e | e ⊕ e | e[e]

| this | e.f | e.m(e) | forall(T x; e; e)
| exists(T x; e; e) | sum(int x; e; e)
| replicaId | numOfReplicas | old(e) | result
| stateful(e.m(e))

T ::= int | boolean | ... | T [] | C

Fig. 4: Core language of CONLOC.

in getValue. The initial state is constrained by preconditions on
the constructor, e.g., that the initial value of the counter is 0
(Line 7). Since invariants must always hold, including before
and after one of the class methods are invoked, all method pre-
and post-conditions are conjoined with the class invariants.

For merge (Line 25), the precondition specifies when two
states are mergeable. If the precondition (Line 23) is satisfied,
then merging does not result in a negative counter. The postcon-
dition uses stateful, indicating that merging two CreditAccount

instances involves merging the underlying counters.
CONLOC enables composing replicated data types by referring

to method calls in specifications, which is crucial as operations
on one data type (e.g., CreditAccount) are often expressed with
operations on another (e.g., counter CRDT).

CONLOC identifies the set of operations that can potentially
violate the invariant if executed concurrently. The correspond-
ing methods are assigned Strong consistency resulting in a
sequential execution that requires coordination. In the example,
withdraw executes with Strong consistency while the other
methods execute with Weak consistency, enhancing availability.

III. DESIGN OF CONLOC

Based on the observations in II-B, in this section, we
systematically present CONLOC, our system for safe local-first
software with application invariants.

A. Core Language

We introduce a core language for CONLOC, which provides
a systematic treatment of the constructs informally introduced
in Figure 3, based on a Java-like language with extended
syntax for method pre- and postconditions. A program is a
set of classes, (Figure 4), which consist of an invariant and a
sequence of field and method declarations. An invariant @inv
consists of an annotation expression e. Fields have a type T
and a name f. Methods have a name m, a return type T0, and
a (single, for simplicity) parameter x of type T1. Methods have
annotations @mthd for preconditions (requires), postcondi-
tions (ensures), and fields that are mutated (assignable).
For arrays, a developer can specify which element is mutated,
either one (f[x]) or all (f[⋆]).

Annotations use expressions e, which include literals, e.g.,
integers and booleans. Variables x refer to local variables.

JlitK ≡ lit

Je1 == e2K ≡ Je1K = Je2K
Je1 ⊕ e2K ≡ Je1K⊕̂Je2K

JxKΘ ≡ Θ(x)

Je1[e2]K ≡ Je1K(Je2K)
JthisKthis,·,· ≡ this

Je.fK ≡ fld f(JeK)
Je0.m(e1)K ≡ mresult (Je0K, Je1K), if m is pure

Jstateful(e0.m(e1))K·,old,· ≡ Je0K = mstate(Jold(e0)K, Jold(e1)K)
if old ̸= ⊥

Jforall(T x; e0; e1)KΘ ≡ ∀γ ∈ T. Je0K[Θ,x→γ] ⇒ Je1K[Θ,x→γ]

Jexists(T x; e0; e1)KΘ ≡ ∃γ ∈ T. Je0K[Θ,x→γ] ∧ Je1K[Θ,x→γ]

Jsum(int x; e0; e1)KΘ ≡
∑

n∈{n∈Z|Je0K[Θ,x→n]}Je1K[Θ,x→n]

JnumOfReplicasK ≡ some c0 ∈ N
JreplicaIdK ≡ some c1 ∈ N with c1 < c0

Jold(e)Kthis,old,res ≡ JeKold,old,res , if old ̸= ⊥
JresultK·,·,res ≡ res , if res ̸= ⊥

Fig. 5: Translation function for expressions.

e == e checks for equality, and operators ⊕ include, for
example, +, −, && and <. The expression e[e] selects an element
of an array. The current object is accessed by this. Fields are
accessed by e.f. Methods are called with e.m(e). The forall
or exists constructs quantify over types T and take boolean
expressions for the range and for the body. Summation sum
is restricted to range over integers as the underlying solver Z3
requires a fixed range. replicaId is an identifier of the current
replica, and numOfReplicas is the total number of replicas.
old(e) is the state before executing the method by replacing
this in e with old . result refers to the return value. stateful
turns impure method calls into constraints by relating the states
before and after a method call. For example, in Figure 3, in
Line 20, the stateful keyword refers to the credits object
itself after the mutation rather than to the return value. Types
T supported by constraints are all base types, such as int and
boolean, array types T [], and class types C.

B. From Annotations to Constraints

CONLOC employs the annotations and class specifications
to define data types D. For every class, CONLOC defines a
mathematical data type that consists of 1) an internal (local)
state S , i.e., a tuple of its fields, 2) a set of methods, and
3) a set of constraints, i.e., logical formulas that specify the
behavior of the data type generated from the annotations.

1) Expression Translation: We first define translation from
annotations to mathematical constraints V for expressions
(Figure 5). The translation function JeKΘthis,old,res takes the
expression e and three additional parameters. The parameter
this ∈ V refers to state of the object which contains e. The
two parameters old , res ∈ V ∪ {⊥} is the state of this object
before executing a method (old), and the return value (res).
If e is not in a method, old and res are ⊥. Store Θ : x → V
maps local variables to the respective constraints. We write JeK
when the other parameters are clear. For literals, equality and
operators ⊕, the translation is straightforward. Variables x are
looked up in the local store Θ. Arrays with elements of type
T are partial maps Z 7→ T in constraints: e1[e2] accesses the

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 5

element at index e2 in the array e1. this is the this argument
of the translation function.

We introduce three auxiliary functions, defined later: 1) fld f :
S → T selects the value of a field with type T from a state
S . 2) mresult : S × T0 → T1 takes the state of an receiver
object S and argument T0 of a call to m, and gives the return
value. 3) mstate : S × T → S returns the state of the receiver
after the method call. Fields are selected from an object by
applying fld f . Method calls e0.m(e1) translate as mresult . This
can only be applied when m is pure, i.e., when its assignable
annotation is empty. stateful turns impure method calls into
constraints by relating the states before and after a method call
using mstate . forall, exists, and sum are translated easily to
constraints. Sums are unrolled, which is possible as the range
is fixed at compile time. replicaId and numOfReplicas

are chosen arbitrary but fixed. old(e) translates e with this

changed to old . result is the return value.
2) Invariants: We define how to built invariants from classes.

An invariant constraint IC of class C is a constraint on the
state s of an object, i.e., IC(s) means that the object in state
s satisfies the predicate IC. We write I if C is clear. From
annotations invariant e , we generate invariant constraints I
by translating e .

IC(s) ≡ JeK[]s,⊥,⊥
We apply the translation with an empty initial store, as
invariants do not contain free variables. old and res are ⊥, as
invariants have no return values or states before execution.

3) Pre- and Post-Constraints: From every method’s annota-
tions, we derive pre- and post-constraints. In the following, let
method m be declared as @mthd T0 m(T1 x) where @mthd is
requires ereq ; assignable fs; ensures eens . Method pre-
constraints mpre(s, e) are constraints on the object state s and
the method argument e . Method m has pre-constraint:

mpre(s, e) ≡ JereqK
[x→JeK]
s,⊥,⊥

We evaluate the annotation ereq with the current state of the
object s as this. The store maps the parameter x to the
translated argument e . As with invariants, old and res are ⊥.

