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Abstract. Programming distributed and concurrent systems is noto-
riously hard. Active objects, which encapsulate operations, state and
control flow, have been investigated by researchers to alleviate this issue.
In a distributed system, message exchange among active objects or ac-
tors often coincides with network boundaries, and determines a major
modularization direction for the application. Yet, certain application func-
tionalities naturally crosscut such modularization direction. For those,
structuring the application architecture around network boundaries is
purely accidental and does not help reasoning about programs.
Recently, multitier programming has been proposed as a programming
paradigm that enables code that belongs to different peers to be developed
together, in the same compilation unit. The compiler then splits the code
and generates the required deployment components.
In this work we explore the relation between multitier programming and
active objects. Multitier programming can be considered a programming
paradigm based on active objects with a focus on application domains
where functionalities span multiple active objects, and allows such func-
tionalities to be encapsulated into a single object. The multitier approach
keeps the asynchronous model of active objects and actors but provides
a holistic view of distributed components and their interactions. Multi-
tier programming addresses the use cases where separating components
into different active objects or actors hinders encapsulation and mod-
ularization across functional boundaries. In such use cases, multitier
programming can increase the level of abstraction, improve software de-
sign, simplify code maintenance, aid program comprehension and enable
formal reasoning. A number of features of active objects are directly
visible to programmers also in the multitier programming, resulting in an
interesting combination of language abstractions available to developers.

1 Introduction

Modern-day ubiquitous services – including search engines, online social net-
works and streaming platforms – run on a network of interconnected computers.
Typically, the components of such distributed systems are developed as separate
modules. This separation, however, comes with a number of difficulties [23].
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Composing the modules correctly into a complete distributed system is a highly
difficult challenge that requires intensive integration work and the manual im-
plementation of communication protocols. Thus, programmers are faced with
the complex task of implementing complicated communication schemes between
hosts, which frequently involves low-level operations prone to errors. As a re-
sult, the distributed data flows that arise from the approach are in many cases
convoluted and scattered among several modules, making it difficult to fully
comprehend the behavior of the system as a whole. Despite the prevalence of
distributed software, the design and development of distributed systems remains
an extremely challenging task.

Multitier programming [95] presents a promising approach for taming the
complexities of developing distributed systems through language abstractions fo-
cusing on interacting distributed components, i.e., interacting active objects where
distributed objects are bound to different threads of control and communicate
asynchronously with other objects.

Active objects. Active objects [16] build on top of object-oriented abstractions
which encapsulate operations and state, and, in addition, encapsulate execution
flow. Active objects have been successfully adopted to program distributed
systems, which are concurrent by nature. This programming abstraction defines
clear boundaries among concurrency units, making them coincide with those
naturally defined by the object structure. Also, because of asynchronous message
passing, active objects simplify developing concurrent systems where different
parts are decoupled and progress independently. Yet, in the case of distributed
systems, active objects and their derivatives (e.g., actors) encourage programmers
to develop software that is modularized according to network boundaries – where
the remote communication occurs. While this has been necessary for technical
reasons, software functionalities can logically span over several system components
and such separation may be not ideal [84, 72, 37].

Multitier programming. In multitier programming, distributed functionalities
that cross different components are developed in a single compilation unit [95]. As
a result, programmers do not need to arrange the implementation along network
boundaries but along logical functions. Since the distributed parts of such a func-
tion naturally run concurrently in a distributed system, multitier programming
languages typically further abstract over active objects and rely on active objects
for an efficient implementation. Yet, multitier languages provide features to deal
with concurrent execution – either by exposing standard concurrency abstractions
such as futures or by abstracting concurrency away from the developer through
a compilation scheme that ensures that code that appears sequentially in the
multitier program is also executed in sequence.

Using a single (distributed) program relieves the developer from having to
break down a functionality into the parts that should be executed on different
machines. Instead of reasoning in terms of distributed components (that may mix
different functions together), developers can reason in terms of different modules
that functionally belong together (even though they are distributed themselves) –
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leaving the splitting into the components to be distributed to different machines
to the compiler [93].

Active objects and multitier programming. While multitier programming provides
linguistic abstractions to reason about distribution at the language level and
lets the compiler handle the actual partitioning of code and the insertion of
remote calls and handlers, the underlying execution model is fundamentally
distributed active objects that asynchronously invoke methods on remote objects.
Multitier programming, however, goes beyond active objects – and actor systems
in particular – and solves some of the issues that often arise in actor-based
implementations of distributed systems. In particular, control flow between actors
can get quite involved and hard to follow for developers due to the fact that actors
are highly decoupled and behavior of actors that interact to provide a logically
combined function is modeled through complex message-passing schemes. Such
functions can be expressed more directly using multitier programming. Hence,
multitier programming can be seen as both an evolution and a combination of
active objects for distributed systems.

In this work, we explore the connection between active objects and multitier
programming. We show that multitier programming addresses some of the design
issues that emerge with active objects, and we show that active objects comple-
ment multitier programming when reasoning about concurrency in a distributed
system.

2 Background

This sections provides a short overview about (1) active objects and actors as
a state-of-the-art programming model for concurrent and distributed systems
and (2) multitier programming, a programming paradigm designed to ease the
development of distributed applications where functionality spans across multiple
components.

2.1 Active Objects and Actors

The actor model, [47] is based on independent computational entities – so-called
actors – that encapsulate both behavior and state and communicate with each
other by sending and receiving messages. An actor’s internal state can only be
modified by processing incoming messages. When an actor receives a message, it
can perform computations, modify its state, create new actors or send messages to
other actors [44]. Actors process one message at a time – messages are processed
sequentially – and do not share their state or memory, which eliminates many of
the pitfalls of traditional multithreaded programming.

Active objects extend the actor paradigm with structured communication:
Instead of message-passing, they use method calls and futures. Futures represent
asynchronous return values that will be available at some point in the future.
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Listing 1: Akka Typed actor summing up a list of numbers.
1 object SumActor {
2 sealed trait Request
3 case class Shutdown() extends Request
4 case class Calculate(
5 numbers: List[Int], replyTo: ActorRef[Result]) extends Request
6

7 case class Result(result: Int)
8

9 def apply(): Behavior[Request] =
10 Behaviors.receive { (context, message) =>
11 message match {
12 case Calculate(numbers, replyTo) =>
13 replyTo ! Result(numbers.sum)
14 Behaviors.same
15 case Shutdown() =>
16 Behaviors.stopped
17 }
18 }
19 }

Usually, method calls on active objects look like “normal” method calls on (non-
active) objects. They thus remove the fraction in actor systems of fragmenting
programs into (1) sending messages to emulate method invocations and (2) sending
other messages to emulate their return values. Hence, active object became
popular as an improved way to structure concurrent code.

Yet, not being able to easily distinguish synchronous and asynchronous method
invocations can also be a disadvantage. Especially in – not only concurrent, but
also – distributed systems, remote methods often should not only be executed
asynchronously but they also have more fundamentally different invocation
semantics. In particular, a remote method may even never return in case of
partial failures (i.e., the remote system crashes) or network partitions (i.e., the
remote system is not reachable over the network anymore). Due to these differences
between local and remote methods, actors – that distinguish between local method
calls and remote message-passing – remain widely used for distributed systems.

Listing 1 shows an actor implemented in Akka Typed [59]. Lines 2 to 7 define
the messages that the actor can send and receive. Line 10 defines the actor’s
message handler that has to pattern-match on every type message the actor could
receive (Lines 11 to 17). In case the actor receives a Calculate message with a
list of numbers (Line 12), it calculates the sum of the numbers and sends out
the result using the ! send operator (Line 13). In the example, the Calculate

message includes an actor reference replyTo to which to send the result – a
common pattern to model returning values in actor systems.

Another reason for using actors for implementing distributed systems is their
support for fault tolerance using supervision hierarchies. Supervision hierarchies
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organize actors into a tree, where an actor acts as a supervisor for its children
and monitors their behavior [24]. Supervisors can then take appropriate actions
to handle errors in supervised actors, such as restarting a failed actor, stopping
it or propagating the error up the hierarchy.

Whereas actors proved effective to implement fault-tolerant distributed sys-
tems and actor systems are widely deployed, such systems may fall short of
achieving encapsulation of distributed functionalities because the scope of a
component in a distributed system is tied to an object or actor, i.e., to call a
method asynchronously, it has to be part of the public interface of an object.
Remote calls across objects or messages sent across actors often lead to code
with obscured data and control flow that is hard to read and follow.

2.2 Multitier Programming

Multitier programming is an approach for developing distributed systems, which
provides language abstractions to reason about different tiers of a distributed
system – for example, a client, server and a database tier – in the same compilation
unit. The code for the different tiers is either generated at run time or created
by the compiler. Code annotations, static analysis, types, or a combination of
these approaches are used to separate the code into components that correspond
to the various tiers.

A distributed application is composed of several tiers that can run on various
computers connected through a network. A typical three-tier architecture, for
example, consists of the presentation, application logic, and data management
tiers, each of which runs at a different network location. The benefit of this
approach is that each tier’s functionality can be updated independently.

However, because of this architectural choice, a functionality that cuts across
multiple tiers is now scattered across numerous compilation units. For instance,
functionality on the Web is frequently spread across the client and the server.
The tiers of a Web application are further typically implemented using different
programming languages, such as JavaScript for the browser interface, Java for
the server-side application logic and SQL for the database. Multitier languages
aim to reduce the separation between client and server by compiling client-side
code to JavaScript or by running JavaScript on the server.

In a multitier programming language, the different tiers can be programmed
in a single language. Depending on the target tier, different compilation backends
(such as Java for the server and JavaScript for the browser) are used. Consequently,
functionality that spans multiple tiers can be developed within a single compilation
unit. The compiler automatically adds the communication code necessary for
components to interact while the program is being executed, generating numerous
deployable units from a single multitier program (Figure 1).

The multitier approach’s ultimate goal is to improve program comprehension,
make maintenance easier and enable formal reasoning about the entire distributed
application. A number of research languages that adopt multitier concepts have
been proposed and show the advantages of the approach, such as improving
software comprehension, design, reasoning and maintenance. As a result, ideas
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Fig. 1: Multitier programming [adopted from 95].

from multitier programming have been included into a number of industrial
solutions, demonstrating the potential of this approach, such as Ocsigen [12],
Opa [83], WebSharper [14], Meteor [89] or GWT [52]. Different multitier languages
cover different areas of the design space, integrating various techniques (such as
compile time vs. run time splitting) and design choices (such as the placement
of compilation units vs. individual functions), which frequently depend on the
application domain and the software stack.

