
Automated Verification of Fundamental Algebraic Laws

GEORGE ZAKHOUR, University of St. Gallen, Switzerland

PASCAL WEISENBURGER, University of St. Gallen, Switzerland

GUIDO SALVANESCHI, University of St. Gallen, Switzerland

Algebraic laws of functions in mathematics – such as commutativity, associativity, and idempotence – are often

used as the basis to derive more sophisticated properties of complex mathematical structures and are heavily

used in abstract computational thinking. Algebraic laws of functions in coding, however, are rarely considered.

Yet, they are essential. For example, commutativity and associativity are crucial to ensure correctness of a

variety of software systems in numerous domains, such as compiler optimization, big data processing, data

flow processing, machine learning or distributed algorithms and data structures. Still, most programming

languages lack built-in mechanisms to enforce and verify that operations adhere to such properties.

In this paper, we propose a verifier specialized on a set of fundamental algebraic laws that ensures that

such laws hold in application code. The verifier can conjecture auxiliary properties and can reason about both

equalities and inequalities of expressions, which is crucial to prove a given property when other competitors

do not succeed. We implement these ideas in the Propel verifier. Our evaluation against five state-of-the-art

verifiers on a total of 142 instances of algebraic properties shows that Propel is able to automatically deduce

algebraic properties in different domains that rely on such properties for correctness, even in cases where

competitors fail to verify the same properties or time out.

CCS Concepts: • Theory of computation→ Program verification; Type structures; • Computing method-
ologies→ Theorem proving algorithms.

Additional Key Words and Phrases: Algebraic Properties, Type Systems, Verification

ACM Reference Format:
George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2024. Automated Verification of Fundamental

Algebraic Laws. Proc. ACM Program. Lang. 8, PLDI, Article 178 (June 2024), 24 pages. https://doi.org/10.1145/
3656408

1 INTRODUCTION
Fundamental algebraic laws such as commutativity, associativity, and idempotence are routinely

used at all levels – from elementary school arithmetics to abstract algebra – to reason about the

properties of functions in mathematics. Such prominence, however, is hardly reflected in functions

in coding, where algebraic properties are almost never explicit. Yet, these basic algebraic laws are

highly important in a number of computing domains. For example, in compilers, commutativity

enables optimizations based on code reordering [25, 34, 39]. In big data and stream processing

systems, it allows parallel execution on independent nodes [13]. In high-performance computing,

commutativity of operations improves the efficiency of reductions [27]. In distributed systems, it

ensures that changes can be applied in any order and replicas eventually converge to the same

Authors’ addresses: George Zakhour, University of St. Gallen, St. Gallen, Switzerland, george.zakhour@unisg.ch; Pascal

Weisenburger, University of St. Gallen, St. Gallen, Switzerland, pascal.weisenburger@unisg.ch; Guido Salvaneschi, University

of St. Gallen, St. Gallen, Switzerland, guido.salvaneschi@unisg.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART178

https://doi.org/10.1145/3656408

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

HTTPS://ORCID.ORG/0009-0000-5042-1207
HTTPS://ORCID.ORG/0000-0003-1288-1485
HTTPS://ORCID.ORG/0000-0002-9324-8894
https://doi.org/10.1145/3656408
https://doi.org/10.1145/3656408
https://orcid.org/0009-0000-5042-1207
https://orcid.org/0000-0003-1288-1485
https://orcid.org/0000-0003-1288-1485
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3656408

178:2 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

value [41]. In abstract models, it ensures that models can be merged [12, 35, 36]. In databases, it

enables concurrency control [49].

Unfortunately, modern programming languages lack abstractions that allow developers to reason

about and ensure common algebraic properties of operations. While these fundamental properties

are constantly referred to in the mathematical domain, in software, this lack persists even though

algebraic properties of functions are critical for various crucial correctness guarantees. Instead,

developers are left with the responsibility of informally documenting functions with their sup-

posed properties, placing the burden on developers to ensure that functions actually satisfy these

properties. The absence of any form of enforcement for algebraic correctness can potentially result

in erroneous program behavior and significantly degrade system performance or reliability. For

example, the Message Passing Interface (MPI) function MPI_OP_CREATE(function,commute,op)

creates an operation that can be passed to a reduce or a scan. The commute parameter is a boolean

value that specifies whether the function commutes; further, the operation is always assumed to be

associative [27]. Yet, this assumption is neither statically nor dynamically checked.

This paper addresses this gap by proposing a novel approach for the core of the automated

Propel verifier [53], targeting a set of fundamental algebraic properties of operations and relations

relevant to many application domains. For example, our approach enables the operation passed

to MPI_OP_CREATE to be statically checked to be associative. Our key insight is Propel’s approach
to discover auxiliary properties and the way it can reason about both equalities and inequalities.

These features enable the derivation of contradictions from both, giving Propel a crucial advantage
over existing verifiers.

In the evaluation we consider five state-of-the-art competitors and compare their ability to

verify algebraic properties in different domains, investigating a total of 142 properties. The results

indicate that Propel can prove a large number of relevant instances of algebraic operations lawful,

outperforming existing approaches that do not feature dedicated support for algebraic reasoning.

This paper makes the following contributions:

• We present a novel design of Propel, a domain-specific theorem prover specialized in algebraic

properties of functions that can reason about both equalities and inequalities.

• We formalize Propel based on a core calculus. We prove the verifier sound, i.e., we show that

derived algebraic properties for functions hold.

• We implement Propel in Scala for proving terms in the Propel calculus.
• We evaluate Propel, demonstrating that it outperforms competing systems when verifying

algebraic properties in terms of the amount of properties proven in different domains.

The paper is organized as follows: Section 2 informally introduces our approach. Section 3

presents Propel’s core calculus for proving algebraic properties. Section 4 evaluates our approach

and the impact of specific features. Section 5 covers the related work. Section 6 concludes.

2 LAWFULNESS OF OPERATIONS
Different algebraic structures require the operations defined on their carrier set to obey different

algebraic laws. For example, the abelian semigroup (N, +) requires that the axioms 𝑎 +𝑏 = 𝑏 +𝑎 and

𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 hold, i.e., addition on natural numbers is commutative and associative. Yet,

that these properties hold is often just assumed rather than checked by the programming language.