Method post-constraints mpost(s, s
′, r, e) refer to the object

state before (s) and after (s′) executing the method, to the
return value r, as well as to the argument e. Post-constraints
are derived from the ensures and assignable annotations.
The former are translated similar to pre-constraints, and the
latter are translated such that the states s and s′ are equal for
every field f that is not assigned.

mpost(s, s
′, r, e) ≡ JeensK

[x→JeK]
s′,s,r ∧

∧
f /∈fs

(fld f(s) = fld f(s
′))

A sequential precondition of a method mpre(s,e) is the
weakest precondition [34], [35], [36] for that method such that
the postcondition mpost (s, s’, r, e) holds.

4) Initial Constraints: We define a constraint init for the
initial state, i.e., init(s) is satisfied for the initial state. Initial
constraints are derived from postconditions of constructors.

5) Class Types: We show how class types are repre-
sented in constraints. Let class C have the declaration
class C {inv fields methods} with fields = T0 f0; ...Tn fn;.

We model the state s ∈ S of an object (of class C) as a tuple of
the field values (v0, ..., vn) ∈ T0×...×Tn. For every field f, we
additionally define the function fld f to select the field f from
a tuple. For every method m of C, we define two functions for
computing 1) the result of the method, and 2) the state of C after
executing the method. Let @mthd T0 m(T1 x) { java_stmt∗ }
be the method declaration of m in C, then these functions are:
• mresult : S × T → T with

mresult(s, e) = r ⇔ mpost(s, s
′, r, e)

• mstate : S × T → S with
mstate(s, e) = e ′ ⇔ mpost(s, s

′, r, e ′)

For merge, we have a similar state function that takes two
states instead: mergestate : S × S → S .

6) Merge Constraints: The merge method is treated anal-
ogously to other methods. Thus, its pre-constraints, post-
constraints, and state are accessible through the mergepre ,
mergepost , and mergestate functions which instantiate m in
mpre , mpost , and mstate with merge respectively. Additionally,
we verify that merge satisfies the constraints of being commu-
tative, idempotent, and associative – in line with CRDTs [7].

7) Example: We demonstrate the translation procedure for
some constraints in the running example. The invariant of
CreditAccount (Figure 3, Line 4) results in the constraint:

I(s) ≡ getValueresult(s) ≥ 0 (1)

We can call getValue in the invariant, because it is a pure
method. For getValue (Figure 3, Line 10) the field credits is
not assigned, generating the following post-constraint:

getValuepost(s, s
′, r) ≡ r = getValueCRDT

result (fldcredits(s))
∧ fldcredits(s) = fldcredits(s

′)
(2)

Here, getValueCRDT
result refers to the getValue method of the

underlying CRDT. The precondition for withdraw (Figure 3,
Line 18) is:

withdrawpre(s, x) ≡ 0 ≤ x ∧ x ≤ getValueresult(s) (3)

The ensures annotation for withdraw (Figure 3, Line 20) has
an impure method call:

withdrawpost(s, s
′, r, x) ≡

fldcredits(s
′) = decrementCRDT

state (fldcredits(s), x)
(4)

As above, decrementCRDT
state is the decrement method in the

underlying CRDT. The initial constraint for CreditAccount is:

init(s) ≡ getValueresult(s) = 0 (5)

C. From Constraints to Properties

From each class’s constraints, we derive properties which,
when proven, (1) guarantee that the class’s operations always
satisfy its invariant and (2) imply a consistency specification for
which methods can be safely executed with Weak consistency.

First, we recap the safety framework by Nair et al. [37].
Then, we define the execution model of CONLOC. Finally, we
show that the execution model satisfies the safety framework.

1) Safety Framework: We base our work on a verification
technique that introduces two groups of properties: invariant
sufficiency and mergeability [37] for a transition system (TS).

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 6

Invariant sufficiency states that the invariant is satisfied under
sequential execution. If it is not satisfied, even sequentially,
it can never be (also not under concurrent execution). Merge-
ability specifies that an object can be merged with another
(possibly concurrently modified) object. To prove a program
safe, i.e., the (distributed) execution cannot violate the invariant,
it is key to prove invariant sufficiency and mergeability.

a) Invariant Sufficiency: For the formal specification we
first define the global invariant Î which holds for a global state
ŝ when the local invariant I holds for all of its local states,
i.e., Î(ŝ) = ∀i ∈ P. I(si).

Definition 1 (Invariant sufficiency). The TS (Ŝ ,→) is called
invariant-sufficient w.r.t. I iff for all global states ŝ1 and ŝ2
holds Î(ŝ1) ∧ (ŝ1 → ŝ2) ⇒ Î(ŝ2).

We will now define properties for mergeable data types that
enable invariant-sufficient executions. First, the initial state of
the data type has to satisfy the invariant.

init(s) ⇒ I(s) (i0)

For each method of the data type, if the preconditions are
satisfied, then the invariant holds after execution of the method.

I(s) ∧mpre(s, e) ⇒ I(mstate(s, e)) (i1)

These two properties ensure safety in a sequential execution but
they do not ensure safety in a concurrent program where states
are merged and may no longer satisfy the invariant afterwards.

Invariant violation example. The invariant of Replicated-
Counter states that the value must be positive, i.e., I(s) =
getValueresult(s) ≥ 0. A decrement method dec that decre-
ments the counter by 1 has the precondition decpre(s) =
getValueresult(s) ≥ 1, ensuring dec to not violate the invariant.
Yet, when merging, the following execution with the states
replicated to two replicas (s1, s2) is possible:

(1, 1)
dec(s1)−−−−→ (0, 1)

dec(s2)−−−−→ (0, 0)
s1←merge(s1,s2)−−−−−−−−−−→ (−1, 0)

In the last state, the invariant does not hold for process p1
despite dec’s precondition being satisfied in every step.

b) Mergeability: Two states s1 and s2 are mergeable,
denoted by the symmetric and reflexive relation M(s1, s2) if
they do not violate the invariant after merging them. M is
the weakest precondition for merge w.r.t. the invariant I, i.e.,
merge preserves the invariant if M is satisfied:

I(s1) ∧ I(s2) ∧M(s1, s2) ⇒ I(mergestate(s1, s2)) (i2)

Further, we define global mergeability M̂ that holds for
a global state ŝ if all local states in ŝ are mergeable, i.e.,
M̂(ŝ) = ∀i, j ∈ P. M(si, sj). As merging can happen at any
point in time, we have to ensure that mergeability always holds,
thus making mergeability another invariant of the system.

Definition 2 (Mergeability). The TS (Ŝ ,→) is called mergeable
w.r.t. M iff for all global states ŝ1 and ŝ2 holds M̂(ŝ1)∧(ŝ1 →
ŝ2) ⇒ M̂(ŝ2).