3 Modular Structuring of Asynchronous Communication

This section illustrates how developers structure asynchronous communication in
distributed systems, comparing actor systems and multitier programming. For
both approaches, we first describe them conceptually and then we demonstrate
how these concepts are applied in a real-world stream processing system.

Active objects and actors proved to be an effective abstraction for developers
to organize concurrent code [2]. They allow developers to reason in terms of
a sequential execution environment within an active object or actor and com-
municating with others through asynchronous method calls or message-passing.
Although actor framework implementations can reuse threads across actors, pro-
cessing messages sequentially in every actors hides a potentially multithreaded
execution environment.

The downside of this approach is that concurrency boundaries are closely
tied to objects boundaries. This means that the concurrent parts of a system
need to be separated into different objects. In some cases, splitting concurrent
parts into separate objects aligns naturally with the problem domain and allows
for independent reasoning about the concurrency aspects. In other application
scenarios, however, this separation may increase the complexity of the implemen-
tation. Dependencies and interactions between concurrent objects can become
intricate, making it harder to comprehend and maintain the system.
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A Peak at Distribution and Concurrency in Apache Flink. To support
the discussion about the design enabled by actor systems, we introduce a concrete
application which makes extensive use of actors. Apache Flink [4] is a widely-used
stream processing system. It features a distributed data-flow engine implemented
in Scala and Java, which can pipeline and execute data-parallel programs. To
increase performance, Flink is able to run different components on different
machines in a computer cluster to distribute the load for processing a data stream
across computers.

We look specifically into the task distribution system of Apache Flink, which
provides Flink’s core task scheduling and deployment logic. The task distribution
system is based on Akka actors [58] and consists of 23 remote procedures in six
gateways – an API that encapsulates sending actor messages into asynchronous
RPCs – amounting to ∼ 500 source lines of Scala code with complex interaction
patterns. In the Flink task distribution system, a JobManager actor is responsible
for assigning data processing tasks to TaskManager actors.

3.1 The Actor Approach

Actor languages provide dedicated features to represent different concurrently
executing components of a distributed system – so-called actors. Actors naturally
capture the concurrent nature of distributed systems and significantly simplify the
development of such systems in several ways, making them suitable for building
distributed and highly available systems.

Concurrency Abstraction. The primary feature of the actor model – both for
distributed and for local concurrent systems – is that it offers a structured
way to manage concurrency without worrying about low-level synchronization
primitives [1]. Further, the model ensures that actors operate in isolation and their
internal state is not directly accessible by other actors. This isolation simplifies
concurrent programming as actors do not need to be aware of each other’s internal
state or execution details.

Fault Tolerance and Scalability. A notable benefit of the actor model, in particular
in a distributed setting, is its fault tolerance [64]. Since actors are isolated from
each other, failures in one actor do not directly impact others. If an actor crashes
or becomes unresponsive, it can be restarted or replaced without affecting the
overall system. For the same reason, the actor model also promotes scalability.
New actors can be added or removed dynamically without affecting the overall
system, enabling flexible scaling of the application to changing demands or
requirements.

Modularity. The actor model also fosters modularity since actors are independent
entities, which both encapsulate their private state and can be tested individually.
However, an important aspect of the behavior of the entire distributed system
stems from the communication and interaction between the actors, which can
become quite complex, especially in systems with a large number of actors and
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Listing 2: Communicating Flink actors [adopted from 93].

(a) Message definition.

1 package flink.runtime
2

3 case class SubmitTask(td: TaskDeployment)

(b) Calling side.

1 package flink.runtime.job
2

3 case class SubmitTask(td: TaskDeployment)
4

5 class TaskManagerGateway {
6 def submitTask(td: TaskDeployment, mgr: ActorRef) =
7 (mgr ? SubmitTask(td)).mapTo[Acknowledge]
8 }

(c) Responding side.

1 package flink.runtime.task
2

3 class TaskManager extends Actor {
4 def receive = {
5 case SubmitTask(td) =>
6 val task = new Task(td)
7 task.start()
8 sender ! Acknowledge()
9 }

10 }

intricate dependencies. Understanding the behavior of individual actors in a
complex system can be challenging [94]. As actors operate independently and
asynchronously, tracing the flow of messages and identifying the root cause of
issues can be more difficult compared to more traditional programming models.

The Actor Version of Apache Flink. As it is commonly done in actor-based
distributed systems today, the different distributed components of Apache Flink
are implemented as different actors. As usual, communication between Flink
actors is based on message-passing. Besides Flink, a number of other open-source
projects (e.g., the Play Framework for web applications [57] or the Gatling load-
and performance-testing framework [40]) and companies (e.g., PayPal [60] or
Capital One [61]) use Akka actors.

Concurrency Abstraction. Listing 2 shows an excerpt of the – extensively sim-
plified – interaction of the TaskManagerGateway with the TaskManager, taken
from Apache Flink’s task distribution system. The snippets show an example
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of sending and receiving of only a single message. The TaskManagerGateway

is used by the JobManager actor to communicate with the TaskManager actor
to submit data processing tasks to the TaskManager. Note that, in contrast
to Listing 1, Flink uses the untyped version of Akka with a slightly different
syntax. Listing 2a defines the SubmitTask message that is exchanged between
the actors and which contains the meta data for the task to be executed by the
TaskManager. Listing 2b shows the sending of the message (Line 7) from the
JobManager using the ? send operator. As opposed to the fire-and-forget style of
the ! send operator (shown in Listing 1), the ? operator implements a request-
response pattern. With this operator, the next message from the addressed actor
is treated as a response, which is then made available as result of ? in the form
of a future containing the response message. Listing 2c shows the receiving of the
message on the TaskManager. The TaskManager defines the actor message loop
as its receive method (Line 4) that pattern-matching on the received messages
(Line 5) and carries out a computation that depends on he received message
(Lines 6 to 8), e.g., starting the task that was assigned by the JobManager.

The full receive methods of course contains a multitude of cases for the
different messages which the actor can handle. While messages can be sent to
an actor concurrently, programmers can safely assume that only one message is
processed in the message loop at a time, relieving them from the complexities of
handling intricate concurrency problems such as race conditions when accessing
the actor’s internal state from inside the message loop.

Fault Tolerance and Scalability. The actor-based design allows Flink to easily
scale up to a large number of nodes to keep up with an increasing incoming
stream of data to be processed. To achieve this, Flink can spawn actors on
additional computer node to handle processing parts of the stream. For example,
if the system requires additional computing power to process increased amounts
of data, the JobManager can submit processing task to additional TaskManagers
to carry out the processing work. Further, thanks to the actor model, if nodes
fail or become unresponsive, Flink can re-spawn the respective actor (potentially
on another node), making the system highly tolerant to faults.

Modularity. A potential issue of the actor model’s message-passing scheme –
where messages sent in some part of the code are processed by a completely
separated part – in terms of code comprehension and maintenance is that it is
not straightforward to map call sites modeled by sending messages to the sites
where the messages are handled, which convolutes the control flow between the
different actors, making it hard for developers to keep track.

The small code excerpt (Listing 2), illustrates how the task submission
functionality is scattered over different modules, making it difficult to correlate
sent messages (Listing 2b, Line 7) with the remote computations they initiate
by pattern-matching on the received message (Listing 2c, Lines 6 to 8). Further,
it is worth noting that the message loop of the TaskManager does not only
handle a single type of message sent via the TaskManagerGateway. Due to the
modularization enforced by the actor’s remote communication boundaries, the
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class TaskManagerGateway {
def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,

mgr: ActorRef) = {
mgr ! Disconnect(instanceId, cause)

}

def stopCluster(applicationStatus: ApplicationStatus, message: String,
mgr: ActorRef) = {

mgr ! StopCluster(applicationStatus, message)
}

def requestStackTrace(mgr: ActorRef) = {
(mgr ? SendStackTrace).mapTo[StackTrace]

}

def submitTask(tdd: TaskDeploymentDescriptor, mgr: ActorRef) = {
(mgr ? SubmitTask(tdd)).mapTo[Acknowledge]

}

def stopTask(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {
(mgr ? StopTask(executionAttemptID)).mapTo[Acknowledge]

}

def cancelTask(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {
(mgr ? CancelTask(executionAttemptID).mapTo[Acknowledge]

}

def updatePartitions(executionAttemptID: ExecutionAttemptID,
partitionInfos: Iterable[PartitionInfo], mgr: ActorRef) = {

(mgr ? UpdateTaskMultiplePartitionInfos(executionAttemptID, partitionInfos))
.mapTo[Acknowledge]

}

def failPartition(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {
mgr ! FailIntermediateResultPartitions(executionAttemptID)

}

def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,
jobId: JobID, checkpointId: long, timestamp: long, mgr: ActorRef) = {

mgr ! NotifyCheckpointComplete(jobId, executionAttemptID, checkpointId,
timestamp)

}

def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,
checkpointId: long, timestamp: long, checkpointOptions: CheckpointOptions,
mgr: ActorRef) = {

mgr ! TriggerCheckpoint(jobId, executionAttemptID, checkpointId, timestamp,
checkpointOptions)

}

def requestTaskManagerLog(logTypeRequest: LogTypeRequest, mgr: ActorRef) = {
(mgr ? RequestTaskManagerLog(logTypeRequest)).mapTo[BlobKey]

}
}

class JobManager extends Actor {
def receive = {

case ScheduleOrUpdateConsumers(jobId, partitionId) =>
currentJobs.get(jobId) match {

case Some((executionGraph, _)) =>
try {
executionGraph.scheduleOrUpdateConsumers(partitionId)
sender ! decorateMessage(Acknowledge.get())

} catch {
case e: Exception => sender ! decorateMessage(Failure(
new Exception("Could not schedule or update consumers.", e)))

}
case None =>

log.error(s"Cannot find execution graph for job ID $jobId " +
"to schedule or update consumers.")

sender ! decorateMessage(Failure(
new IllegalStateException("Cannot find execution graph " +
s"for job ID $jobId to schedule or update consumers.")))