We address the issue of checked algebraic properties by building on two ideas.

First, when declaring the type of a function, developers can specify the properties that should

hold for the function, e.g., commutativity or associativity. An automated inductive prover will

deduce whether the annotated properties hold and reject the program if they do not. The prover is

focused on equational reasoning on common algebraic properties.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:3

Second, the proven properties are included in a function’s type. (1) This enables the verification of

properties of function compositions. To prove properties of the composed function, the prover can

make use of the properties of the individual functions that are being composed, as the properties are

available through the types of these functions. (2) Functions that require certain properties for one

of their arguments, can state the properties in the argument’s type, in which case only functions

for which the properties were proven can be passed as argument. This enables composition of

higher-order functions, for which algebraic properties are required.

2.1 The Propel Language by Example
Example add0. We demonstrate our approach to verifying algebraic properties on the addition of

natural numbers as Peano numbers N with constructors Z and S, implemented by add0 in Listing 1.

Example add1. In Propel, functions are annotated with properties which, akin to their domain and

codomain, are essential parts of their type. We state that add1 is both commutative and associative.

We also offer a Scala embedding using types of the form P :=(A,A)=>: B to express algebraic

properties of binary functions. P denotes the function properties and A and B the types of the

arguments and the result. The introduction form for Propel functions is prop[FunctionType] (or
prop.rec for recursive functions). The following code snippet shows the add1 function implemented

in our Scala DSL, asserting that addition is commutative and associative:

enum N:
case Z; case S(pred: N)

def add1(x: N, y: N) = prop.rec[(Comm & Assoc) := (N, N) =>: N]: add1 =>
case (Z, y) => y
case (S(x), y) => S(add1(x, y))

We avoid the embedding’s syntactic noise in Listing 1 using a more abstract notation.

Propel will create a property derivation tree as part of type-checking that constitutes the prop-

erty’s proof. As the function is recursive, Propel employs induction. The following tree, which is a

subtree of the full typing derivation, shows that associativity is proven trivially by induction on x:

(Ind)

(Def)

(Refl)

Γ, x = Z ⊩ add1 y z = add1 y z

Γ, x = Z ⊩ add1 Z (add1 y z) = add1 (add1 Z y) z
(2×Def)

(Def)

(Hyp)

(Refl)

Γ,w :N, x = S w, add1 w (add1 y z)
= add1 (add1 w y) z

⊩
S (add1 w (add1 y z))

= S (add1 w (add1 y z))

Γ,w :N, x = S w, add1 w (add1 y z)
= add1 (add1 w y) z

⊩
S (add1 w (add1 y z))

= S (add1 (add1 w y) z)

Γ,w :N, x = S w, add1 w (add1 y z)
= add1 (add1 w y) z

⊩
S (add1 w (add1 y z))

= add1 (S (add1 w y)) z

Γ,w :N, x = S w, add1 w (add1 y z)
= add1 (add1 w y) z

⊩
add1 (S w) (add1 y z)

= add1 (add1 (S w) y) z

· ⊩ ∀ x, y, z :N︸ ︷︷ ︸
=Γ

. add1 x (add1 y z) = add1 (add1 x y) z

The tree is a complete but slightly simplified version of the one Propel follows, employing

induction (Ind). Its left subtree is the base case which applies the function definition (Def) and

concludes by reflexivity (Refl). Its right subtree is the inductive case which applies (Def) three

times, rewrites using the inductive hypothesis (Hyp), and concludes by (Refl).

Example add2. However, a slight variation of the program, shown in add2, hinders the simple

proof of associativity. As the arguments to the recursive call are swapped, no induction hypothesis

for add2 x y can be immediately applied for the recursive call add2 y x. Had Propel deduced that

add2 is commutative then it could rewrite add2 y x to add2 x y and apply the induction hypothesis

to prove associativity. Generally, the proofs for some properties rely on other properties. Section 2.3

elaborates on the algebraic properties our prover supports and the order in which we prove them.

Example add3. Function add3 adopts yet another formulation for addition. add3’s associativity is

challenging to prove automatically for many state-of-the-art verifiers (as shown in Section 4).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:4 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Listing 1. Addition with Peano Numbers, four versions.

let rec add0
= 𝜆 x y. cases x of
Z ⇒ y
S x ⇒ S (add0 x y)

let rec add1: N comm,assoc−−−−−−−−−−−→N→ N
= 𝜆comm, assoc x: N y: N. cases x of
Z ⇒ y
S x ⇒ S (add1 x y)

let rec add2: N comm,assoc−−−−−−−−−−−→N→ N
= 𝜆comm, assoc x: N y: N. cases x of

Z ⇒ y
S x ⇒ S (add2 y x)

let rec add3: N comm,assoc−−−−−−−−−−−→N→ N
= 𝜆comm, assoc x: N y: N. cases (x, y) of
(Z, y) ⇒ y
(x, Z) ⇒ x
(S x, S y) ⇒ S (S (add3 x y))

Proving associativity for add3 is more involved because it requires knowing how the data

constructor S can be moved outwards from the function’s arguments, i.e., add3 (S x) y = S (add3 x
y) and add3 x (S y) = S (add3 x y). To prove algebraic properties, we found it useful to enable the

prover to explore how algebraic data type constructors of the function’s arguments and its result

relate. Section 2.4 discusses our approach to discover such auxiliary properties.

Type-checking add3 and checking its commutativity property, on the other hand, is straightfor-

ward. Propel produces the following tree, which combines the typing and the property derivation:

.

.