To prove mergeability, we introduce the following two prop-
erties for mergeable data types. First, we define mergeability

τi = m(e); τ ′i m ∈ Weak mpre(si, e)

p̂ → p̂[pi 7→ (mstate(si, e), τ
′
i)]

TR-WEAK

pi = (si,m(e); τi) m ∈ Strong

M̂(s1, . . . , sn) mpre(mergei∈P(si), e)
s = mstate(mergei∈P(si), e)

p̂ → ((s, τ1), . . . , (s, τn))
TR-STRONG

τi = mergej ; τ
′
i M(si, sj)

p̂ → p̂[pi 7→ (si,merge(sj); τ
′
i)]

TR-MERGE

Fig. 6: The transition relation

of initial states, i.e., the intial state of a mergeable data type
has to be mergeable:

init(s1) ∧ init(s2) ⇒ M(s1, s2) (m0)

Second, we define meargeability of merge, i.e., if two merge-
able states are merged then the resulting state is mergeable:

M(s1, s2) ⇒ M(mergestate(s1, s2), s2) (m1)

c) Safe System: A safe system is one that enjoys invariant
sufficiency and mergeability as defined above.

2) System Model: The model assumes a fixed number n of
processes each uniquely identified by an id i ∈ {1, . . . , n} = P .
Every process i stores the local state si ∈ State of a mergeable
data type and a trace τi, defined in Definition 3, of the program
the process wishes to execute. We use pi = (si, τi) to refer to
the state and the trace of process i. We use p̂ = (p1, . . . , pn)
to refer to all the processes and use p̂[pi → p′i] to modify the
state of pi to p′i and leave all other processes unchanged.

Definition 3 (Traces and actions). Traces τ are either empty,
denoted with ·, or an action α followed by another trace τ ′,
denoted with α; τ ′. An action α is either a method call of
the form m(e) or mergej that instructs the process to start
merging its state with the state of process j.

The model is parametrized by two disjoint sets of methods,
Weak and Strong, with the assumption that merge ∈ Weak.
We denote by Ŝ = (S × τ)n the global state of all processes,
i.e. their local state and the trace of their program.

Figure 6 defines a transition system (Ŝ ,→) for global
states [38] of a mergeable data type and their traces which
models the execution of a CONLOC program. TR-WEAK models
Weak execution where a method is executed locally by effecting
only the local state. TR-STRONG models strong execution
where the local states of all1 processes are merged before the
method is executed. The notable difference between these two
rules is that TR-WEAK depends on and modifies the local
state of a single process whereas TR-STRONG depends on
and modifies the state of all processes. As such, methods are
always executed atomically on a single replica and – in the
case of Strong consistency – atomically in the entire distributed
system across all replicas w.r.t. the accessed objects.

1The rule can be easily adapted to require only a majority to step into s to
support a majority quorum, e.g., allowing for failing nodes.

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 7

TR-MERGE defines the semantics of mergej . For mergeable
processes i and j, the mergej action is replaced by a call to
the merge method with a copy of the state sj . This rule allows
process j to modify its state concurrently with the merge.

Example. With n = 2 processes, the global state of
ReplicatedCounter is (s1, s2) = (0, 0) i.e., the counter is 0
on both replicas, with the traces τ1 = inc();merge2; · and
τ2 = inc(); · with inc,merge ∈ Weak.

The following diagram exemplifies the execution:
((0, inc();merge2; ·), (0, inc(); ·))

→ ((1,merge2; ·), (0; inc(); ·)) → ((1,merge2; ·), (1, ·))
→ ((1,merge(1); ·), (1, ·)) → ((2, ·), (1, ·))

3) Safety of CONLOC: As CONLOC’s TS is parametrized
by the Weak and Strong sets, we now present the properties
that Weak and Strong methods must satisfy.

a) Consistency Specification: The separating criterion
between Weak and Strong methods is whether mergeability is
retained after a local execution or not. Weak methods retain it
while Strong methods require coordination.

We define mergeability for Weak methods:

M(s1, s2) ∧mpre(s1, e) ⇒ M(mstate(s1, e), s2) (m2)

Classifying Strong methods solely as those that do not satisfy
m2 is insufficient, as this could result in a non-mergeable state
after executing the designated Strong method m. Since a non-
mergeable state can never be merged with any other state
(as m1 requires mergeability for merging), diverged states in
the distributed program cannot be reconciled.

Thus we define mergeability for Strong methods as follows:

M(s1, s2) ∧mpre(merge(s1, s2), e)
⇒ M(mstate(merge(s1, s2), e), s2)

(m3)

The property states that, if a state is mergeable with another,
it must remain mergeable with the other state after merging
and applying the method to the resulting state. Crucially, this
precondition is checked not only on a local state but also on
the merge of any two states, necessitating coordination.

The m3 property ensures that merging after executing a
Strong method remains possible. The two properties m2 and
m3 determine whether a method can be safely executed Weakly
or Strongly. The following lemma states the expected result
that all Weak methods can also be safely executed in Strongly:

Lemma 1. If a method m satisfies m2 then m satisfies m3.

Proof. Assume m2 holds for m for all states s1 and s2.
Let s′ = merge(s1, s2), then from M(s1, s2) and m1, we
know M(merge(s1, s2), s2). Thus, from m2, we conclude
M(mstate(merge(s1, s2)), s2).

b) Safety: We now prove that CONLOC’s transition system
is safe when the methods of the Weak and Strong sets obey
m2 and m3, respectively. First, we instantiate the states of the
safety framework with the domain of the TS, i.e, with pairs
of process state and trace. Second, we introduce valid data
types which are those that satisfy the properties of the safety
framework and the condition stated in the previous sentence.

 Compiler Middleware

Java Sources

+ Annotations

Libraries
Java

Compiler

SolverPr
op

er
tie

s

C
on

si
st

en
cy

Sp
ec

ifi
ca

tio
n

Compiled sources

m
er

ge

Replicated objects

C
on

st
ra

in
ts

Annotation
Parser

Fig. 7: The architecture of CONLOC.

Definition 4 (Valid data type). Let the set of methods of a
mergeable data type be divided into two disjoint sets Weak
and Strong . A mergeable data type is called valid if i0, i1, i2,
m0, and m1 hold, and m2 hold for all methods in Weak , and
m3 holds for all methods in Strong .

The validity of data types is required for safe transition
systems that satisfy invariant sufficiency and mergeability.

Theorem 1 (Safety). The TS for a valid mergeable data type
is invariant-sufficient w.r.t. I and mergeable w.r.t. M.

Proof. By case analysis on p̂1 → p̂2. We write ŝ for the
projection of p̂ to the process states. Case TR-WEAK. The
premise gives (a) mpre(si, e). Î(ŝ2) follows from (a), I(ŝ1),
and i1. M̂(ŝ2) follows from (a), M̂(ŝ1), and m2. Case TR-
STRONG. The premise gives (b) mpre(mergep∈P(si)). (c)
I(mergei∈P(si)) follows from I(ŝ1), M̂(ŝ1), and i2. Î(ŝ2)
follows I(m(mergei∈P(si))) which follows from (c), (b), and
i1. M̂(ŝ2) follows from (b), M̂(ŝ1), and m3. Case TR-MERGE.
The process states do not change.

We formally define program executions, with safe executions
defined as those where the invariant holds at every step.