}

case RequestPartitionProducerState(jobId, intermediateDataSetId, resultPartitionId) =>
currentJobs.get(jobId) match {

case Some((executionGraph, _)) =>
try {
val execution = executionGraph.getRegisteredExecutions
.get(resultPartitionId.getProducerId)

if (execution != null)
sender ! decorateMessage(execution.getState)

else {
val intermediateResult = executionGraph

.getAllIntermediateResults.get(intermediateDataSetId)
if (intermediateResult != null) {

val execution = intermediateResult
.getPartitionById(resultPartitionId.getPartitionId)
.getProducer.getCurrentExecutionAttempt

if (execution.getAttemptId() == resultPartitionId.getProducerId())
sender ! decorateMessage(execution.getState)

else sender ! decorateMessage(Status.Failure(
new PartitionProducerDisposedException(resultPartitionId)))

}
else sender ! decorateMessage(Status.Failure(

new IllegalArgumentException("Intermediate data set " +
s"with ID $intermediateDataSetId not found.")))

}
} catch {
case e: Exception => sender ! decorateMessage(
Status.Failure(new RuntimeException("Failed to look up " +

"execution state of producer with ID " +
s"${resultPartitionId.getProducerId}.", e)))

}
case None => sender ! decorateMessage(

Status.Failure(new IllegalArgumentException(s"Job with ID $jobId not found.")))
}

case ackMessage: AcknowledgeCheckpoint =>
val jid = ackMessage.getJob()
currentJobs.get(jid) match {

case Some((graph, _)) =>
val checkpointCoordinator = graph.getCheckpointCoordinator()
if (checkpointCoordinator != null)
future {
try if (!checkpointCoordinator.receiveAcknowledgeMessage(ackMessage))

log.info("Received message for non-existing checkpoint " +
ackMessage.getCheckpointId)

catch {
case t: Throwable => log.error("Error in CheckpointCoordinator " +
s"while processing $ackMessage", t)

}
}(context.dispatcher)

else {
log.error(
s"Received AcknowledgeCheckpoint message for job $jid with no " +

s"CheckpointCoordinator")
}

case None =>
log.error(s"Received AcknowledgeCheckpoint for unavailable job $jid")

}

case declineMessage: DeclineCheckpoint =>
val jid = declineMessage.getJob()
currentJobs.get(jid) match {

case Some((graph, _)) =>
val checkpointCoordinator = graph.getCheckpointCoordinator()
if (checkpointCoordinator != null) {
future {
try {
checkpointCoordinator.receiveDeclineMessage(declineMessage)

}
catch {

case t: Throwable =>
log.error("Error in CheckpointCoordinator " +
s"while processing $declineMessage", t)

}
}(context.dispatcher)

}
else {
log.error("Received DeclineCheckpoint message " +
s"for job $jid with no CheckpointCoordinator")

}
case None =>

log.error(s"Received DeclineCheckpoint for unavailable job $jid")
}

case msg: NotifyKvStateRegistered =>
currentJobs.get(msg.getJobId) match {

case Some((graph, _)) =>
try {
log.debug(s"Key value state registered for job ${msg.getJobId} " +
s"under name ${msg.getRegistrationName}.")

graph.getKvStateLocationRegistry.notifyKvStateRegistered(
msg.getJobVertexId, msg.getKeyGroupRange, msg.getRegistrationName,
msg.getKvStateId, msg.getKvStateServerAddress)

} catch {
case t: Throwable => log.error(
s"Failed to notify KvStateRegistry about registration $msg.")

}
case None =>

log.error(s"Received $msg for unavailable job.")
}

case msg: NotifyKvStateUnregistered =>
currentJobs.get(msg.getJobId) match {

case Some((graph, _)) =>
try graph.getKvStateLocationRegistry.notifyKvStateUnregistered(

msg.getJobVertexId, msg.getKeyGroupRange, msg.getRegistrationName)
catch {
case t: Throwable => log.error(
s"Failed to notify KvStateRegistry about registration $msg.")

}
case None =>

log.error(s"Received $msg for unavailable job.")
}

}
}

class TaskManager extends Actor {
def receive = {
case SendStackTrace => sendStackTrace() foreach { message =>

sender ! decorateMessage(message)
}

case Disconnect(instanceIdToDisconnect, cause) =>
if (instanceIdToDisconnect.equals(instanceID)) {
handleJobManagerDisconnect("JobManager requested disconnect: " +
cause.getMessage())

triggerTaskManagerRegistration()
} else {
log.debug("Received disconnect message for wrong instance id " +
instanceIdToDisconnect)

}

case StopCluster(applicationStatus, message) =>
log.info(s"Stopping TaskManager with final application status " +
s"$applicationStatus and diagnostics: $message")

shutdown()

case FatalError(message, cause) =>
killTaskManagerFatal(message, cause)

case RequestTaskManagerLog(requestType) =>
blobService match {
case Some(_) =>
handleRequestTaskManagerLog(requestType, currentJobManager.get) match {
case Left(message) => sender() ! message
case Right(message) => sender() ! message

}
case None =>
sender() ! akka.actor.Status.Failure(new IOException(
"BlobService not available. Cannot upload TaskManager logs."))

}

case UpdateTaskMultiplePartitionInfos(executionID, partitionInfos) =>
sender ! decorateMessage(updateTaskInputPartitions(executionID, partitionInfos))

case FailIntermediateResultPartitions(executionID) =>
log.info(s"Discarding the results produced by task execution $executionID")
try {
network.getResultPartitionManager.releasePartitionsProducedBy(executionID)

} catch {
case t: Throwable => killTaskManagerFatal(
"Fatal leak: Unable to release intermediate result partition data", t)

}

case UpdateTaskExecutionState(taskExecutionState: TaskExecutionState) =>
currentJobManager foreach { jobManager =>
val futureResponse = (jobManager ?
decorateMessage(UpdateTaskExecutionState(taskExecutionState)))(
askTimeout)

futureResponse.mapTo[Boolean].onComplete {
case scala.util.Success(result) =>
if (!result) {
self ! decorateMessage(

FailTask(
taskExecutionState.getID,
new Exception("Task has been cancelled on the JobManager."))

)
}

case scala.util.Failure(t) =>
self ! decorateMessage(FailTask(

taskExecutionState.getID,
new Exception("Failed to send ExecutionStateChange notification to " +
"JobManager", t))

)
}(context.dispatcher)

}

case TaskInFinalState(executionID) =>
unregisterTaskAndNotifyFinalState(executionID)

case SubmitTask(tdd) =>
sender ! decorateMessage(submitTask(tdd))

case StopTask(executionID) =>
val task = runningTasks.get(executionID)
if (task != null) {
try {
task.stopExecution()
sender ! decorateMessage(Acknowledge.get())

} catch {
case t: Throwable =>
sender ! decorateMessage(Status.Failure(t))

}
} else {
log.debug(s"Cannot find task to stop for execution $executionID)")
sender ! decorateMessage(Acknowledge.get())

}

case FailTask(executionID, cause) =>
val task = runningTasks.get(executionID)
if (task != null) {
task.failExternally(cause)

} else {
log.debug(s"Cannot find task to fail for execution $executionID)")

}

case CancelTask(executionID) =>
val task = runningTasks.get(executionID)
if (task != null) {
task.cancelExecution()
sender ! decorateMessage(Acknowledge.get())

} else {
log.debug(s"Cannot find task to cancel for execution $executionID)")
sender ! decorateMessage(Acknowledge.get())

}

case TriggerCheckpoint(jobId, taskExecutionId, checkpointId, timestamp,
checkpointOptions) =>

log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +
s"for $taskExecutionId.")

val task = runningTasks.get(taskExecutionId)
if (task != null) {
task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)

} else {
log.debug(s"TaskManager received a checkpoint request " +
s"for unknown task $taskExecutionId.")

}

case NotifyCheckpointComplete(jobId, taskExecutionId, checkpointId, timestamp) =>
log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +
s"for $taskExecutionId.")

val task = runningTasks.get(taskExecutionId)
if (task != null) {
task.notifyCheckpointComplete(checkpointId)

} else {
log.debug(s"TaskManager received a checkpoint confirmation " +
s"for unknown task $taskExecutionId.")

}
}

}

class TaskManagerActionsGateway {
def notifyFinalState(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {
mgr ! TaskInFinalState(executionAttemptID)

}

def notifyFatalError(message: String, cause: Throwable, mgr: ActorRef) = {
mgr ! FatalError(message, cause)

}

def failTask(executionAttemptID: ExecutionAttemptID, cause: Throwable,
mgr: ActorRef) = {

mgr ! FailTask(executionAttemptID, cause)
}

def updateTaskExecutionState(taskExecutionState: TaskExecutionState,
mgr: ActorRef) = {

mgr ! UpdateTaskExecutionState(taskExecutionState)
}

}

class PartitionProducerStateCheckerGateway {
def requestPartitionProducerState(jobId: JobID,

intermediateDataSetId: IntermediateDataSetID,
resultPartitionId: ResultPartitionID, mgr: ActorRef) = {

(mgr ? RequestPartitionProducerState(jobId, intermediateDataSetId,
resultPartitionId)).mapTo[ExecutionState]

}
}

class ResultPartitionConsumableNotifierGateway {
def notifyPartitionConsumable(jobId: JobID, partitionId: ResultPartitionID,

taskActions: TaskActions, mgr: ActorRef) = {
(mgr ? ScheduleOrUpdateConsumers(jobId, partitionId)).failed foreach { failure =>

LOG.error("Could not schedule or update consumers at the JobManager.", failure)
taskActions.failExternally(new RuntimeException(

"Could not notify JobManager to schedule or update consumers",
failure))

}
}

}

class CheckpointResponderGateway {
def acknowledgeCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,

checkpointId: long, checkpointMetrics: CheckpointMetrics,
checkpointStateHandles: SubtaskState, mgr: ActorRef) = {

msg ! AcknowledgeCheckpoint(jobID, executionAttemptID, checkpointId,
checkpointMetrics, checkpointStateHandles)

}

def declineCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,
checkpointId: long, reason: Throwable, mgr: ActorRef) = {

msg ! DeclineCheckpoint(jobID, executionAttemptID, checkpointId, reason)
}

}

class KvStateRegistryListenerGateway {
def notifyKvStateRegistered(jobId: JobID, jobVertexId: JobVertexID,

keyGroupRange: KeyGroupRange, registrationName: String,
kvStateId: KvStateID, mgr: ActorRef) = {

msg ! NotifyKvStateRegistered(jobId, jobVertexId, keyGroupRange, registrationName,
kvStateId, kvStateServerAddress)

}

def notifyKvStateUnregistered(
jobId: JobID,
jobVertexId: JobVertexID,
keyGroupRange: KeyGroupRange,
registrationName: String,
mgr: ActorRef) = {

msg ! NotifyKvStateUnregistered(jobId, jobVertexId, keyGroupRange, registrationName)
}

}

Fig. 2: Communication of two actors in Apache Flink [adopted from 94].

message loop also needs to handle messages belonging to unrelated functions
that should be executed on the TaskManager.