.

add3 : N comm−−−−−→N→ N,
x : N, y : N︸ ︷︷ ︸

= Γ
0

⊢

cases (x,y) of
(Z,_) ⇒ y
(_,Z) ⇒ x
(S a, S b) ⇒
S (S (add3 a b))

: N

(T)

(P1)

· · ·

(P2)

(P3)

(P4)

Γ1 ⊢ add3 : N comm−−−−−→N→ N
(P5)

x = S a ∈ Γ1

a ≤ x
(P6)

y = S b ∈ Γ1

b ≤ y

Γ1 ⊲ Γ1, add3 a b = add3 b a

Γ1 ⊩ S(S(add3 a b)) = S(S(add3 b a))
Γ0, a : N, b : N, x = S a, y = S b︸ ︷︷ ︸

= Γ
1

⊩ add3 (S a) (S b) = add3 (S b) (S a)

Γ0 ⊩ add3 x y = add3 y x

· ⊢ add3 : N comm−−−−−→N→ N

The subtree (T) represents the standard typing rules. Yet, to complete the type checking, we must

also prove commutativity. (P1) represents this proof using the ⊩ relation. The first step is induction

on the pair (x, y) as dictated by the case expression. We omit the base cases where either x or y
are Z since they are trivial. (P2) is the proof of the inductive case, which reduces both sides of the

equality (P3). Then, we deduce (represented by the ⊲ relation) the commutativity property from the

proof context (P4). The deduction is valid because the function being applied is assumed to have

this property (inductive hypothesis) and its arguments are structurally smaller (P5) and (P6).

The derivation tree is based on the Propel core calculus, which is based on the simply-typed

lambda calculus extended with (1) property annotations on lambdas and function types, (2) algebraic

data types and (3) pattern matching on instances of algebraic data types. The Peano numbers are

represented by the algebraic data type N := Z + S N, and the booleans by 2 := ⊤ + ⊥. Section 2.6

provides insights into how the key components of the prover work algorithmically. The core

language is presented in Section 3.

Example of function composition. Propel can prove properties of the composition of functions

based on the properties of the individual functions. The following code defines a higher-order

zipWith function that takes a commutative and associative function over some type T and returns a
commutative and associative function over lists of T by applying the function pair-wise to the lists:

let rec zipWith: (T comm,assoc−−−−−−−−−−−→T→ T) → (List[T] comm,assoc−−−−−−−−−−−→List[T] → List[T])
= 𝜆f: T comm,assoc−−−−−−−−−−−→T→ T. 𝜆comm,assoc x: List[T], y: List[T]. cases (x, y) of

(Nil, _) | (_, Nil)⇒ Nil
(Cons x xs, Cons y ys) ⇒ Cons (f x y) (zipWith xs ys)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:5

The algebraic properties of the argument function are required to prove the algebraic properties

of the returned function. Moreover, zipWith can only be called with a function that the prover has

verified to be commutative and associative.

In general, including algebraic properties in a function’s type enables parametrization, i.e., a

function does not need to refer to another function that has some algebraic properties directly but

can instead use a function parameter that includes the properties in its type (e.g., the f parameter

of zipWith). Propel can prove the function correct because it manipulates function calls by using

the properties attached to the function (i.e., the prover does not unfold the definitions).

2.2 The Algebraic Properties in Propel
The algebraic properties supported by Propel fall into four categories:

• A predefined set of fundamental algebraic properties – as known from mathematics – that

are both of interest in many domains and valuable for proving further properties – which

are examined for every function (Section 2.3).

• A predefined set of auxiliary algebraic properties that are essential for proving the aforemen-

tioned properties – namely distributivity and unfolding of data constructors – which are

examined before the fundamental algebraic properties (Section 2.4).

• Custom properties asserted on functions by the developer to be proven by Propel (Section 2.5).

• A set of equalities and inequalities of terms that are discovered while attempting a proof,

which are not exposed to the developer but essentially represent the proof state and serve as

rewrite rules (Section 2.6).

2.3 Propel’s Fundamental Algebraic Properties
Propel focuses on a set of fundamental algebraic properties of functions important for a variety

of algebraic structures, such as (abelian) (semi)groups, rings or (semi)lattices. Propel attempts to

prove the algebraic properties in the following list for every function and include the properties in

the function’s type in case a proof can be found:

(Commutativity) 𝑓 (𝑥,𝑦) = 𝑓 (𝑦, 𝑥) (Reflexivity) 𝑥𝑅𝑥 = ⊤
(Selection) 𝑓 (𝑥,𝑦) = 𝑥 ∨ 𝑓 (𝑥,𝑦) = 𝑦 (Irreflexivity) 𝑥𝑅𝑥 = ⊥
(Idempotence) 𝑓 (𝑥, 𝑥) = 𝑥 (Antisymmetry) 𝑥 ≠ 𝑦 → 𝑥𝑅𝑦 = ⊤ → 𝑦𝑅𝑥 = ⊥
(Injectivity) 𝑓 (𝑥) = 𝑓 (𝑦) → 𝑥 = 𝑦 (Symmetry) 𝑥𝑅𝑦 = ⊤ → 𝑦𝑅𝑥 = ⊤
(Associativity) 𝑓 (𝑥, 𝑓 (𝑦, 𝑧)) = 𝑓 (𝑓 (𝑥,𝑦), 𝑧) (Connected) 𝑥 ≠ 𝑦 → (𝑥𝑅𝑦 = ⊤ ∨ 𝑦𝑅𝑥 = ⊤)

(Transitivity) 𝑥𝑅𝑦 = ⊤ → 𝑦𝑅𝑧 = ⊤ → 𝑥𝑅𝑧 = ⊤
Operations are of type T→ T→ T and relations are of type T→ T→ 2 (i.e., relations are as

functions returning a boolean with data constructors ⊤ and ⊥).
When a function is annotated with these properties, both sides of all (in)equalities in each

property’s definition must have the same type. The order in which these properties are checked is

as presented above, column-wise. We fixed the order for performance, proving “simpler” properties

first, and more “complex” ones (i.e., involving more quantified variables) later, which we found to

workwell in practice in our experiments. The only dependencies between properties we encountered

in the experiments are: associativity may need commutativity and transitivity may need symmetry.

Tracking relational properties is important in order to reason about conditional statements. For

example, the following definition of the maximum function can only be proven commutative if the

less-than relation (le) is known to be antisymmetric and connected:

let rec max: N→ N comm,assoc,idem,sel−−−−−−−−−−−−−−−−−−→N→ N = 𝜆comm, assoc, idem, sel x: N y: N.
if le x y then y else x

Similarly, to prove associativity it must be known that le is transitive.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:6 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

2.4 Propel’s Auxiliary Properties
Before attempting a proof of any algebraic property in Section 2.3, Propel attempts to prove certain

auxiliary ones which are instrumental to proving the properties annotated in the type by developers.