Definition 5 (Execution). Given a global state p̂0 an execution
from p̂0 is a sequence of global states p̂0, p̂1, . . . such that
p̂k → p̂k+1.

Definition 6. An execution from p̂0 is safe if for all states p̂k
in the execution Î(p̂k) and M̂(p̂k) hold.

The last step is to show that transition systems for valid
mergeable data types induce safe executions.

Theorem 2. For every p̂0 such that init(p̂0) and a TS for a
valid mergeable data type, all executions from p̂0 are safe.

Proof. Follows from i0, m0 and Theorem 1.

4) Verification: The CONLOC middleware ensures safe exe-
cutions given that a mergeable data type is valid (Definition 4).
To check safety, we employ a solver that first checks that
properties i0 to i2 and m0 and m1 are valid. Then, for every
method, we check if it satisfies m2 and, in that case, label the
method as Weak. Otherwise, the method is checked for m3
and labeled Strong if the property holds. If a method is not
Strong (an thus not Weak), then the program is not valid. The
solver generates the consistency specification which maps each
method to Weak or Strong consistency, depending whether m2
is satisfied (Weak) or not (Strong).

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 8

IV. TECHNICAL REALIZATION

In this section, we discuss the implementation of CONLOC.2

The architecture (Figure 7) consists of the CONLOC compiler,
which implements the verification procedure, and the CONLOC

middleware which operates at run time. The compiler consists
of ∼ 4K LoC and the middleware ∼ 2.5K LoC.

1) CONLOC Compiler: The compiler is an extension to the
Eclipse Java compiler [39] that takes Java sources annotated
with JML [33]. The compiler uses an annotation parser to
obtain the invariants and Z3 [40] to verify them. It produces a
consistency specification for valid data types (cf. Section III-C)
when all invariants are verified, otherwise it rejects the program.

2) CONLOC Middleware: The middleware is given the com-
piled sources and the consistency specification. It distributes
objects according to said specification. The middleware is imple-
mented on top of Akka actors [41], which provide asynchronous
message-passing with at-most-once-delivery guarantees. We
use the widely deployed Zookeeper Atomic Broadcast protocol
(ZAB) [42] for coordination required by Strong consistency.
Zookeeper can be configured to use quorum reads and writes to
allow for some nodes to go down even with Strong consistency.
This introduces some flexibility when desired.

V. EVALUATION

In this section, we present the evaluation of CONLOC. We
aim to answer the following research questions.

(RQ1 Expressivity and applicability): Does CONLOC

support safe implementations of real-world applications?
This research question ensures that it is possible to represent
the desired logic of distributed applications with CONLOC and
that CONLOC provides correct synchronization.

(RQ2 Support for existing CRDTs): Is it possible to ensure
safety for existing mergeable data types with CONLOC?
Here, we determine whether CONLOC can be easily adopted by
implementors of replicated data types libraries, for verification
of data types that can be composed in replicated applications.

(RQ3 Efficiency): Is the compiler and verification procedure
fast enough to ensure that our approach is usable in practice?
With this research question we want to ensure that CONLOC can
be used on real-world, replicated applications without incurring
a performance penalty that hinders its adoption.

(RQ4 Application speedup): Does CONLOC help speeding
up of distributed, replicated applications?
This research question assesses whether CONLOC’s analysis
has a concrete performance impact on distributed systems.

A. Case Studies: CONLOC in Practice

We reimplemented in CONLOC various case studies of local-
first applications that are composed of CRDTs from literature.
Since such applications are built upon standard CRDTs, we
first implemented and verified a small annotated CRDT library.
An overview of all case studies is in Table I. For each, the
table lists the lines of code (LOC), the number of methods
(#Methods), for total (all) and Strong methods. #Fields shows
the total number of fields (all) and the number of fields with

2Source code available at https://github.com/consysT-project/consysT-code/.

TABLE I: Metrics for the case studies.

Case study LOC #Methods #Fields Complexity
code JML all Strong all coll inv pre post

C
R

D
T

s

GCounter 38 11 5 0 1 1 0 1 68
PNCounter 63 19 8 0 2 2 0 2 133
Bounded Counter 71 33 7 0 3 2 10 2 215
Multi-Value Register 31 6 3 0 1 1 5 0 2
GSet 31 12 5 0 1 1 0 0 40
2P-Set 36 19 6 0 2 0 0 3 171
GGraph 37 12 4 0 2 2 14 0 11
2P-Graph 48 17 6 0 2 2 14 0 23

A
pp

lic
at

io
ns

Account 33 13 4 1 1 0 2 7 146
Account No-CRDT 55 29 6 1 2 2 2 5 85
Account LWW 39 16 4 0 2 0 2 6 20
Joint Account 40 24 6 0 3 0 4 15 184
Resettable Counter 32 11 4 0 1 1 15 0 69
Consensus 46 15 4 0 3 1 20 14 73
Distributed Lock 38 20 2 0 2 1 37 8 31
Message Groups 75 26 6 1 2 2 31 11 185
Tournament 243 117 38 0 13 9 39 27 211

R
ia

k
C

R
D

T
s GCounter 71 21 10 0 2 1 0 1 58

PNCounter 64 27 10 0 3 2 0 3 129
GSet 65 65 14 0 1 1 0 0 121
2P-Set 110 27 20 0 2 2 0 23 495
ORSet 119 55 20 0 2 2 0 0 700

a CRDT, collection or array type (coll). Complexity is the
number of inner nodes of the AST of the formula as produced
by the rewriting simplification of Z3 [43] for invariants (inv),
pre- (pre) and postconditions (post).

1) CRDT Library: The library comprises eight general
CRDTs from literature [44]. It consists of GCounter, a grow-
only counter, PNCounter, a counter that can be incremented
and decremented, Bounded Counter, a counter that can be
incremented up to a maximum bound, Multi-Value Register,
a register that can hold multiple values, GSet, a grow-only
set, 2P-Set, a set that supports adding and removing elements
such that once an element was removed it cannot be added
again, GGraph, a grow-only graph that nodes and edges can
be added to, and 2P-Graph, a graph that supports adding and
removing nodes and edges such that once removed they cannot
be added again. All CRDTs in the library are checked for
program safety (cf. Section III), and are ready to use.

2) Applications: We implemented nine applications lever-
aging the CRDT library, most of which are from scientific
literature. These applications cover a variety of different
scenarios. Account is the application from which the example
in Section II is derived. The account uses the PNCounter

from the CRDT library. The invariant states that the counter
cannot be negative. Account No-CRDT is a reimplementation
of CreditAccount without the CRDT library. Account LWW
uses a last-writer-wins (LWW) register where increments and
decrements are applied to the value of the register. Joint
Account only allows withdraw operations that have to be
granted by another party before it is performed [45] and does
allow the account to be negative. Resettable Counter [46]
implements reset by using rounds, i.e., increments are always
applied to the current round, whereas reset sets the counter to
zero and advances to the next round. The eventually consistent
Consensus protocol [37] is correct even with Weak consistency.
Replicas agree to a value by setting a flag in a boolean array.

https://github.com/consysT-project/consysT-code/

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 9

The invariant ensures that the agreement occurs only when all
replicas set their respective flag. In the Distributed Lock [37],
ownership of the lock is passed around replicas, and the
invariant ensures that only one replica can own the lock at
any time. The Message Groups application [47] implements a
message group with an upper bound on the number of users that
must not be violated. Users can be added to the message group
and messages can be broadcasted to all users. The addition of
users is a strong operation as the upper bound can be violated
after merging replicas of groups while broadcasting is weak.
The Tournament management system [48] handles matches
and players in a game. The invariants ensure matches do not
exceed player capacity, players maintain a positive budget,
active matches have players, and only players can enroll in
matches. The operations include adding and removing players
and matches, managing player enrollment, and adding funds.
The application employs multiple 2P-Sets. Referential integrity
constraints are satisfied as operations are transactional which
ensures that certain objects are created sequentially.