To provide a broader overview of the scattered control flow in Apache Flink,
Figure 2 depicts a larger portion of the communication between the two actors.
The figure shows a part of the JobManager implementation (dark gray boxes,
left), the TaskManager implementation (light gray boxes, right) and their commu-
nication (arrows). Every box is an actor which is confined by network boundaries.
Thus, cross-host data flow belonging to the same (distributed) functionality is
scattered over multiple objects.

Notably, Flink implements its own abstraction over message-passing that
encapsulates the sending of messages into asynchronous remote procedure calls.
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As such, Flink is essentially using active objects, built on top of actors. Most of
these calls are processed in a different compilation unit within another package,
making it difficult to correlate the messages sent with the remote computations
they trigger.

A closer look at the code reveals that the reason these remote procedures are
implemented as public object methods is not because they represent a reusable
function – in fact they often only have a single call site. Instead, the reason
is that this structure to organize distribution is imposed by the actor model,
which tempts to combine unrelated functionalities into a single actor because
they incidentally run on the same component rather than properly separating
them.

3.2 The Multitier Approach

Multitier programming follows the active objects or actor systems approach of
providing developers with language abstractions for explicitly defining concurrent
entities and the code they execute. The focus of multitier programming is to pro-
vide and enhance the language features for handling the communication between
these entities [85]. Such entities, like active object or actors, are represented by
different tiers in multitier programming [30]. Tiers decouple the concurrency
(and distribution) abstractions from the objects/actors. Hence, the concurrency
boundaries do not need to be at the level of objects. Different methods of the
same object can run concurrently at different locations.

Multitier programming thus addresses the modularization issues of active
objects and actors [93] that especially arise in application scenarios where remote
functions are not loosely coupled but work closely together to achieve a common
goal and provide a joint functionality.

Basic multitier language features. Multitier languages typically give the developer
full control over where values are placed and computations are executed using a
variety of different techniques such as annotations, types or multi-stage program-
ming. For illustration, we will use a language where placement is expressed in the
types. For example, a value of type Int on Server represents an integer value
that lives on the server, and a method of type String on Client represents a
method that will execute on the client and return a string. A main method, which
runs on the client when it starts, has the signature main(): Unit on Client –
i.e., the method receives no arguments, has a void return value (i.e., it returns
the singleton unit value) and lives on the client. Calling methods that live on
other tiers looks similar to traditional (local) method calls. In particular, remote
calls are fully type-checked across distributed components and remote methods
are looked up according to the usual scoping rules (e.g., defined in the same
lexical scope, imported, inherited, etc.). In the following presentation, remote
calls are explicit through the remote call marker. Note that there also exist
multitier languages in which remote calls are transparent.

Listing 3 places the main method on the client (Line 1), where it keeps reading
line-by-line from standard input (Line 2). For every line, it calls the fire method
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Listing 3: Method with specified placement.
1 def main(): Unit on Client =
2 for (line <- io.Source.stdin.getLines)
3 remote call fire(line)
4

5 def fire(message: String): Unit on Server =
6 remote call show(line)
7

8 def show(message: String): Unit on Client =
9 println(line)

on the server remotely (Line 3), which in turn calls the show method on the
client remotely (Line 6) to print the line to standard output (Line 9). The remote
call to fire (Line 3) requires the remote call marker since the fire method is
placed on the server (Line 5) but is invoked within the main method placed on
the client (Line 1). Hence, it is statically known where remote calls appear and
which method is invoked to handle them.

As the example illustrates, multitier programming brings programming dis-
tributed applications closer to the development of “traditional” non-distributed
applications. Both method definitions and calls look similar to the usual way of
defining and calling methods – with the only new language features being the
ones required for distribution, namely the specification of the placement and
marking remote accesses.

Multitier languages typically take the possibility to compose code on different
tiers one step further and do not only allow methods to be placed on tiers but also
expressions inside methods. For example, Listing 4 implements the same logic
as the snippet above but nests the expressions to be run on the client (Lines 1
and 4) and on the server (Line 3) inside each other.

In our example language, an expression of the form on[T].run is used to
divert the control flow to another tier. In this language design, we also require
developers to explicitly list the values that should be transferred to another tier
using the capture clause. This design choice aims to avoid accidental captures
which are distinctively more costly in a distributed setting – compared to captures
in local closures, for example – as they require additional data to be transmitted
over the network. The compiler issues an error if variables are used in a nested
placed block without being explicitly captured, as this situation may indicate a
potentially expensive programming mistake.

Distributed architectures. Multitier languages use different underlying system ar-
chitectures or application topologies. Historically, multitier programming focused
on client–server Web applications. Hence, most approaches have a server and a
client – and sometimes a database – as the only supported tiers baked into the
language model. They differ in whether they treat the server side as the single
instance of the server code that serves a connected client or as one server instance
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Listing 4: Nested code blocks with specified placement.
1 def main(): Unit on Client =
2 for (line <- io.Source.stdin.getLines)
3 on[Server].run.capture(line) {
4 on[Client].run.capture(line) {
5 println(line)
6 }
7 }

Listing 5: Distributed architecture specification.
1 @multitier object Chat {
2 @peer type Server <: { type Tie <: Multiple[Client] }
3 @peer type Client <: { type Tie <: Single[Server] }
4

5 def main(): Unit on Client = /* ... */
6 def fire(message: String): Unit on Server = /* ... */
7 def show(message: String): Unit on Client = /* ... */
8 }

serving all connected clients. The former case leads to a one-to-one connection
between server and client sides. In such case, the example presented in Listing 3
will lead to the server echoing the message from the client back to the same client
that sent the message. The latter case leads to a one-to-many connection between
server and clients. In the example (Listing 3), the server would then forward
the message from one client to all connected clients, essentially implementing a
simple command line chat.

While the underling topology may be implicit and built into the language, we
will use a multitier language that makes the involved peers and their architectural
connection explicit – extending the scope beyond the Web and the client–server
model. In Listing 5, we assume that the main, fire and show methods are
implemented as before (Listing 3) and part of the Chat object. Lines 2 and 3
define the peers and their relation: A server that can handle multiple clients and
a client that is connected to a single server.

Modularization, encapsulation, composition. Separating the distribution aspect
from the object structure in multitier programming allows developers to return to
using OOP abstractions for structuring, modularizing and composing their code
based on distinguishing functionalities rather than locations. A single module –
e.g., an object, class, trait, mixin, depending on the abstractions offered by the
language – can contain functionalities that are themselves distributed. Hence, a
module can abstract also over distributed functionalities: Distribution will not
leak if it should not be exposed as part of the public interface. To integrate
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Listing 6: Abstract multitier module.
1 @multitier trait Chat {
2 @peer type Server <: { type Tie <: Multiple[Client] }
3 @peer type Client <: { type Tie <: Single[Server] }
4

5 def main(): Unit on Client
6

7 protected def fire(message: String): Unit on Server =
8 remote call show(line)
9

10 protected def show(message: String): Unit on Client
11 }

Listing 7: Concrete implementation of abstract multitier module.
1 @multitier object CommandLineChat extends Chat {
2 def main(): Unit on Client =
3 for (line <- io.Source.stdin.getLines)
4 remote call fire(line)
5

6 protected def show(message: String): Unit on Client =
7 println(line)
8 }

functionality defined in different modules, developers can use the usual techniques
such as inheritance, delegation, composition or mixins.

For example, we can define different variants for the chat examples, e.g., one
using a command line interface (like before, Listings 3 and 5) and another one
using a graphical user interface. First, as shown in Listing 6, we can factor out
the architecture (Lines 2 and 3) and the common methods (Lines 5, 7 and 10),
leaving the implementation of the methods abstract (Lines 5 and 10) that are to
be implemented by a specific variant.

The command line chat variant (Listing 7) then only needs to implement the
abstract methods (Lines 2 and 6), inheriting the architecture and the distributed
functionalities form the Chat trait defined in Listing 6. In the example, the
methods that are only relevant to the module or its sub-modules are access-
protected using the usual protected visibility modifier.

Multitier programming goes beyond active objects and the actor model by
enabling the separation of distribution concerns and OOP mechanisms used
for modularization and composition. The ability to declare placement as an
orthogonal dimension in the language relieves the developer from having to
manually model placement and being forced to align the structure of the program
with the boundaries of active objects or actors. Multitier objects can be composed
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Listing 8: Communicating Flink peers [adopted from 93].
1 @multitier object TaskManagerGateway {
2 @peer type JobManager <: { type Tie <: Multiple[TaskManager] }
3 @peer type TaskManager <: { type Tie <: Single[JobManager] }
4

5 def submitTask(td: TaskDeployment, tm: Remote[TaskManager]) =
6 on[JobManager] {
7 on(tm).run.capture(td) {
8 val task = new Task(td)
9 task.start()

10 Acknowledge()
11 }
12 }
13 }

like standard objects but different parts of their code can be run across different
distributed components.

A Multitier Version of Apache Flink. In the case of Apache Flink, many
remote procedures could be expressed more directly using nested remote expres-
sions. Listing 8 shows a multitier variant of the interaction between JobManager
and the TaskManager of Listing 2. The multitier version uses an intra-module
cross-peer remote call (Line 7) to execute the data processing task on the
TaskManager (Lines 8 to 10). Thus, related functionalities are kept inside the
same TaskManagerGateway module and the multitier module contains the func-
tionality that is executed on both the JobManager and the TaskManager peer.

Figure 3 shows a reimplementation of Figure 2 using the multitier approach.
The cross-peer data flow in the system is much more regular – thanks to the
reorganization of the same code in a single unit – and thus much easier to track.

In the Flink example, the different distributed sub-functionalities of the task
distribution system can be encapsulated into their own module. Besides the
module already shown in Figures 2 and 3, the task distribution system consists of
five further individual functionalities. Figure 4 shows the task distribution system
module (background), composed by mixing together the modules for the different
sub-functionalities (foreground). Cross-peer data flow (arrows) is encapsulated
within modules and is not split over different modules. As before, the data flow in
each module module spans across the JobManager (dark gray) and TaskManager
(light gray) peers.