To this end, the prover conjectures an additional set of properties and iteratively tries to prove

them until success or no progress is possible, i.e., the prover exhausted its search space (to mitigate

diverging proof search, Propel restricts the space as described in Section 2.6, Algorithm 2). The

proven conjectures can be used in the subsequent proofs. We describe our approach to construct

the two kinds of conjectures the prover explores.

Distributivity. To capture the distributivity relations across different functions, we collect all

functions g used in the body of a function f, which are closed over the same type. We then conjecture

that one function distributes over the other, i.e., g x (f y z) = f (g x y) (g x z) and f x (g y z) = g (f x y)
(f x z). Distributivity conjectures are used in the same way we use the conjectures of unfolding data

constructors, which we describe next.

Unfolding data constructors. To discover more auxiliary properties of a function, the prover

evaluates it with every argument of an algebraic data type unfolded at most once and generalizes

the reduced expression. For example, Peano numbers are unfolded into x, Z, and S x for fresh x.
Thus, passing Z and (S x) to add1 (Listing 1) reduces to add1 Z (S x) = S x. The left-hand side (LHS)

of the equation represents the function applied to the arguments 𝑓 𝑎0 . . . 𝑎𝑛 and the right-hand side

(RHS) is the maximally reduced function application. We employ the following two generalizations.

First, when the RHS aligns with one of the arguments on the LHS, we replace both with a variable.

Hence, we create the generalized conjecture add1 Z x = x.
Second, we examine all free variables in the LHS (of the from 𝑓 𝑎0 . . . 𝑎𝑛), and the RHS. We verify

that (i) all free variables exclusively appear within a single argument 𝑎𝑖 of 𝑓 and (ii) 𝑎𝑖 has the same

type as the result of 𝑓 . If (i) and (ii) hold, we generate (a) a LHS where all arguments except 𝑎𝑖 are

generalized to variables and (b) a RHS where an arbitrary subexpression 𝑒 𝑗 matching the result

type of 𝑓 is replaced by the the LHS with 𝑎𝑖 replaced by 𝑒 𝑗 (i.e., 𝑓 𝑎0 . . . 𝑒 𝑗 . . . 𝑎𝑛). Hence, we create

the generalized conjecture add1 y (S x) = S (add1 y x). Following this scheme, we further conjecture

add1 x Z = x, which is essential in the commutativity proof of add1.

Proof example. As described before, Propel generates a type checking and property checking

derivation tree. The following tree demonstrates the check for add1’s commutativity using the

aforementioned auxiliary property add1 x Z = x:

(T)

.

.

.

add1 : N comm−−−−−→N→ N,
x : N, y : N︸ ︷︷ ︸

= Γ
0

⊢ add1 x y : N

(L)

(LP)

.

.

.

Γ0 ⊩ ∀w : N. add1 w Z = w︸ ︷︷ ︸
= aux

(P1)

(P2)

(P3)

aux ∈Γ1 Γ1 ⊢ aux[w→ y]
Γ1, x = Z ⊩ y = add1 y Z

Γ1, x = Z ⊩ add1 Z y = add1 y Z · · ·
Γ0, aux︸ ︷︷ ︸
= Γ

1

⊩ add1 x y = add1 y x

Γ0 ⊩ add1 x y = add1 y x

· ⊢ add1 : N comm−−−−−→N→ N

The (T) subtree is the usual typing tree, left out for brevity. The (L) subtree proves the commutativ-

ity property of add1 as its type is annotated as such. The (LP) subtree states the conjecture derived

earlier and proves it by induction on w. The (P1) subtree adds the conjecture to its proof context

and proceeds to prove commutativity by induction. The inductive case is trivial and resembles that

of add3. The base case on the other hand is proven by first evaluating the right-hand side of the

equality (P2) and observing that the stated equality is a specialization of the auxiliary property aux
proven earlier with w substituted with y (P3). It is essential to observe that the equality stated in

(P2) or (P3) cannot be proven by induction as that requires y to be quantified over.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:7

2.5 Developer-Defined Properties
Propel allows developers to assert properties for functions as universally quantified equalities

∀𝑥0 : 𝑇0, . . . , 𝑥𝑛 : 𝑇𝑛 . 𝑒 = 𝑒′, where 𝑒 and 𝑒′ are arbitrary Propel expressions whose equality is to be

proven. For example, asserting the left and right identity laws for add1 (Listing 1) is as follows:

property for add1: forall x: N. add1 Z x = x
property for add1: forall x: N. add1 x Z = x

Developer-defined properties are proven after auxiliary and fundamental algebraic properties

(Sections 2.3 and 2.4). The proof strategy is the same for all kinds of properties (Section 2.6).

2.6 Verification Strategy
Our prover follows three steps. First, it conjectures potentially useful auxiliary properties (Sec-

tion 2.4) and attempts to prove them. Second, it tries to prove all common algebraic properties,

starting with the simpler ones (Section 2.3). The proven properties become part of the checked

function’s type. When they are not a subset of the ones annotated by the developer the prover

rejects the program. Third, it checks the remaining properties the function is annotated with

(Section 2.5). The prover rejects the program if it fails to find a proof for these properties.

The verification process examines each conjecture and property by checking whether the given

equalities of the form 𝑒0 = 𝑒1 hold. To achieve this, we perform case analysis on the branches a

function can take. When pattern matching yields multiple cases, each case creates a branch in the

property derivation tree. Thus, Propel ensures that the property holds for every branch. In every

branch, we verify that 𝑒0 equals 𝑒1 by applying rewrite rules to both sides. These rules consist of:

• The evaluation rules of the operational semantics extended to open terms excluding the

evaluation of recursive calls,

• The algebraic laws of the supported algebraic properties (e.g., commutativity for a function 𝑓

enables rewriting 𝑓 𝑥 𝑦 to 𝑓 𝑦 𝑥 for arbitrary terms 𝑥 and 𝑦) and

• Rewriting a term 𝑥 to a term 𝑦 if the prover can establish that 𝑥 and 𝑦 are equal. Equality of

terms can be discovered by case analysis or algebraic laws.