These case studies answer RQ1, demonstrating that CONLOC

is effective in supporting the implementation and verification
of existing applications composed of multiple CRDTs.

B. Safety of the Riak CDRT Library in CONLOC

We verified the popular CRDT library [49] originally
developed for the database Riak [17] by taking the library’s
five data types and reimplementing them with CONLOC. The
CRDTs in the library are general-purpose, similar to our CRDT
library (Section V-A), but employ different data structures and
are designed for Riak. Thus the implementations differ from our
standalone library. The Riak library contains implementations of
GCounter, PNCounter, GSet, 2P-Set, and Observed-Remove
Sets (ORSet), the latter allowing addition and removal of an
element more than once. We annotated the library methods and
ensured program safety by verifying the properties i0–i2 and
m0–m3 (Section III). Compared to our CRDT library, which
uses rudimentary underlying collections like arrays and sets,
the Riak library adopts more sophisticated collection types,
such as maps and multimaps, which increase the complexity of
annotations. Further, The Riak library contains more methods
such as addAll or containsAll. For compatibility with CONLOC,
we applied some minor code changes (unrelated to the library
semantics) to the CRDTs, e.g., changing the return type of
merge to java.lang.Void, and setting the number of replicas to a
fixed value. The latter enables a well-defined domain of internal
maps, to work around Z3’s lack of partial maps [40]. We believe
these changes are minimal and do not hinder expressivity.

These results positively answer RQ2 indicating that a third-
party library, not designed for CONLOC, can be verified.
Annotating took ∼ 4 working days, once CONLOC was fully
functional, which we consider a reasonably modest effort.

C. Efficiency of the Compilation Process

We executed CONLOC on the 22 case studies and CRDT
implementations augmented with CONLOC annotations and
measured the time taken by the compiler. Figure 8 presents
the results for each data type averaged over 10 measure runs

GCounter

PNCounter

Bounded Counter

Multi-
Value Regist

er
GSet

2P-S
et

GGraph

2P-G
raph

Acc
ount

Acc
ount No-C

RDT

Acc
ount LW

W

Jo
int Acc

ount

Rese
tta

ble
Counter

Conse
nsu

s

Dist
rib

uted Lock

Mess
age Groups

To
urnament

Riak:
GCounter

Riak:
PNCounter

Riak:
GSet

Riak:
2P-S

et

Riak:
ORSet0

100

200

300

1 060 9 687

C
om

pi
le

tim
e

(m
s)

Java compiler
CONLOC compiler

Fig. 8: Compiler Benchmarks.

Acc
ount

Acc
ount No-C

RDT

Acc
ount LW

W

Jo
int Acc

ount

Rese
tta

ble
Counter

Conse
nsu

s

Dist
rib

uted Lock

Mess
age Groups

To
urnament

10−2

10−1

100

R
el

at
iv

e
la

te
nc

y

(a) Latency, smaller is better.

Acc
ount

Acc
ount No-C

RDT

Acc
ount LW

W

Jo
int Acc

ount

Rese
tta

ble
Counter

Conse
nsu

s

Dist
rib

uted Lock

Mess
age Groups

To
urnament

101

102

103

R
el

at
iv

e
T

hr
ou

gh
pu

t

(b) Throughput, higher is better.

Fig. 9: Performance Benchmarks.

preceded by 10 warmup runs. For comparison, we also report
the compile time of the Java compiler executed on the same
class. The compiler takes nine seconds for Message Groups,
one second for Account and substantially less for the other
cases. Highest values of compilation time are due to two factors:
1) The more Strong methods the more time is required for
verification; for Strong methods the verifier must check that
mergeability does not hold for all states, thus Z3 explores
a large state space. 2) The complexity of object states also
contributes, as Z3 demands more time for verification of classes
with more fields. The existence of fields with a collection type
factor into the verification time due to their complex constraints.

This result answers RQ3, demonstrating that the compiler
implemented by CONLOC is sufficiently fast to be executed on
common CRDT implementations.

D. Speeding up Replicated Applications

To evaluate the effect of CONLOC, we run the applications
from Section V-A as performance benchmark. The benchmarks
are executed in the AWS cloud on 4 processes each running
on a t2.large machine (2 vCPUs and 8 GiB memory) in
the same cluster. Every process executes 1 K random method
calls, uniformly distributed, on all replicated data types, with
randomly generated method arguments. We measured latency as
the time required to execute a single method, while throughput
is the number of operations a process executes per second.

We consider two configurations. The first, ALL-STRONG,
contains only Strong operations. This configuration corresponds
to a replicated application where developers cannot come up
with a better design and hence default to serializing operations
to satisfy invariants, representing a correct but conservative
baseline. The second configuration, MIXED, adopts our ap-
proach of using both Strong and Weak operations as inferred
by CONLOC. Both configurations satisfy Invariant Sufficiency,
meaning the invariant is never violated. In a concurrent
execution, ALL-STRONG satisfies the invariant because Strong

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 10

consistency restricts concurrency. For MIXED, while Weak
operations may occur, the invariant remains satisfied, as the
application is verified with CONLOC.

The results in Figure 9a show the ratio between the latency
of MIXED and of ALL-STRONG; similarly for throughput
in Figure 9b. For instance, the latency of Account in MIXED
is a third of that of ALL-STRONG, and the throughput is
×2.94 compared to ALL-STRONG. Overall, the results show
that MIXED improves the latency and throughput for all case
studies compared to ALL-STRONG. The smallest improvement
in latency and throughput is for Account, Account No-CRDT
and Message Groups due to their Strong operations. The best
performance improvements are in the case studies with only
Weak operations in MIXED, resulting in a latency that is only
approx. ∼ 0.6% compared to ALL-STRONG and a throughput
that is approx. ∼ 125 times higher. The reason for such an
improvement is that all Weak operations can be executed locally
without contacting other replicas thus completely removing the
overhead of synchronization of Strong operations.

These results answer RQ4 by demonstrating that CONLOC

improves the efficiency of replicated applications by permitting
Weak consistency wherever feasible, while still correctly
enforcing application invariants.

VI. RELATED WORK

A. Conflict-Free Replicated Data Types

Local-first software [3] allows processes to own their data
locally and synchronize on demand. Distributing data with
CRDTs [7] fulfills these principles as data synchronization
occurs eventually. CRDTs come in two flavors, operation-
based and state-based, which can be defined in terms of
the other. In CONLOC, we utilize state-based CRDTs for
their robustness against network message duplication and
their inherent causality [50]. Shapiro et al. [44] provide a
comprehensive overview of several CRDTs, such as counters,
sets, maps, etc. Delta-based CRDTs [51] improve the efficiency
of state-based CRDTs by not forwarding the entire state
between replicas but only incremental changes (deltas).