4 Discussion

This section discusses the similarities and differences among active objects, actors
and multitier programming. Finally, we highlight the areas where multitier
programming strives for improvement compared to alternative approaches.
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4.1 Active Objects vs. Actors vs. Tiers @multitier trait TaskDistributionSystem {
@peer type JobManager <: { type Tie <: Multiple[TaskManager] with Single[TaskManager] }
@peer type TaskManager <: { type Tie <: Single[JobManager] }

def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(instanceId, cause) {
if (instanceId.equals(instanceID)) {
handleJobManagerDisconnect(s"JobManager requested disconnect: " +
cause.getMessage())

triggerTaskManagerRegistration()
} else {
log.debug(s"Received disconnect message for wrong instance id " +
instanceId)

}
}

}

def stopCluster(applicationStatus: ApplicationStatus, message: String,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(applicationStatus, message) {
log.info(s"Stopping TaskManager with final application status " +
s"$applicationStatus and diagnostics: $message")

shutdown()
}

}

def requestStackTrace(mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(tdd) {

sendStackTrace()
}.asLocal.map(_.left.get)

}

def submitTask(tdd: TaskDeploymentDescriptor,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(tdd) {
submitTask(tdd)

}.asLocal.map(_.left.get)
}

def stopTask(executionAttemptID: ExecutionAttemptID,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID) {
val task = runningTasks.get(executionAttemptID)
if (task != null) {
try {
task.stopExecution()
Left(Acknowledge.get())

} catch {
case t: Throwable =>
Right(Status.Failure(t))

}
} else {
log.debug(s"Cannot find task to stop for execution $executionAttemptID)")
Left(Acknowledge.get())

}
}.asLocal.map(_.left.get)

}

def cancelTask(executionAttemptID: ExecutionAttemptID,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID) {
val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.cancelExecution()
Acknowledge.get()

} else {
log.debug(s"Cannot find task to cancel for execution $executionAttemptID")
Acknowledge.get()

}
}.asLocal

}

def updatePartitions(
executionAttemptID: ExecutionAttemptID,
partitionInfos: java.lang.Iterable[PartitionInfo],
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, partitionInfos) {
updateTaskInputPartitions(executionAttemptID, partitionInfos)

}.asLocal.map(_.left.get)
}

def failPartition(executionAttemptID: ExecutionAttemptID,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID) {
log.info(s"Discarding the results produced by task execution $executionID")
try {
network.getResultPartitionManager.releasePartitionsProducedBy(executionID)

} catch {
case t: Throwable => killTaskManagerFatal(
"Fatal leak: Unable to release intermediate result partition data", t)

}
}

}

def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,
jobId: JobID, checkpointId: Long, timestamp: Long,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp) {
log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +
s"for $executionAttemptID.")

val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.notifyCheckpointComplete(checkpointId)

} else {
log.debug(s"TaskManager received a checkpoint confirmation " +
s"for unknown task $taskExecutionId.")

}
}

}

def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,
checkpointId: Long, timestamp: Long, checkpointOptions: CheckpointOptions,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp,
checkpointOptions) {

log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +
s"for $executionAttemptID.")

val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)

} else {
log.debug(s"TaskManager received a checkpoint request " +
s"for unknown task $executionAttemptID.")

}
}

}

def requestTaskManagerLog(logTypeRequest: LogTypeRequest,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(logTypeRequest) {
blobService match {
case Some(_) =>
handleRequestTaskManagerLog(logTypeRequest, currentJobManager.get)

case None =>
Right(akka.actor.Status.Failure(new IOException(
"BlobService not available. Cannot upload TaskManager logs.")))

}
}.asLocal.map(_.left.get)

}

def notifyFinalState(executionAttemptID: ExecutionAttemptID) =
on[TaskManager] {

on[TaskManager].run.capture(executionAttemptID) {
unregisterTaskAndNotifyFinalState(executionAttemptID)

}
}

def notifyFatalError(message: String, cause: Throwable) = on[TaskManager]
on[TaskManager].run.capture(message, cause) {

killTaskManagerFatal(message, cause)
}

}

def failTask(executionAttemptID: ExecutionAttemptID,
cause: Throwable) = on[TaskManager] {

on[TaskManager].run.capture(executionAttemptID, cause) {
val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.failExternally(cause)

} else {
log.debug(s"Cannot find task to fail for execution $executionAttemptID)")

}
}

}

def updateTaskExecutionState(
taskExecutionState: TaskExecutionState) = on[TaskManager] {

on[TaskManager].run.capture(taskExecutionState) {
currentJobManager foreach { jobManager =>
val futureResponse = (jobManager ?
decorateMessage(UpdateTaskExecutionState(taskExecutionState)))(
askTimeout)

futureResponse.mapTo[Boolean].onComplete {
case scala.util.Success(result) =>

if (!result) {
self ! decorateMessage(
FailTask(
taskExecutionState.getID,
new Exception("Task has been cancelled on the JobManager."))

)
}

case scala.util.Failure(t) =>
self ! decorateMessage(FailTask(
taskExecutionState.getID,
new Exception("Failed to send ExecutionStateChange notification " +
"to JobManager", t))

)
}(context.dispatcher)

}
}

}

def notifyKvStateRegistered(jobId: JobID, jobVertexId: JobVertexID,
keyGroupRange: KeyGroupRange, registrationName: String,
kvStateId: KvStateID) = on[TaskManager] {

on[JobManager].run.capture(
jobId, jobVertexId, keyGroupRange, registrationName,
kvStateId, kvStateServerAddress) {

currentJobs.get(jobId) match {
case Some((graph, _)) =>
try {
log.debug(s"Key value state registered for job $jobId " +

s"under name $registrationName.")
graph.getKvStateLocationRegistry.notifyKvStateRegistered(

jobVertexId, keyGroupRange, registrationName,
kvStateId, kvStateServerAddress)

} catch {
case t: Throwable => log.error(

"Failed to notify KvStateRegistry about registration.")
}

case None =>
log.error("Received state registration for unavailable job.")

}
}

}

def notifyKvStateUnregistered(jobId: JobID, jobVertexId: JobVertexID,
keyGroupRange: KeyGroupRange,
registrationName: String) = on[TaskManager] {

on[JobManager].run.capture(
jobId, jobVertexId, keyGroupRange, registrationName) {

currentJobs.get(jobId) match {
case Some((graph, _)) =>
try graph.getKvStateLocationRegistry.notifyKvStateUnregistered(

jobVertexId, keyGroupRange, registrationName)
catch {
case t: Throwable => log.error(

s"Failed to notify KvStateRegistry about registration.")
}

case None =>
log.error("Received state unregistration for unavailable job.")

}
}

}

def notifyPartitionConsumable(jobId: JobID, partitionId: ResultPartitionID,
taskActions: TaskActions) = on[TaskManager] {

on[JobManager].run.capture(jobId, partitionId) {
currentJobs.get(jobId) match {
case Some((executionGraph, _)) =>
try {
executionGraph.scheduleOrUpdateConsumers(partitionId)
Acknowledge.get()

} catch {
case e: Exception => Failure(

new Exception("Could not schedule or update consumers.", e)))
}

case None =>
log.error(s"Cannot find execution graph for job ID $jobId " +
"to schedule or update consumers.")

Failure(new IllegalStateException("Cannot find execution graph " +
s"for job ID $jobId to schedule or update consumers."))

}
}.asLocal.failed foreach { failure =>

LOG.error("Could not schedule or update consumers at the JobManager.", failure)
taskActions.failExternally(new RuntimeException(

"Could not notify JobManager to schedule or update consumers",
failure))

}
}

def acknowledgeCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,
checkpointId: Long, checkpointMetrics: CheckpointMetrics,
checkpointStateHandles: SubtaskState) = on[TaskManager] {

on[JobManager].run.capture(
jobID, executionAttemptID, checkpointId,
checkpointMetrics, checkpointStateHandles) {

currentJobs.get(jobID) match {
case Some((graph, _)) =>
val checkpointCoordinator = graph.getCheckpointCoordinator()
if (checkpointCoordinator != null)
future {

try if (!checkpointCoordinator.receiveAcknowledgeMessage(
AcknowledgeCheckpoint(jobID, executionAttemptID,

checkpointId,checkpointMetrics, checkpointStateHandles)))
log.info("Received message for non-existing checkpoint " +

checkpointId)
catch {
case t: Throwable => log.error("Error in CheckpointCoordinator " +
"while processing acknowledge message", t)

}
}(context.dispatcher)

else log.error(
s"Received AcknowledgeCheckpoint message for job $jobID with no " +
"CheckpointCoordinator")

case None =>
log.error(s"Received AcknowledgeCheckpoint for unavailable job $jobID")

}
}

}

def declineCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,
checkpointId: Long, reason: Throwable) = on[TaskManager] {

on[JobManager].run.capture(
jobID, executionAttemptID, checkpointId, reason) {

currentJobs.get(jobID) match {
case Some((graph, _)) =>
val checkpointCoordinator = graph.getCheckpointCoordinator()
if (checkpointCoordinator != null) {
future {

try checkpointCoordinator.receiveDeclineMessage(DeclineCheckpoint(
jobID, executionAttemptID, checkpointId, reason))

catch {
case t: Throwable => log.error("Error in CheckpointCoordinator " +
"while processing decline message", t)

}
}(context.dispatcher)

}
else log.error("Received DeclineCheckpoint message " +
s"for job $jobID with no CheckpointCoordinator")

case None =>
log.error(s"Received DeclineCheckpoint for unavailable job $jobID")

}
}

}

def requestPartitionProducerState(jobId: JobID,
intermediateDataSetId: IntermediateDataSetID,
resultPartitionId: ResultPartitionID) = on[TaskManager] { new FlinkFuture(

on[JobManager].run.capture(
jobId, intermediateDataSetId, resultPartitionId) {

currentJobs.get(jobId) match {
case Some((executionGraph, _)) =>
try {
val execution = executionGraph.getRegisteredExecutions

.get(resultPartitionId.getProducerId)
if (execution != null)

Left(execution.getState)
else {

val intermediateResult = executionGraph
.getAllIntermediateResults.get(intermediateDataSetId)

if (intermediateResult != null) {
val execution = intermediateResult
.getPartitionById(resultPartitionId.getPartitionId)
.getProducer.getCurrentExecutionAttempt

if (execution.getAttemptId() == resultPartitionId.getProducerId())
Left(execution.getState)

else
Right(Status.Failure(new PartitionProducerDisposedException(

resultPartitionId)))
else
Right(Status.Failure(new IllegalArgumentException(
s"Intermediate data set with ID $intermediateDataSetId not found.")))