Algorithm 1 Term Evaluation

JeK = match e1:

x ⇒ {(x,∅,∅) }2:

𝜆x :T .e1 ⇒
{
(𝜆x :T .𝑡, E+, E−) | (𝑡, E+, E−) ∈ Je1K

}
3:

K e1 · · · e𝑛 ⇒
{
(K 𝑡1 · · · 𝑡𝑛,

⋃
𝑖
E+𝑖 ,

⋃
𝑖
E−𝑖) | (𝑡𝑖 , E+𝑖 , E−𝑖) ∈ Je𝑖K

}
4:

e1 e2 ⇒5:

{ match 𝑡16:

𝜆x :T .𝑡1 ⇒ (𝑡1 [x ↦→ 𝑡2], {x = 𝑡2} ∪ E+1 ∪ E+2 , E−1 ∪ E−2)7:

otherwise⇒ (𝑡1 𝑡2, E+1 ∪ E+2 , E−1 ∪ E−2)8:

| (𝑡1, E+1 , E−1) ∈ Je1K, (𝑡2, E+2 , E−2) ∈ Je2K}9:

e0 case {K1
⇒ e1 · · · K𝑛 ⇒ e𝑛 } ⇒10: ⋃

𝑖
{ (𝑡𝑖 x1 · · · x𝑚,11:

{𝑡0 = K𝑖 x1 · · · x𝑚 } ∪ E+0 ∪ E+𝑖 ,12: ⋃
𝑗≠𝑖

{
𝑡0 ≠ K 𝑗 x 𝑗,1 · · · x 𝑗,𝑚 | arity(K 𝑗) =𝑚

}
∪ E−

0
∪ E−𝑖)13:

| (𝑡0, E+0 , E−0) ∈ Je0K, (𝑡𝑖 , E+𝑖 , E−𝑖) ∈ Je𝑖K, arity(K𝑖) =𝑚}14:

Algorithm 1 specifies the recur-

sive syntax-directed rewrite rules

for expressions (variables on Line 2,

functions on Line 3, and data con-

structor applications on Line 4),

applies 𝛽-reduction on Line 7,

branches on the unique construc-

tors on Line 10, and collects the

equalities E+ and inequalities E−
on Lines 7, 12 and 13 that hold in

every branch. E+ is extended for

the cases that matched a pattern

and E− for the cases that did not.

Thus, the result of the algorithm is

a set containing for every branch a

triple of a (partially) evaluated term

and the (in)equality sets.

E+ and E− model Propel’s ap-

proach to reason about equality of terms. Although the language does not provide a dedicated

construct for equality checks, there are two ways to establish the equality of two expressions. First,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:8 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

for pattern matching, unification binds variables to expressions, treating both variables and bound

expressions as equal. Second, certain relational properties – reflexivity, irreflexivity, antisymmetry,

and connectedness – determine equality or inequality. For instance, if a relation 𝑅 is reflexive and

𝑥𝑅𝑦 = ⊥ is known in a specific branch, we can deduce that 𝑥 ≠ 𝑦 within the same branch. Hence,

reflexive, irreflexive, antisymmetric and connected relations are key to lift the relation between

two expressions into meta-level equality and inequality.

By taking into account the algebraic properties of relations, Propel uncovers additional informa-

tion, i.e., whether expressions can be proven equal or unequal. A distinctive feature of Propel is
that it explicitly tracks inequalities of expressions – not only equalities as competing approaches.

Algorithm 2 Equality Checking

1: procedure Check(e1 = e2)
2: T ← {(e1 = e2,∅,∅) }
3: repeat
4: T ′ ← T
5: T ← ∅
6: for all (𝑡0 = 𝑡1, E+, E−) ∈ T ′ do
7: T ← T ∪ { (𝑡𝑖 = 𝑡 𝑗 , E+𝑖 ∪ E+𝑗 , E−𝑖 ∪ E−𝑗) |
8: (𝑡𝑖 , E+𝑖 , E−𝑖) ∈ J𝑡0K, ⊲ Algorithm 1

9: (𝑡 𝑗 , E+𝑗 , E−𝑗) ∈ J𝑡1K} ⊲ Algorithm 1

10: T ← { RewriteAlgebraicLaws(𝑇) | 𝑇 ∈ T }
11: T ← { RewriteEqalities(𝑇) | 𝑇 ∈ T }
12: T ← { (𝑡0 = 𝑡1, E+, E−) | (𝑡0 = 𝑡1, E+, E−) ∈ T
13: ∧ |𝑡0 | < 8 + 1.1 · |e0 |
14: ∧ |𝑡1 | < 8 + 1.1 · |e1 | }
15: T ← {𝑇 | 𝑇 ∈ T ∧ Consistent(𝑇) }
16: F𝑙 ← { (𝑡0 = 𝑡1, E+, E−) | (𝑡0 = 𝑡1, E+, E−) ∈ T
17: ∧ L𝑡0M + L𝑡1M < 𝑙 }
18: ⊲ Algorithm 3

19: T ← F𝑙 with 𝑙 such that | F𝑙 | < 256

20: until T ≠ T ′
21: return if there exists a 𝑡, E+ and E− such that

22: (𝑡 = 𝑡, E+, E−) ∈ T

Algorithm 2 shows how Propel checks
whether two expressions e0 and e1 are

equal. On Lines 8 and 9 we call Algorithm 1

to reduce e0 and e1 to the set of terms

𝑡𝑖 and 𝑡 𝑗 to which the different branches

evaluate with the (in)equalities (E+𝑖 , E+𝑗 ,
E−𝑖 , E−𝑗) that hold for the respective cases.

We then follow these steps. (1) Rewrite

the equations induced by algebraic laws

in all (in)equalities sets E+ and E− and

terms 𝑡 (RewriteAlgebraicLaws, Line 10).

For example, knowing a function 𝑓 is com-

mutative enables rewriting 𝑓 𝑥 𝑦 to 𝑓 𝑦 𝑥 .