Nair et al. [37] propose a technique to verify replicated
objects. Developers define a replicated data type – state and
operations – and application-specific invariants. The proof
system checks whether this object can be replicated with Weak
consistency without violating any invariants. CONLOC’s invari-
ant sufficiency and mergeability are based on this technique. Yet,
adding the necessary synchronization is not supported, while
CONLOC does this automatically. Also, CONLOC can verify
replicated data types build upon other replicated data types –
e.g., the CreditAccount in Section II uses a Counter CRDT –
using stateful expressions that reference mutating operations
of the underlying data type. Further, CONLOC ensures safety
not only for Weak data types but also generates consistency
specifications for data types with both Strong and Weak
methods, ensuring efficient and correct execution.

VeriFx [25] is a language for CRDT verification. This
approach is similar to ours in that developers program data
types and the system automatically validates certain properties.
Yet, VeriFx verifies inherent properties of the data types,

while CONLOC determines which methods of a class need
execution with Strong consistency to align with the user-
imposed constraints. Also, CONLOC supports mutable data
structures, while VeriFx is restricted to immutable, functional
data structures. Yet, in VeriFx, one implementation forms the
basis of both executable code and formal verification, whereas
in CONLOC developers provide a separate specification.

Nieto et al. [28] offer libraries that enable the implementation
and verification of operation-based CRDTs using separation
logic, enabling programmers to write Coq [52] specifications
and prove the correctness of the implementations.

B. CRDTs with Strong Consistency

Several works aim to augment CRDTs with Strong con-
sistent operations. Conflict-aware Replicated Data Types
(CARDs) [45] extend the concept of CRDTs to accommodate
conflicting operations. CARDs use consistency guards, i.e.,
invariants on local and global state, to identify conflicting
operations. Carol [53] is a language for mixed consistency
built upon CARDs. Developers provide invariants on the
replicated store and the system derives the consistency for
each operation. Carol features a refinement type system by
lifting consistency guards of CARDs to the type level. Instead
of relating a global and local state as with CARDs, in CONLOC,
developers define constraints directly on the application state.
Observable atomic consistency (OAC) [46] integrates operation-
based CRDTs with Strong operations. Consistency types for
replicated data (CTRD) [54] utilizes OAC to reason about
Strong and Weak consistent data. Consistency is defined by
assigning a consistency level to types.

C. Invariants for Consistency

Numerous works use invariants to determine the consistency
of operations. In RedBlue consistency [55], operations can be
either Blue (i.e., Weak) or Red (i.e., Strong), and developers
manually define which operations are Blue or Red. SIEVE [56]
employs static analysis to distinguish between Red and Blue
operations – finding commutative operation pairs (hence
Weak) – and additionally uses dynamic enforcement. Explicit
Consistency [57] infers consistency of operations by applying
invariants. Indigo [48] is a middleware to find conflicting
operations by stating class invariants. Gotsman et al. [58]
propose a proof rule for identifying operations that satisfy
invariants when executed weakly, which is used by CISE [59],
a static analysis tool that identifies the weakest consistency
for satisfying invariants. Compared to RedBlue consistency,
CONLOC uses state-based replication, which is crucial for real-
world applications to take advantage of robustness and causality.

Invariant confluence (I-confluence) [60] is a criterion
specifying when applications need immediate coordination (i.e.,
Strong consistency). A set of operations satisfies I-confluence
if all states reachable during the execution of these operations
satisfy the invariant. CONLOC’s invariant sufficiency implies
I-confluence, as every state satisfies the invariant – the initial
state and every state that is the result of an operation. IPA [61]
applies I-confluence to check that concurrent operations are

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 11

invariant preserving. IPA marks operations that violate invari-
ants and proposes code changes to implement synchronization.
Similar to IPA, CONLOC finds operations that do not preserve
the invariant when executed concurrently. Yet, while IPA does
not consider the underlying replicated data types, CONLOC

ensures safety of the application including the underlying data
type. Thus, the safety encompasses the whole application, and
does not, as in IPA, require to trust that the developer uses
the correct data types. This solution enables the middleware
to directly generate replication logic based on the consistency
specification, instead of merely proposing changes.

In Quelea [30], invariants are defined on histories of
operations. The system infers the required consistency for
operations. Q9 [62] is a language and verification procedure
for replicated data types. Developers define data types and
invariants. If Q9 detects that the data type cannot be replicated
with Weak consistency, an automatic repair mechanism selects a
suitable stronger consistency model not violating any invariant.
Hamsaz [29] is a reasoning system to generate coordination
protocols for (operation-based) replicated objects based on
class invariants. Current research of inferring consistency from
application invariants mostly targets operation-based replication
strategies, reducing verification effort to, e.g., commutativity
of operations. However unlike CONLOC, these approaches do
not have the practical advantages of state-based replication.

State-based and operation-based replication require differ-
ent treatments. While preserving invariants in an operation-
based system requires reasoning about the commutativity
of operations, preserving invariants in a state-based system
requires reasoning about state merges. Merges are by definition
commutative, but can still violate invariants [37]. Thus, CONLOC

provides a framework that is fitted for state-based CRDTs.
LASP [23] enables the safe combination of existing CRDTs

by utilizing an ad-hoc dataflow language to specify depen-
dencies between them. In LoRe [24], like LASP, uses a
dataflow language for CRDT combination, but also ensures
the satisfaction of user-defined invariants. Invariant validation
relies on the analysis of the program’s dataflow – thanks to
the explicitly defined dependencies between inputs, which are
protected by constraints, and the outputs. Similar to CONLOC,
LoRe can employ additional synchronization mechanisms when
Weak consistency cannot guarantee invariants. The functional
dataflow approach simplifies the verification while CONLOC

uses a mainstream imperative language and allows developers
to define correctness requirements using invariants.

Ma et al. [63] proposel Noctua, a framework for consistency
analysis in web applications informs the developer where
synchronization is needed to ensure consistency. Similar to
CONLOC, Noctua identifies pairs of operations that could
lead to state divergence or correctness violations if executed
concurrently. In contrast to CONLOC, Noctua does not require
user-defined invariants but infers them via symbolic execution
in a custom interpreter. As a result, Noctua does not support
language abstractions like unrestricted loops or recursion.

D. Mixed Consistency
Another line of work does not infer consistency levels based

on application invariants and program verification but offers

different levels to the developers via dedicated abstractions.
CAPtain.js [64] is a library with consistent and available data

types that ensure strong consistency by sacrificing availability,
and availability but with eventual consistency. Conflicts among
consistency levels generate runtime exceptions. In a similar
vein, CScript [65] is a language for replicated objects that are
available or consistent and allows one to mix such objects
within the same service in the distributed system.

Type systems have been employed to prevent errors in mixing
different consistency levels. The IPA system [66] prevents
that values with high consistency flow into values with low
consistency using subtyping. MixT [47] is a C++ DSL for
transactions over multiple data stores with different consistency
levels and an information-flow type system that avoids mixing
consistency levels. Similarly, ConSysT [67] is a Java extension
that combines consistency types and object structure.