}
} catch {
case e: Exception => Right(

Status.Failure(new RuntimeException("Failed to look up " +
"execution state of producer with ID " +
s"${resultPartitionId.getProducerId}.", e)))

}
case None => Right(Status.Failure(new IllegalArgumentException(
s"Job with ID $jobId not found.")))

}
}.asLocal.mapTo[ExecutionState])

}

}

Fig. 3: Flink: Mul-
titier approach
[from 94].

Multitier programming adopts the same approach of
actors and active objects to decouple method invoca-
tion and method execution. Invoking a method on an
active object – or sending a message to an actor – re-
turns immediately. The method itself is executed – or
the message is dispatched – asynchronously. Hence, the
multitier approach retains the basic asynchronous exe-
cution model of active objects and actors. In fact, every
tier can be thought of as an active object on which the
methods that are placed on the tier can be executed.
The execution of a remote method is necessarily asyn-
chronous since the threads of execution of the different
tiers are – even physically – separated. Some languages
hide the asynchronicity from the developer by com-
piling the multitier code to continuation-passing style
and invoking the continuation only when the remote
result becomes locally available [30]. Other languages
make the asynchronicity of the result explicit by having
remote methods return futures [94] – similar to how
asynchronicity is often handled in active objects – or by
employing coroutine-based approaches for cooperative
multitasking [29].

Multitier languages, however, provide a holistic view
on the distributed components and their interaction.
They tackle situations where the interaction between ac-
tive objects or actors hinders encapsulation and proper
modularization along meaningful functional boundaries,
when different places are treated as different objects or
actors. To achieve this goal, the multitier paradigm is
characterized by linguistic features for expressing dif-
ferent tiers and their interaction. Therefore, multitier
programming especially focuses on application scenar-
ios where systems that are designed “as a whole” and a
holistic view simplifies the reasoning about the system
for the developer. In these scenarios, multitier program-
ming can serve to bridge the communication across
distributed active entities.

4.2 Development Benefits

In summary, the development benefits of the multi-
tier programming paradigm revolve mainly around the
following aspects.
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@multitier trait TaskDistributionSystem extends CheckpointResponder with KvStateRegistryListener with PartitionProducerStateChecker with ResultPartitionConsumableNotifier with TaskManagerGateway with TaskManagerActions

@multitier trait TaskManagerActions {
@peer type TaskManager <: { type Tie <: Single[TaskManager] }

def notifyFinalState(executionAttemptID: ExecutionAttemptID) =
on[TaskManager] {

on[TaskManager].run.capture(executionAttemptID) {
unregisterTaskAndNotifyFinalState(executionAttemptID)

}
}

def notifyFatalError(message: String, cause: Throwable) = on[TaskManager] {
on[TaskManager].run.capture(message, cause) {

killTaskManagerFatal(message, cause)
}

}

def failTask(executionAttemptID: ExecutionAttemptID,
cause: Throwable) = on[TaskManager] {

on[TaskManager].run.capture(executionAttemptID, cause) {
val task = runningTasks.get(executionAttemptID)
if (task != null) {

task.failExternally(cause)
} else {
log.debug(s"Cannot find task to fail for execution $executionAttemptID)")

}
}

}

def updateTaskExecutionState(
taskExecutionState: TaskExecutionState) = on[TaskManager] {

on[TaskManager].run.capture(taskExecutionState) {
currentJobManager foreach { jobManager =>
val futureResponse = (jobManager ?
decorateMessage(UpdateTaskExecutionState(taskExecutionState)))(
askTimeout)

futureResponse.mapTo[Boolean].onComplete {
case scala.util.Success(result) =>
if (!result) {
self ! decorateMessage(

FailTask(
taskExecutionState.getID,
new Exception("Task has been cancelled on the JobManager."))

)
}

case scala.util.Failure(t) =>
self ! decorateMessage(FailTask(

taskExecutionState.getID,
new Exception("Failed to send ExecutionStateChange notification " +
"to JobManager", t))

)
}(context.dispatcher)

}
}

}
}

@multitier trait CheckpointResponder {
@peer type JobManager <: { type Tie <: Multiple[TaskManager] }
@peer type TaskManager <: { type Tie <: Single[JobManager] }

def acknowledgeCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,
checkpointId: Long, checkpointMetrics: CheckpointMetrics,
checkpointStateHandles: SubtaskState) = on[TaskManager] {

on[JobManager].run.capture(
jobID, executionAttemptID, checkpointId,
checkpointMetrics, checkpointStateHandles) {

currentJobs.get(jobID) match {
case Some((graph, _)) =>
val checkpointCoordinator = graph.getCheckpointCoordinator()
if (checkpointCoordinator != null)
future {

try if (!checkpointCoordinator.receiveAcknowledgeMessage(
AcknowledgeCheckpoint(jobID, executionAttemptID,
checkpointId,checkpointMetrics, checkpointStateHandles)))

log.info("Received message for non-existing checkpoint " +
checkpointId)

catch {
case t: Throwable => log.error("Error in CheckpointCoordinator " +
"while processing acknowledge message", t)

}
}(context.dispatcher)

else log.error(
s"Received AcknowledgeCheckpoint message for job $jobID with no " +
"CheckpointCoordinator")

case None =>
log.error(s"Received AcknowledgeCheckpoint for unavailable job $jobID")

}
}

}

def declineCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,
checkpointId: Long, reason: Throwable) = on[TaskManager] {

on[JobManager].run.capture(
jobID, executionAttemptID, checkpointId, reason) {

currentJobs.get(jobID) match {
case Some((graph, _)) =>
val checkpointCoordinator = graph.getCheckpointCoordinator()
if (checkpointCoordinator != null)
future {

try checkpointCoordinator.receiveDeclineMessage(DeclineCheckpoint(
jobID, executionAttemptID, checkpointId, reason))

catch {
case t: Throwable => log.error("Error in CheckpointCoordinator " +
"while processing decline message", t)

}
}(context.dispatcher)

else log.error("Received DeclineCheckpoint message " +
s"for job $jobID with no CheckpointCoordinator")

case None =>
log.error(s"Received DeclineCheckpoint for unavailable job $jobID")

}
}

}
}

@multitier trait TaskManagerGateway {
@peer type JobManager <: { type Tie <: Multiple[TaskManager] }
@peer type TaskManager <: { type Tie <: Single[JobManager] }

def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(instanceId, cause) {
if (instanceId.equals(instanceID)) {
handleJobManagerDisconnect(s"JobManager requested disconnect: " +
cause.getMessage())

triggerTaskManagerRegistration()
} else {
log.debug(s"Received disconnect message for wrong instance id " +
instanceId)

}
}

}

def stopCluster(applicationStatus: ApplicationStatus, message: String,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(applicationStatus, message) {
log.info(s"Stopping TaskManager with final application status " +
s"$applicationStatus and diagnostics: $message")

shutdown()
}

}

def requestStackTrace(mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(tdd) {
sendStackTrace()

}.asLocal.map(_.left.get)
}

def submitTask(tdd: TaskDeploymentDescriptor,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(tdd) {
submitTask(tdd)

}.asLocal.map(_.left.get)
}

def stopTask(executionAttemptID: ExecutionAttemptID,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID) {
val task = runningTasks.get(executionAttemptID)
if (task != null) {
try {
task.stopExecution()
Left(Acknowledge.get())

} catch {
case t: Throwable =>

Right(Status.Failure(t))
}

} else {
log.debug(s"Cannot find task to stop for execution $executionAttemptID)")
Left(Acknowledge.get())

}
}.asLocal.map(_.left.get)

}

def cancelTask(executionAttemptID: ExecutionAttemptID,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID) {
val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.cancelExecution()
Acknowledge.get()

} else {
log.debug(s"Cannot find task to cancel for execution $executionAttemptID")
Acknowledge.get()

}
}.asLocal

}

def updatePartitions(
executionAttemptID: ExecutionAttemptID,
partitionInfos: java.lang.Iterable[PartitionInfo],
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, partitionInfos) {
updateTaskInputPartitions(executionAttemptID, partitionInfos)

}.asLocal.map(_.left.get)
}

def failPartition(executionAttemptID: ExecutionAttemptID,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID) {
log.info(s"Discarding the results produced by task execution $executionID")
try {
network.getResultPartitionManager.releasePartitionsProducedBy(executionID)

} catch {
case t: Throwable => killTaskManagerFatal(
"Fatal leak: Unable to release intermediate result partition data", t)

}
}

}

def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,
jobId: JobID, checkpointId: Long, timestamp: Long,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp) {
log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +
s"for $executionAttemptID.")

val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.notifyCheckpointComplete(checkpointId)

} else {
log.debug(s"TaskManager received a checkpoint confirmation " +
s"for unknown task $taskExecutionId.")

}
}

}

def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,
checkpointId: Long, timestamp: Long, checkpointOptions: CheckpointOptions,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp,
checkpointOptions) {

log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +
s"for $executionAttemptID.")

val task = runningTasks.get(executionAttemptID)
if (task != null) {
task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)

} else {
log.debug(s"TaskManager received a checkpoint request " +
s"for unknown task $executionAttemptID.")

}
}

}

def requestTaskManagerLog(logTypeRequest: LogTypeRequest,
mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(logTypeRequest) {
blobService match {

case Some(_) =>
handleRequestTaskManagerLog(logTypeRequest, currentJobManager.get)

case None =>
Right(akka.actor.Status.Failure(new IOException(

"BlobService not available. Cannot upload TaskManager logs.")))
}

}.asLocal.map(_.left.get)
}

}

@multitier trait KvStateRegistryListener {
@peer type JobManager <: { type Tie <: Multiple[TaskManager] }
@peer type TaskManager <: { type Tie <: Single[JobManager] }

def notifyKvStateRegistered(jobId: JobID, jobVertexId: JobVertexID,
keyGroupRange: KeyGroupRange, registrationName: String,
kvStateId: KvStateID) = on[TaskManager] {

on[JobManager].run.capture(
jobId, jobVertexId, keyGroupRange, registrationName,
kvStateId, kvStateServerAddress) {

currentJobs.get(jobId) match {
case Some((graph, _)) =>

try {
log.debug(s"Key value state registered for job $jobId " +
s"under name $registrationName.")

graph.getKvStateLocationRegistry.notifyKvStateRegistered(
jobVertexId, keyGroupRange, registrationName,
kvStateId, kvStateServerAddress)

} catch {
case t: Throwable => log.error(
"Failed to notify KvStateRegistry about registration.")