(2) Rewrite the equations of the equality set

E+ (RewriteEqalities, Line 11). (3) Re-

strict the extent to which rewrites can

expand trees in terms of node count, re-

moving trees whose node count 𝑛 grew

by at least 8 + 1.1 · 𝑛 (Line 12). (4) Filter

out all branches that have contradicting

(in)equalities sets (Line 15). For example,

contradictions within E+ (such as 𝑥 = Z and 𝑥 = S Z), contradictions between E+ and E− (such as

𝑥 = Z and 𝑥 ≠ Z) or ill-founded equalities (such as 𝑥 = S 𝑥). And, (5) restrict the search to the top

256 terms (Line 16). We repeat these steps until reaching a fixed point, i.e., all equalities are applied,

and no further (in)equalities are discovered. All numerical constants were chosen empirically as

they perform well.

Inequality tracking. Tracking inequalities often helps in finding a proof faster, as we show in

Section 4. To illustrate, consider an argmax function that given two pairs returns the second

component of the pair with the greater first component:

let rec argmax = 𝜆comm (t1, v1) (t2, v2).
if le t1 t2 then if eq t1 t2 then tieBreaker v1 v2 else v1 else v2

In case of equality, a commutative and selective tie-breaking function picks the second component.

Consider the commutativity proof for the specific case when le t1 t2 = ⊤ and le t2 t1 = ⊥. Employing

inequalities, as Propel does, requires fewer steps (depth) in the proof. By the antisymmetry of le
and after pushing the second equality to the proof context, Propel can immediately deduce t1 ≠ t2.
In that case, the goal if eq t1 t2 then tieBreaker v1 v2 else v1 = v1 is immediately proven using the

inequality. Instead, a prover that does not track inequalities needs to go through the following steps.

First, it needs to take the branch eq t1 t2 = ⊤. Second, it must rewrite t1 into t2 in le t1 t2 = ⊥, which

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:9

is present in the proof context. Using the reflexivity of le, the prover would derive the contradiction
le t1 t1 = ⊥, which eliminates this case. Besides the additional steps, this solution requires finding

the useful equality to rewrite in which is not obvious, or incurs the cost of rewriting in all equalities.

In addition to reducing the steps in the proof, tracking inequalities requires to explore less

alternatives (breadth) in a proof. Propel compactly represents a proof context as a flat conjunction

of the form (e1 = e2) ∧ · · · ∧ (en ≠ en+1). A prover that does not track inequalities can express

the same context by changing every inequality e ≠ K0 into (e = K1) ∨ · · · ∨ (e = Kn) where Ki are

the possible constructors of e’s type. However, this solution introduces the need to consider all

branches, one for each constructor, during the proof.

Proof search. Due to the exponential growth of the term space when considering all possible

rewritings, we employ a strategy that limits the space to a number of “top” terms based on an

arbitration order. We apply rewrites recursively to all subterms, resulting in sets of the “top”-

most rewritten subterms. We reassemble the rewritten subterms and then continue to rewrite

the assembled term itself. We perform this rewriting process on the complete syntax tree of the

equation bottom-up, retaining a set of bounded size for the rewrite results of each subterm.

Algorithm 3 Syntax Tree Scoring

LK e M = (4, LeM)1:

L x M = 32:

L e case {K ⇒ e′ } M = (2, LeM, Le′M)3:

L e1 e2 M = (1, Le1M, Le2M)4:

L𝜆 x :T .e M = (0, LeM)5:

The selection of which trees to retain is guided by a heuris-

tics that favors “simpler” trees. Algorithm 3 specifies how the

heuristics scores different terms – terms with a higher score are

considered simpler. The heuristics prioritizes data constructors

(Line 1) over variables (Line 2), which in turn take precedence

over pattern matches (Line 3), applications (Line 4) and abstrac-

tions (Line 5), the closer they are to the root of the tree. Despite

its simplicity, our heuristic approach has proven effective in

verifying algebraic properties of functions.

The equality check is considered successful under two conditions: (1) if a contradiction arises

within the equality set, indicating that the corresponding branch can never be reached or (2) if both

sides of the equality are syntactically identical.

2.7 Limitations
A limitation of Propel lies in completing proofs that require unfolding definitions. Propel currently
does not unfold definitions for performance reasons and instead relies solely on the discovered

algebraic properties. Yet, sometimes unfolding is inevitable for three reasons: First, a needed

algebraic property is not among Propel’s predefined set of properties and not asserted explicitly

by the developer. Second, a needed auxiliary property can only be generated after unfolding a

constructor multiple times. Third, a property’s proof may require unfolding some definitions where

the definitions cancel each other out in order to complete the proof.

Like any any automated theorem prover for general-purpose languages, Propel’s proof search
cannot be both sound and complete. While Propel outperforms state-of-the-art competitors for

algebraic properties, our evaluation shows some cases that Propel fails to prove although a proof

exists, such as some properties of with bit vector multiplication, associativity of the LLWReg data

type merge function and some monad laws (Section 4).

3 FORMALIZATION
This section introduces the core calculus for Propel, including the syntax (Section 3.1), the opera-

tional semantics (Section 3.2), and the type system (Section 3.3) with the proof rules for property

annotations on functions (Section 3.4). The core calculus extends the simply-typed lambda calculus

with the essential rules necessary to perform proofs of algebraic properties from type annotations.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:10 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

3.1 Syntax
Propel’s syntax extends the simply-typed lambda calculus with pattern matching, constructors,

union types, a fixed point operator, and property annotations on functions.