VII. LIMITATIONS AND FUTURE WORK

In CONLOC, as in other approaches [25], [29], [61], anno-
tations are limited to first-order logic. While not complete,
solvers for first-order formulas such as Z3 provide a high level
of verification automation but they require additional manual
aid when verifying properties of recursive data types.

In this work we made two simplifying assumptions on the
execution of Java programs: (1) numeric values do not overflow;
(2) programs do not run out of memory. The assumption on
numeric values can be addressed by using BigInteger where an
int is used, or by adding overflow assertions to the underlying
solver. The goal of CONLOC is to provide a verification of
replicated data types and not for Java specific code.

Another limitation is that pre- and post-constraints are
not checked against the source code. The use of reasoning
frameworks for Java and JML annotations, such as KeY [68]
(not fully automatic) or OpenJML [69] (requires additional run-
time checks), can be employed alongside CONLOC to improve
the confidence that the JML annotations reflect the Java code.

VIII. CONCLUSION

Local-first software adopts data replication for scalability
and availability of distributed applications. As designing correct
replicated data types is challenging, developers often use off-
the-shelf solutions like CRDTs. Yet, application invariants do
not always transfer to the replicated case, forcing developers to
reason about the interplay between concurrency and replication
– hence defeating the purpose of off-the-shelf solutions.

We introduced CONLOC, a system that processes invariants in
code annotations of mergeable data types and generates a safe
distributed application with correct synchronization logic. We
show that CONLOC can be applied to real-world applications,
that the automatic verification of invariants demands low
time overhead, and that applications coordinated based on
the verification results exhibit better latency and throughput
compared to a correct but conservative sequential baseline.

ACKNOWLEDGMENTS

This work is supported by the Swiss National Science
Foundation (SNSF) under grant 200429, and the LOEWE
initiative (Hesse, Germany) within the emergenCITY centre.

JOURNAL OF XXX, VOL. XX, NO. X, XXX 2023 12

REFERENCES

[1] L. Lamport, “Paxos made simple,” ACM SIGACT News 32, 4, 2001.
[2] A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and

Paradigms, 2nd ed. Pearson Prentice Hall, 2007.
[3] M. Kleppmann, A. Wiggins, P. van Hardenberg, and M. McGranaghan,

“Local-first software: You own your data, in spite of the cloud,” in
Onward!, 2019.

[4] M. Kleppmann, Designing Data-Intensive Applications. O’Reilly, 2017.
[5] G. Kaki, S. Priya, K. Sivaramakrishnan, and S. Jagannathan, “Mergeable

replicated data types,” PACMPL, vol. 3, no. OOPSLA, 2019.
[6] K. D. Porre, F. Myter, C. D. Troyer, C. Scholliers, W. Meuter, and E. G.

Boix, “A generic replicated data type for strong eventual consistency,”
in PaPoC, 2019.

[7] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
replicated data types,” in SSS, 2011.

[8] P. S. Almeida, A. Shoker, and C. Baquero, “Delta state replicated data
types,” JPDC, vol. 111, 2018.

[9] N. M. Preguiça, “Conflict-free replicated data types: An overview,” arXiv,
vol. abs/1806.10254, 2018.

[10] Yjs Contributors, “Yjs: A CRDT framework with a powerful abstraction
of shared data,” 2023, https://github.com/yjs/yjs.

[11] M. Kleppmann, D. P. Mulligan, V. B. F. Gomes, and A. R. Beresford,
“A highly-available move operation for replicated trees,” TPDS, vol. 33,
2022.

[12] Automerge Contributors, “Automerge: A JSON-like data structure (a
CRDT) for building collaborative applications,” 2023, https://github.com/
automerge/automerge.

[13] W. Yu, L. André, and C.-L. Ignat, “A CRDT supporting selective undo
for collaborative text editing,” in DAIS, 2015.

[14] J. Johnson, “How facebook scales big data systems,” QCon, 2014, https:
//www.infoq.com/presentations/scale-facebook-big-data.

[15] D. Martyanov, “CRDTs in production,” QCon, 2018, https://www.infoq.
com/presentations/crdt-production/.

[16] D. Ivanov, “Practical demystification of CRDTs,” Lambda Days, 2016,
https://www.lambdadays.org/lambdadays2016/dmitry-ivanov.

[17] Riak. (2021) Riak – enterprise NoSQL database. https://riak.com/.
[18] Antidote DB. (2021) Antidote DB. https://www.antidotedb.eu/.
[19] Amazon. (2021) DynamoDB. https://aws.amazon.com/dynamodb/.
[20] W. Vogels, “Eventually consistent,” CACM, vol. 52, no. 1, 2009.
[21] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control

and recovery in database systems. Addison-Wesley, 1986.
[22] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein,

and I. Stoica, “Highly available transactions: Virtues and limitations,”
Proceedings of the VLDB Endowment, vol. 7, no. 3, 2013.

[23] C. Meiklejohn and P. Van Roy, “Lasp: A language for distributed,
coordination-free programming,” in PPDP, 2015.

[24] J. Haas, R. Mogk, E. Yanakieva, A. Bieniusa, and M. Mezini, “LoRe: A
programming model for verifiably safe local-first software,” TOPLAS,
vol. 46, no. 1, 2023.

[25] K. De Porre, C. Ferreira, and E. Gonzalez Boix, “VeriFx: Correct
replicated data types for the masses,” in ECOOP, vol. 263, 2023.

[26] G. Zakhour, P. Weisenburger, and G. Salvaneschi, “Type-checking CRDT
convergence,” PACMPL, vol. 7, no. PLDI, 2023.

[27] ——, “Automated verification of fundamental algebraic laws,” PACMPL,
vol. 8, no. PLDI.

[28] A. Nieto, L. Gondelman, A. Reynaud, A. Timany, and L. Birkedal,
“Modular verification of op-based CRDTs in separation logic,” vol. 6, no.
OOPSLA2, 2022.

[29] F. Houshmand and M. Lesani, “Hamsaz: Replication coordination analysis
and synthesis,” PACMPL, vol. 3, no. POPL, 2019.

[30] K. Sivaramakrishnan, G. Kaki, and S. Jagannathan, “Declarative pro-
gramming over eventually consistent data stores,” in PLDI, 2015.

[31] TIOBE. (2023) TIOBE index for april 2023. https://www.tiobe.com/
tiobe-index/.

[32] V. Balegas, “Bounded counters: Maintaining numeric invariants with
high availability,” 2016, https://pages.lip6.fr/syncfree/attachments/article/
59/boundedCounter-white-paper.pdf.

[33] Gary Leavens. (2017) JML. https://www.cs.ucf.edu/~leavens/JML.
[34] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal

derivation of programs,” Commun. ACM, vol. 18, no. 8, 1975.
[35] C. Flanagan and J. B. Saxe, “Avoiding exponential explosion: Generating

compact verification conditions,” in POPL, 2001.
[36] M. Barnett and K. R. M. Leino, “Weakest-precondition of unstructured

programs,” in PASTE, 2005.
[37] S. S. Nair, G. Petri, and M. Shapiro, “Proving the safety of highly-

available distributed objects,” in ESOP, 2020.