}
case None =>

log.error("Received state registration for unavailable job.")
}

}
}

def notifyKvStateUnregistered(jobId: JobID, jobVertexId: JobVertexID,
keyGroupRange: KeyGroupRange,
registrationName: String) = on[TaskManager] {

on[JobManager].run.capture(
jobId, jobVertexId, keyGroupRange, registrationName) {

currentJobs.get(jobId) match {
case Some((graph, _)) =>

try graph.getKvStateLocationRegistry.notifyKvStateUnregistered(
jobVertexId, keyGroupRange, registrationName)

catch {
case t: Throwable => log.error(
s"Failed to notify KvStateRegistry about registration.")

}
case None =>

log.error("Received state unregistration for unavailable job.")
}

}
}

}

@multitier trait PartitionProducerStateChecker {
@peer type JobManager <: { type Tie <: Multiple[TaskManager] }
@peer type TaskManager <: { type Tie <: Single[JobManager] }

def requestPartitionProducerState(jobId: JobID,
intermediateDataSetId: IntermediateDataSetID,
resultPartitionId: ResultPartitionID) = on[TaskManager] { new FlinkFuture(

on[JobManager].run.capture(
jobId, intermediateDataSetId, resultPartitionId) {

currentJobs.get(jobId) match {
case Some((executionGraph, _)) =>

try {
val execution = executionGraph.getRegisteredExecutions
.get(resultPartitionId.getProducerId)

if (execution != null)
Left(execution.getState)

else {
val intermediateResult = executionGraph

.getAllIntermediateResults.get(intermediateDataSetId)
if (intermediateResult != null) {

val execution = intermediateResult
.getPartitionById(resultPartitionId.getPartitionId)
.getProducer.getCurrentExecutionAttempt

if (execution.getAttemptId() == resultPartitionId.getProducerId())
Left(execution.getState)

else Right(Status.Failure(new PartitionProducerDisposedException(
resultPartitionId)))

}
else Status.Failure(new IllegalArgumentException(

s"Intermediate data set with ID $intermediateDataSetId not found."))
}

} catch {
case e: Exception => Right(
Status.Failure(new RuntimeException("Failed to look up " +

"execution state of producer with ID " +
s"${resultPartitionId.getProducerId}.", e)))

}
case None => Right(Status.Failure(new IllegalArgumentException(

s"Job with ID $jobId not found.")))
}

}.asLocal.mapTo[ExecutionState])
}

}

@multitier trait ResultPartitionConsumableNotifier {
@peer type JobManager <: { type Tie <: Multiple[TaskManager] }
@peer type TaskManager <: { type Tie <: Single[JobManager] }

def notifyPartitionConsumable(jobId: JobID, partitionId: ResultPartitionID,
taskActions: TaskActions) = on[TaskManager] {

on[JobManager].run.capture(jobId, partitionId) {
currentJobs.get(jobId) match {
case Some((executionGraph, _)) =>

try {
executionGraph.scheduleOrUpdateConsumers(partitionId)
Acknowledge.get()

} catch {
case e: Exception => Failure(
new Exception("Could not schedule or update consumers.", e))

}
case None =>

log.error(s"Cannot find execution graph for job ID $jobId " +
"to schedule or update consumers.")

Failure(new IllegalStateException("Cannot find execution graph " +
s"for job ID $jobId to schedule or update consumers."))

}
}.asLocal.failed foreach { failure =>
LOG.error("Could not schedule or update consumers at the JobManager.", failure)
taskActions.failExternally(new RuntimeException(
"Could not notify JobManager to schedule or update consumers",
failure))

}
}

}

Fig. 4: Communication of two actors in Apache Flink: Multitier modularization
[adopted from 93].

Higher abstraction level. Multitier programming simplifies software development
for distributed systems by abstracting away low-level details such as network com-
munication, serialization, and data format conversions [82], allowing developers
to work at a higher level of abstraction [94]. With multitier programming, there
is no need for manual design of inter-tier APIs, as the underlying technologies
used for inter-tier communication are transparent to the developer [85].

Improved software design. In distributed applications, the boundaries between
hosts and functionalities may not always align, with functionalities spanning
multiple locations and a single location hosting multiple functionalities. Program-
ming each location separately introduces two issues: compromised modularity
and code repetition. Multitier programming addresses these problems by enabling
the development of a functionality once and placing it where needed [36].

Formal reasoning. Multitier design improves formal reasoning by explicitly
modeling distributed applications and capturing important aspects such as
placement, system components, and tier boundaries. This approach enables
thorough analysis of software properties across the entire system, instead of
treating components in isolation. It supports reasoning about concurrency [76],
security [13], performance optimization [26], as well as domain-specific properties
like reachability in software-defined networks [75].
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Code maintenance. Multitier programming simplifies the process of modifying
software systems in two notable ways. First, it allows for migrating functionality
between different tiers without the need for a rewrite in a different language [43]
(i.e., validating user input on both the client and server sides without code
duplication). Second, it provides easier migration of applications across different
platforms [46] (e.g., simply changing the compilation target to JavaScript for a
Web client).

Program comprehension. Multitier programming simplifies program comprehen-
sion – i.e., the complexity that programmers face to develop a correct mental
model of a program [88] – by enabling seamless data flow across multiple hosts,
eliminating communication code details and interruptions from forcing mod-
ularization along peer boundaries. Thereby, multitier programming simplifies
development and debugging [66]. Yet, so far, we lack empirical studies or con-
trolled experiments measuring the specific advantage of multitier programming
in terms of program comprehension.

5 A Research Roadmap

This section outlines open challenges and opportunities for future research on
multitier programming.

Dynamic placement. Existing multitier languages assign the application func-
tionalities to the nodes in the system based on various mechanisms, such as user
annotations, types, and static analysis. Serrano et al. [85] and Cooper et al. [30]
introduced multitier languages that incorporate two places as annotations on
functions: client and server. Murphy et al. [74] developed a type system based on
modal logic to represent different places as possible worlds. Type-based approaches
have also been used to describe the interaction of places. Notably, multiparty
session types [49] provide static specifications for communication protocols. Chore-
ographic programming [41] ensures safe communication protocols across different
locations encoded by different type parameters. Information flow type systems
have been employed to define the placement of data and computation, preventing
the leakage of private data to untrusted parties [99].

All these mechanisms are based on compile time assignment of functionalities
to nodes. Yet, in distributed systems, often, functionalities need to be assigned
to nodes during the program execution, usually to improve performance.

Dynamic placement decisions play a crucial role in various computing domains.
First, both computation and the resulting data placement can be dynamically
decided. For instance, in a master–worker system, the master leverages information
about the execution environment and the job’s parameters to determine the most
suitable worker [97]. In this scenario, the computed result is dynamically placed
at the location where it was generated. Second, computation can depend on
data that is being transferred between different places. For instance, data that
is frequently accessed in a remote database is often stored in a cache for access
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speed [7, 101]. An application that operates on data should be able to handle
both the database-stored data and the data residing in the cache. Conversely,
data that does not exist in either the database or the cache may require distinct
handling, e.g., when dealing with data received from a client, it is necessary to
sanitize the data prior to storage.

Developers need to tackle the lack of programming abstractions for dynamic
placement themselves by manually encoding placement information into the
program. The first option is to extract a common interface, treating the system
as homogeneous, consisting of a single type of place. This approach, however,
leads to a loss of precision necessary to distinguish between various types of
places. Consequently, this approach can potentially cause run time errors as
the distinctions among nodes are abstracted away. The second option involves
not explicitly extracting any interface but relying solely on the programmer’s
awareness of equivalent functionalities across different places. This approach,
however, does not support dynamic placement efficiently as the same functionality
needs to be implemented multiple times for the different places, resulting in code
repetitions.

Active objects provide a high degree of flexibility to decide their placement
dynamically. Actor systems in particular typically provide location transparency,
i.e., they abstract away the actors’ placement. However, these models lack the
static reasoning about placement and the automatic compiler checks found in
multitier languages. So far, we lack programming models that combine the
strength of both approaches. Finding a practical language abstractions to trade-
off static safety guarantees and the ability to decide placement dynamically is
still an open problem.

Error handling. In software execution, error occurs in various circumstances, for
example when dealing with the external environment (e.g., I/O). Another class
of errors occurs in the case of software bugs (e.g., in the case of null values). In
distributed systems, software applications are executed on several nodes. Hence
the overall probability that (at least) one of the nodes fails increases with the
number of nodes. In addition, network connections can also fail, leading to
packet loss and system partitioning. These potential errors need to be modeled
in the application to give developers the opportunity to execute a reaction.
This mechanism can be implemented in various ways. Actor systems provide
supervision hierarchies where certain actors that “supervise”, i.e., monitor, other
actors – the supervisor can react to failing supervised actors. Different actor
systems can offer different means to setup supervisors.

In Akka, supervision trees are defined by configuring parent actors with
supervisor strategies, which dictate the parent’s response to child failures. Akka
provides several built-in strategies, such as the OneForOneStrategy, which
restarts only the failing child, or the AllForOneStrategy, which restarts all
children upon a single child’s failure. Erlang OTP [8] utilizes a similar approach
with its supervisor behavior, where a supervisor process is responsible for starting,
stopping, and monitoring its child processes. In this case, supervision trees are
built by composing supervisors and worker processes, with supervisors specifying



20 G. Salvaneschi and P. Weisenburger

restart strategies and intensity, allowing for fine-grained control over failure
handling.

Supervision trees offer several advantages for fault-tolerant systems. First, the
hierarchical organization of actors provides a clear structure for error handling,
with each level of the tree responsible for a specific subset of actors. Second, the
isolation between actors prevents errors from cascading uncontrollably through
the system. Also, supervision trees enable self-healing capabilities in a system
by restarting failed actors, often allowing the system to recover from failures
without manual intervention. This promotes system resilience, as the impact of
isolated errors can be minimized and the system can continue functioning despite
component failures.