Definition 1 (Syntax).
Expressions e ::= x | e1 e2 | 𝜆r x :T .e | K | e case {K ⇒ e′} | fix e

Values v ::= 𝜆r x :T .e | K v

Types T ::= T1 r−−→T2 | K + K

Properties r ::= ∀x : T . e1 = e2 | ∀x : T . e1 ≠ e2

An expression is either a variable, an application, an abstraction annotated with a set of properties

r, a constructor K, a pattern matcher that associates to each constructor a handler, and a fixed

point operator that allows for recursion. To simplify the rules, patterns in a pattern matching

expression do not bind fresh variables to each constructor’s arguments as is the case with most

languages. Instead, as we show in Section 3.2, a constructor’s handler is expected to be a function

that accepts that constructor’s arguments. Moreover, we assume that patterns do not overlap,

i.e., that no constructor is matched on more than once. A value is either an abstraction as usual

or a constructor applied to one or more values. A type is either a function annotated with a set

of properties r or a union of one or more constructors. Thus constructors are akin to functions

whose domain is the constructor’s arguments and codomain is a type with the same name as the

constructor’s [24]. While the constructor expression and the constructor type are different we refer

to both as constructors. Finally, a property is quantified equality between two expressions. To refer

to the function annotated in the property, we assume that a fixed variable f is always used. For
example, the identity function having the identity property is denoted s 𝜆∀x:T .f x=x x :T .x

Constructors. The calculus does not support defining new constructors. Instead, we assume that it

is parametrized by a set of well-defined constructors which practically, in some implementation, is

collected before type checking. This set is well-defined when it contains a finite set of constructors,

each defined to take a finite number of arguments having a well-defined type in that set and

returning itself. A well-defined type is either a finite union of constructors in a well-defined

constructor set, or a function whose domain and co-domain are also well-defined. Moreover,

constructors are expected to be inhabited by finite values only, for example the constructor Kwhose

type is K→ K is not inhabited by finite values, and thus any constructor set that includes it is not

well-defined. For example, the set of constructors {Z : Z, S : (Z + S) → S} is well-defined.
Notation. We use s to represent a sequence of zero or more s and si

𝑖
when the sequence is indexed

by 𝑖 . When it’s not ambiguous we eliminate the superscript and use si instead. We use s𝑖,𝑝 (𝑖) to
filter s𝑖 based on the index 𝑖 with 𝑝 (𝑖), a predicate that must hold true for all indexes 𝑖 in s𝑖,𝑝 (𝑖) .
When grouping two forms sharing the same index, e.g., xi and Ti into xi : Ti we assume that the

two lists have the same length and grouping is done pair-wise.

3.2 Evaluation Rules
We adopt a small-step call-by-value operational semantics e1 → e2 with evaluation context 𝐶 . The

notation e1 [x ↦→ e2] refers to the capture-avoiding substitution of a variable x for expression e2 in
expression e1. A substitution of a variable x must also be done inside properties r, on expressions

and on types, when x is not bound with the ∀ quantifier.

Definition 2 (Evaluation Context). 𝐶 ::= [] | C e | v C | fix C | C case {K ⇒ e}

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:11

Definition 3 (Evaluation Rules).

(E-App) (𝜆r x :T .e1) v → e1 [x ↦→ e2] (E-Case) Kj vj case {Ki ⇒ ei} → ej vj

(E-Fix) fix 𝜆r x :T .e → e [x ↦→ fix 𝜆r x :T .e]
(E-Context)

e → e′

𝐶 [e] → 𝐶 [e′]

E-App, E-Fix, and E-Context are standard. E-Case picks the handler of the constructor that

matches the scrutinee’s constructor and applies it to the constructor’s arguments.

3.3 Type Checking
The typing context is defined in Definition 4.

Definition 4 (Typing Contexts).

Variable Context Γ ::= x : T Constructor Context Γ0 ::= K : T inj−−−→ K

Rule Context R ::= r Typing Context Γ ::= R; Γ0; Γ

Typing context Γ maps variables to types. Γ0 denotes the typing context for constructors, mapping

each constructor to a function that takes zero or more arguments and returns a value of the same

type. Formally Γ0 is the parameter defining the well-defined constructor set discussed earlier in

this section. Importantly, constructors are expected to be injective, therefore the type of each

constructor is expected to be an injective function which we denote with inj and define later. The

rule context R stores all the known properties and rules. While R is not directly used by the type

system they are fed back-and-forth between the typing rules and the proof rules introduced later.

The typing rules carry three contexts: the rule context R, the constructor context Γ0, and the

variable context Γ, which we combine into a single context Γ. We further write Γ, r for R, r and
Γ, x : T for Γ, x : T to extend the context, respectively.

The typing rules are presented in Definition 5

Definition 5 (Typing Rules).

(T-Var)

x : T ∈ Γ

Γ ⊢ x : T
(T-Cons)

K : T ∈ Γ

Γ ⊢ K : T
(T-Fix)

Γ ⊢ e : T r−−→T

Γ ⊢ fix e : T

(T-App)

Γ ⊢ e1 : T1 r−−→T2 Γ ⊢ e2 : T1
Γ ⊢ e1 e2 : T2

(T-Sub)

Γ ⊢ e : T1 T1 ⊑ T2

Γ ⊢ e : T2

(T-Abs)

Γ, x : T1, r[f ↦→ t] ⊢ e : T2 Γ ⊢T1→T2 r Γ, rj [f ↦→ t]j,j<i; · ⊩ ri [f ↦→ t]
i

t
def

= 𝜆r x :T1 .e

Γ ⊢ 𝜆r x :T1 .e : T1 r−−→T2

(T-Aux)

r ∈ 𝑎𝑢𝑥 (e)
Γ; · ; · ⊩ r
Γ, r ⊢ e : T

Γ ⊢ e : T
(T-Case)

Γ ⊢ e : + Ki
i

Γ ⊢ Ki : Ti,j →
j
Ki

i
Γ ⊢ ei : Ti,j →

j
T
i

Γ ⊢ e case {Ki ⇒ ei} : T

T-Var, T-Cons, T-App, T-Sub, and T-Fix are standard. T-Sub uses the subtyping relation in

Definition 6 to change the type of an expression into an equivalent or a weaker type. Propel’s
implementation uses this rule in three key places: (1) when type-checking function applications,

Propel tries to check if a passed argument’s type can be made to match the declared argument’s type,

(2) when type-checking a case expression it checks if the handled constructors form a permutation

of the constructors in the union type of the scrutinee, and (3) in computing the least upper bound of

the returned type of all case expression handlers. T-Case requires the scrutinee of a case expression

to be a union type, that each constructor in the union has a corresponding handler, that each handler

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:12 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

is a function that takes the same arguments as its corresponding constructor, and that all handlers

return the same type T which is the type of the case expression. T-Abs does not just type-check the

function in the standard way, but also proves all the annotated properties. It works as follows: (1) it

assumes all the properties hold when type-checking the function’s body, (2) it checks that each

annotated property is well-typed as defined in Definition 7, and (3) it goes in order over the annotated

properties and proves each using all the known rules and the previously proven ones using the

Φ ⊩ r relation defined in Section 3.4. The order of properties is left undefined and any ordering

may be chosen as it will not affect the soundness of the type system. Propel’s implementation

employs heuristics to guess the complexity of each property and orders the properties from least to

most complex. If any property failed to be proven it is pushed again on the queue of properties

to be proven. During the proof, the proof system can instantiate any property at recursive calls

when arguments get smaller. This enables inductive reasoning as applying the property at recursive

calls is equivalent to using the induction hypothesis. We assume the implementation checks that

recursive calls happen on structurally smaller inputs which is ensured by termination checking.