[38] R. M. Keller, “Formal verification of parallel programs,” Commun. ACM,
vol. 19, no. 7, 1976.

[39] Eclipse. (2021) Eclipse JDT Core. https://www.eclipse.org/jdt/core.
[40] Microsoft. (2020) Z3 Prover. https://github.com/Z3Prover/z3.
[41] Akka. (2022) Akka Documentation. https://doc.akka.io/docs/akka.
[42] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance

broadcast for primary-backup systems,” in DSN, 2011.
[43] Z3 Guide, “Formula Simplification,” 2023, https://microsoft.github.io

/z3guide/programming/Example Programs/Formula Simplification.
[44] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A comprehensive

study of convergent and commutative replicated data types,” INRIA, Tech.
Rep. 7506, 2011.

[45] N. V. Lewchenko, A. Radhakrishna, and P. Černý, “Conflict-aware
replicated data types,” arXiv, vol. abs/1802.08733, 2018.

[46] X. Zhao and P. Haller, “Observable atomic consistency for CvRDTs,” in
AGERE, 2018.

[47] M. Milano and A. C. Myers, “MixT: A language for mixing consistency
in geodistributed transactions,” in PLDI, 2018.

[48] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Na-
jafzadeh, and M. Shapiro, “Putting consistency back into eventual
consistency,” in EuroSys, 2015.

[49] David Clements. (2013) Java CRDT Library. https://github.com/
dclements/riak-java-crdt.

[50] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski, “Replicated data
types: Specification, verification, optimality,” in POPL, 2014.

[51] V. Enes, P. S. Almeida, C. Baquero, and J. Leitão, “Efficient synchro-
nization of state-based CRDTs,” in ICDE, 2019.

[52] The Coq Development Team, “The Coq reference manual – release
8.19.0,” https://coq.inria.fr/doc/V8.19.0/refman, 2024.

[53] N. V. Lewchenko, A. Radhakrishna, A. Gaonkar, and P. Černý, “Sequen-
tial programming for replicated data stores,” PACMPL, vol. 3, no. ICFP,
2019.

[54] X. Zhao and P. Haller, “Consistency types for replicated data in a higher-
order distributed programming language,” Programming, vol. 5, no. 2,
2021.

[55] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues,
“Making geo-replicated systems fast as possible, consistent when neces-
sary,” in OSDI, 2012.

[56] C. Li, J. Leitão, A. Clement, N. M. Preguiça, R. Rodrigues, and
V. Vafeiadis, “Automating the choice of consistency levels in replicated
systems,” in USENIX ATC, 2014.

[57] V. Balegas, C. Li, M. Najafzadeh, D. Porto, A. Clement, S. Duarte,
C. Ferreira, J. Gehrke, J. Leitão, N. M. Preguiça, R. Rodrigues,
M. Shapiro, and V. Vafeiadis, “Geo-replication: Fast if possible, consistent
if necessary,” IEEE Data Eng. Bull., vol. 39, no. 1, 2016.

[58] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro,
“’cause i’m strong enough: Reasoning about consistency choices in
distributed systems,” in POPL, 2016.

[59] M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and M. Shapiro, “The
CISE tool: Proving weakly-consistent applications correct,” in PaPoC,
2016.

[60] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Coordination avoidance in database systems,” Proceedings of
the VLDB Endowment, vol. 8, no. 3, 2014.

[61] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, and N. Preguiça,
“IPA: Invariant-preserving applications for weakly consistent replicated
databases,” Proceedings of the VLDB Endowment, vol. 12, no. 4, 2018.

[62] G. Kaki, K. Earanky, K. Sivaramakrishnan, and S. Jagannathan, “Safe
replication through bounded concurrency verification,” PACMPL, vol. 2,
no. OOPSLA, 2018.

[63] K. Ma, C. Li, E. Zhu, R. Chen, F. Yan, and K. Chen, “Noctua: Towards
automated and practical fine-grained consistency analysis,” in EuroSys,
2024.

[64] F. Myter, C. Scholliers, and W. De Meuter, “A CAPable distributed
programming model,” in Onward!, 2018.

[65] K. D. Porre, F. Myter, C. Scholliers, and E. G. Boix, “CScript:
A distributed programming language for building mixed-consistency
applications,” JPDC, vol. 144, 2020.

[66] B. Holt, J. Bornholt, I. Zhang, D. Ports, M. Oskin, and L. Ceze,
“Disciplined inconsistency with consistency types,” in SoCC, 2016.

[67] M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Sal-
vaneschi, “Rethinking safe consistency in distributed object-oriented
programming,” PACMPL, vol. 4, no. OOPSLA, 2020.

[68] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and
M. Ulbrich, Eds., Deductive Software Verification – The KeY Book
– From Theory to Practice. Springer.

[69] OpenJML.org, “OpenJML,” 2023, https://www.openjml.org/.

https://github.com/yjs/yjs
https://github.com/automerge/automerge
https://github.com/automerge/automerge
https://www.infoq.com/presentations/scale-facebook-big-data
https://www.infoq.com/presentations/scale-facebook-big-data
https://www.infoq.com/presentations/crdt-production/
https://www.infoq.com/presentations/crdt-production/
https://www.lambdadays.org/lambdadays2016/dmitry-ivanov
https://riak.com/
https://www.antidotedb.eu/
https://aws.amazon.com/dynamodb/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://pages.lip6.fr/syncfree/attachments/article/59/boundedCounter-white-paper.pdf
https://pages.lip6.fr/syncfree/attachments/article/59/boundedCounter-white-paper.pdf
https://www.cs.ucf.edu/~leavens/JML
https://www.eclipse.org/jdt/core
https://github.com/Z3Prover/z3
https://doc.akka.io/docs/akka
https://microsoft.github.io/z3guide/programming/Example%20Programs/Formula%20Simplification/
https://microsoft.github.io/z3guide/programming/Example%20Programs/Formula%20Simplification/
https://github.com/dclements/riak-java-crdt
https://github.com/dclements/riak-java-crdt
https://coq.inria.fr/doc/V8.19.0/refman
https://www.openjml.org/

	Introduction
	Towards Safe Local-First Apps
	Version 1: Distributed Implementation
	Version 2: Safe Local-First Applications

	Design of ConLoc
	Core Language
	From Annotations to Constraints
	Expression Translation
	Invariants
	Pre- and Post-Constraints
	Initial Constraints
	Class Types
	Merge Constraints
	Example

	From Constraints to Properties
	Safety Framework
	System Model
	Safety of ConLoc
	Verification

	Technical Realization
	ConLoc Compiler
	ConLoc Middleware

	Evaluation
	Case Studies: ConLoc in Practice
	CRDT Library
	Applications

	Safety of the Riak CDRT Library in ConLoc
	Efficiency of the Compilation Process
	Speeding up Replicated Applications

	Related Work
	Conflict-Free Replicated Data Types
	CRDTs with Strong Consistency
	Invariants for Consistency
	Mixed Consistency

	Limitations and Future Work
	Conclusion
	References