As most multitier languages make the underlying actors visible, e.g., as types
or annotations, it is conceivable that a multitier language can provide similar
features to define supervision relations. So far, however, multitier languages
have not developed such specific fault tolerance mechanisms yet. This is partly
due to their origins as languages for web development, where neither the server
has the ability to stop or restart clients nor the other way around. Yet, with
multitier languages expanding their scope beyond web applications, dedicated
features for fault tolerance will become more important. For example, a multitier
programming framework could allow developers to specify whether only the failed
or all supervised peers should be automatically restarted in case of failures, while
also deciding whether to wipe or retain their state – akin to supervision strategies
in actor systems.

Consistency. Message ordering guarantees vary in different actor systems. One
basic requirement is that messages sent by the same source actor are processed in
the same receiving actor in the exact order they were sent. This ordering property
transitively holds true even when messages are relayed through multiple actors.
For example, if actor A sends messages to actor B, and B forwards them to actor
C, actor C receives the messages in the same order they were generated by actor
A. However, actor systems like Erlang, do not provide ordering guarantees when
actor A sends two messages to actors B and C, and both B and C forward these
messages to the same actor D. In such cases, there is no guarantee on the order
in which messages are received by D.

Generally, this kind of non-deterministic message ordering can introduce
inconsistencies if the processing order of messages affects the outcome. Yet, in
distributed systems based on message-passing, guaranteeing a specific sequence
of messages may incur overhead, both in terms of maintenance complexities for
the developers and in terms of potential run time performance implications.

Further, in distributed actor systems, issues like network problems or node
failures can cause delays in message transmission or even result in message loss.
If a particular actor relies on a specific message to carry out its operations,
the loss of that message can introduce inconsistencies and disrupt the desired
behavior. Actor systems are typically stateful with each actor maintaining its own
private state. An actor’s state can only be modified by the actor itself, usually in
response to received messages. Hence, when different actors receive messages in a
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different order or miss certain messages, their internal states can diverge. These
data inconsistencies across actors can lead to unexpected behavior and undesired
outcomes. Thus, handling message loss is crucial to maintaining consistency.

Traditionally, synchronization techniques such as locks are used to prevent
such inconsistencies. To ensure that state changes are carried out consistently
across multiple operations, operations are grouped into transactions, which are
executed atomically, guaranteeing that either all operations take effect or none
of them do. Such concurrency control mechanisms, however, are challenging in
distributed actor systems. The distributed nature of actor systems, where actors
work independently and communicate through message passing, adds complexity
to the coordination process. Coordinating multiple actors to achieve consistent
outcomes throughout the system requires careful design and synchronization.

These issues often render strong consistency impractical in distributed systems.
Instead, these systems often resort to a weaker consistency model, such as eventual
consistency. In an eventual consistency model, a certain level of consistency is
guaranteed over time but is not enforced immediately.

Reasoning about consistency in distributed system is still an active area of
research. To aid developers in understanding the behavior and the consistency
of distributed systems, multitier programming offers a valuable approach by
providing a holistic view of the system and the interactions among the different
actors, multitier programming facilitates reasoning about consistency in dis-
tributed systems. One promising direction yet to be explored is the automatic
generation of consistency schemes based on a hypothetical sequential execution
of multitier code. This approach could offer insights into effectively achieving
consistency in distributed systems by automatically deriving suitable consistency
mechanisms from the code structure. Additionally, consistency types [48, 53]
are a promising technique for statically reasoning about consistency properties.
They allow developers to analyze and reason about the expected consistency of
distributed systems at compile-time, catching potential inconsistencies early on.

6 Related Work

Programming languages and calculi for distributed systems. Multitier program-
ming emerged from a rich lineage of programming language design for distributed
systems, influenced by notable distributed languages such as Argus [62], Emer-
ald [15], Distributed Oz [45, 90], Dist-Orc [5] and Jolie [73]. Additionally, various
frameworks for big data processing have emerged in recent years, including
Flink [20], Spark [98], Dryad [51], PigLatin [77] and FlumeJava [25]. These frame-
works refine and generalize the original MapReduce [35] model, transparently
handling fault tolerance, replication, and task distribution. Further, significant
contributions have been made towards designing programming languages that
cater to specific aspects of distributed systems. For example, conflict-free repli-
cated data types (CRDT) [86, 87] or cloud types [18] ensure eventual consistency,
Ericsson’s Calvin [79] provides a programming frameworks for mixed IoT/Cloud
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development and Spores [68] provide language support for distribution of compu-
tations and fault tolerance [69].

Formal calculi have been developed to model distributed systems. They provide
varying levels of abstraction for placement and communication across peers.
Process calculi such as the π-calculus [70, 71] are especially common to model
the behavior of distributed systems. In the π-calculus and its variants, different
processes represent the execution threads of the different peers. In particular,
the join-calculus [38] defines processes communicating through asynchronous
message-passing over channels. The Ambient calculus [21] describes concurrent
systems involving mobile devices and computation. It allows the definition of
named places where computations take place, with the ability to move ambients
between nested places, representing administrative domains and access control.
The Cloud Programming Language (CPL) [17] serves as a core calculus for
composing services in cloud computing environments. CPL employs an event-
based approach and provides combinators that enable secure composition of
cloud applications.

Choreographies. Choreographic programming defines a concurrent system as a
unified compilation unit, which provides a global description of the interactions
and computations among connected components within a distributed system,
known as a choreography [56, 73, 92]. Similar to multitier programming, the com-
piler automatically generates implementations for each component [19]. However,
choreographic programming differs in that it makes the communication protocol
between peers explicit. The compiler ensures that the generated code strictly
adheres to this defined flow. The foundations of choreographic programming lie
in process calculi [11], which has been used to explore novel techniques in infor-
mation flow control [63], deadlock-free distributed algorithms [32], and protocols
for dynamic run time code updates for components [81]. Giallorenzo et al. [42]
make a first attempt to systematically compare choreographic programming and
multitier programming.

Aggregate programming. The concept behind aggregate programming is to allow
the specification of global behaviors for distributed systems by defining local
computations. The Field calculus [9] is designed to specify and execute distributed
computations over devices embedded in a spatial environment. This environment
might include diverse entities like sensor networks, mobile robots, or other
distributed systems where there is a notion of spatial distribution. In Field calculus,
computations are expressed in terms of fields, which are functions from space-
time to data values. Devices can read and modify the local values of these fields
and use the information from neighboring devices to compute new field values.
The paradigm promotes the idea that by providing the right local interactions
and computations, more complex global behaviors can emerge without the need
for central coordination. Field-based computing [91, 54, 65] is a programming
model where the overall distributed system behavior is understood as producing
a computational field, i.e., a map from network nodes to values. Among the most
important advantages, by abstracting over the role of individual devices, it is
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possible to define a programming paradigm where concurrency, asynchronicity,
network communication, message loss and failures do not need to be handled
explicitly [10]. Both aggregate and multitier programming aim to improve the
development of complex distributed systems. In multitier programming, the
system architecture is explicitly defined, composed of heterogeneous tiers, each
representing a specific function or component. Aggregate computing, on the
other hand, builds on a network of homogeneous devices that execute localized
computations, which collectively contribute to the overall behavior of the system.

PGAS languages. Partitioned global address space languages (PGAS) [34] offer
a programming model designed for high-performance parallel execution. The X10
language [27], for example, parallelizes task execution using a work-stealing sched-
uler, enabling developers to write highly scalable code. The X10 programming
model features explicit fork/join operations to make the communication cost
visible. The language’s advanced dependent type system [26] captures the specific
place to which a reference points. While both PGAS and multitier languages aim
to reduce host boundaries between places for simplified development, their scopes
differ significantly. PGAS languages primarily target high-performance comput-
ing in dedicated clusters, whereas multitier programming focuses on networked
distributed systems on the Internet. Hence, places in multitier programming
represent the different peers of a distributed system, whereas places in PGAS
refer to partitions in a shared global heap address space.

Software architectures. Software architectures [39, 78] organize software sys-
tems into components with defined connections and interaction constraints.
Architecture description languages (ADLs) [67] specify components, connectors,
architectural invariants, and a mapping of architectural models to implementa-
tion infrastructure. ArchJava [3] aims to combine architecture specification in
the style of ADLs with the actual system implementation in a single language.
Hilda [96] is a language at the intersection of multitier and modeling languages
and enables automatic partitioning of data-driven multitier software using a
declarative language similar to UML. Component models [31], influenced by
ADLs and object-oriented design, separate concerns in the entire software system,
defining component interfaces and composition mechanisms, and enforcing strong
interfaces with other modules. In the distributed setting, component-based devel-
opment typically models the distributed system components as separate units,
forcing developers to modularize along network boundaries.

Big data processing systems. A significant factor contributing to the success of
modern big data systems is the availability of a programming interface that –
similar to multitier programming – enables developers to program components
running on different hosts within the same compilation unit, with the big data
processing framework handling communication and scheduling. This kind of
systems includes batch processing frameworks like Hadoop [35] and Spark [98]
and stream processing systems such as Flink [4] and Storm [6]. Yet, the domain of
big data processing systems is limited enough that they can completely abstract
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distribution concerns away. Further, the language semantics of these systems
visibly differs, e.g., mutable shared variables are transformed into non-shared
separated copies.

Operator placement. In contrast to explicit placement methods – such as using
annotations as typically found in multitier programming – the operator placement
problem focuses on determining the best host for deploying each operator in a
distributed system. In this domain, the best placement is the one that maximizes a
specific metric like throughput [33, 55] or load [28]. Various approaches have been
proposed to address the operator placement problem, including the use of overlay
networks where operators are assigned to hosts through random selection [50],
network modeling [80] and linear optimization techniques for finding the optimal
solution to a constraint problem [22]. While these systems typically consider
operators as the deployment unit, Zhou et al. [100] suggest a coarser granularity
approach where query fragments, i.e., groups of operators, are deployed to reduce
the load on the placement algorithm.

7 Conclusion

Active objects have been studied for long as a language abstraction that encap-
sulates not only state and operations, like objects, but also a process. This work
delved into the multitier programming language paradigm, which is rooted in
active objects and improves on some aspects of active objects when a distributed
system is conceived as a cohesive unit. In multitier programming, code that
belongs to different peers within a distributed system can coexist within the
same compilation unit. It is the responsibility of the compiler to split the code
into deployment components and add the necessary networking code. We showed
that multitier programming achieves positive results in modularizing distributed
and concurrent applications, abstracting over network communication and host
boundaries, and outlined areas that present open challenges. As active objects
are the ideal compilation target for multitier languages and their execution model
of such languages is based on interacting active entities, active objects remain
visible for developers when they implement data exchange across peers using
multitier programming.
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