Finally, T-Aux uses the helper function 𝑎𝑢𝑥 that we leave undefined. We assume it computes a

finite set of well-formed and well-typed conjectures that must be proven and that could be helpful

in future proofs before type-checking continues. The calculus does not require any particular

𝑎𝑢𝑥 definition since, regardless which auxiliary properties are conjectured, 𝑎𝑢𝑥 can never impair

the soundness of the prover: every auxiliary property needs to be proven before it can be used.

We discuss the conjectures generated by the implementation in Sections 2.3 and 2.4. Auxiliary

property generation may occur anytime, but in Propel’s implementation it is attached to a lambda

for pragmatic reasons: the auxiliary property generator can inspect the recursive function and

conjecture useful auxiliary properties that aid the inductive proof.

Definition 6 defines the subtyping relation over types.

Definition 6 (Subtyping Relation).

(S-Refl) T ⊑ T (S-Union) K1 ⊑ K1+ K2 (S-Perm) K1 + K2 + K3 + K4 ⊑ K1 + K3 + K2 + K4

(S-Func)

T1′ ⊑ T1 T2 ⊑ T2′

T1 r,r′−−−→T2 ⊑ T1′ r−−→T2′
(S-Trans)

T1 ⊑ T2 T2 ⊑ T3

T1 ⊑ T3

S-Refl and S-Trans are the usual subtyping rules that construct the reflexive and transitive closure,

respectively, of the ⊑ relation. S-Union allows a constructor type to be ambiguated with other

contructors in a union type. S-Perm allows the permutation of the constructor types in a union.

And S-Func is the usual subtyping rule for functions with the additional constraints that the smaller

function may extend the larger function’s properties with more properties.

Definition 7 defines the well-typeness relation of a property.

Definition 7 (Well-Typed Property Relation).

(W-Eq)

Γ, x : T1, f : T ⊢ e1 : T2
Γ, x : T1, f : T ⊢ e2 : T2
Γ ⊢T ∀x : T1 . e1 = e2

(W-Ineq)

Γ, x : T1, f : T ⊢ e1 : T2
Γ, x : T1, f : T ⊢ e2 : T2
Γ ⊢T ∀x : T1 . e1 ≠ e2

The two rules defining a well-typed property guarantee that the two expressions being compared

have a type in common. The type parameter to the ⊢T relation is thus the type of the function to

which the property is attached to and to which the symbol f must be mapped to.

Definition 8 defines the translation of commutativity, symmetry, associativity, reflexivity, idem-

potency, irreflexivity, selectivity, antisymmetry, transitivity, connectivity, and injectivity into quan-

tified equalities that can be attached to functions and types.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:13

Definition 8 (Interesting Properties). Propel’s built-in properties are defined as follows:

comm := ∀x1 : T, x2 : T . f x1 x2 = f x2 x1 sym := ∀x1 : T, x2 : T. f x1 x2 = f x2 x1
assoc := ∀x1 : T, x2 : T, x3 : T. f x1 (f x2 x3) = f (f x1 x2) x3 refl : = ∀x : T. f x x = ⊤
idem := ∀x : T. f x x = x irefl := ∀x : T. f x x = ⊥

sel := ∀x1 : T, x2 : T, eq : T refl,sym,antisym−−−−−−−−−−−−−→T−→T. eq (f x1 x2) x1 case {⊤ ⇒ ⊤,⊥ ⇒ eq (f x1 x2) x2} = ⊤
antisym := ∀x1 : T, x2 : T, x3 : T. f x1 x2 case {⊥ ⇒ x3,⊤ ⇒ x1} = f x2 x1 case {⊥ ⇒ x3,⊤ ⇒ x2}

trans := ∀x1 : T, x2 : T, x3 : T. f x1 x2 case {⊥ ⇒ ⊤,⊤ ⇒ f x2 x3 case {⊥ ⇒ ⊤,⊤ ⇒ f x1 x3}} = ⊤
conn := ∀x1 : T, x2 : T, x3 : T. f x1 x2 case {⊤ ⇒ x3,⊥ ⇒ f x2 x1 case {⊤ ⇒ x3,⊥ ⇒ x1}}

= f x1 x2 case {⊤ ⇒ x3,⊥ ⇒ f x2 x1 case {⊤ ⇒ x3,⊥ ⇒ x2}}
inj := ∀x1 : T, x2 : T, eq : T refl,sym,antisym−−−−−−−−−−−−−→T−→T.eq (f x1) (f x2) case {⊥ ⇒ ⊤,⊤ ⇒ eq x1 x2} = ⊤

3.4 Property Checking
This section presents the rules of the property prover. Recall that the prover is used by the typing

rules T-Abs and T-Aux.

Definition 9 (Proof Contexts).
Proof Context Φ ::= Γ; E+;E− Equalities E+ ::= e1 = e2
Inequalities E− ::= e1 ≠ e2 (In)equality 𝑄0

::= e1 = e2
(In)equality Ctx. 𝑄1

::= [] = e | e = [] | [] ≠ e | e ≠ [] | e1 ≠ e2

Dual (In)equalities Ctx. 𝑄2
::= [] = 𝑄1 | 𝑄1 = [] | [] ≠ 𝑄1 | 𝑄1 ≠ [] Optional 𝑄1?

::= 𝑄0 | 𝑄1

The proof context Φ is defined exactly as Γ with the two additional contexts storing unquantified

equalities and inequalities. To append rules or variable bindings we do so directly on Φ unam-

biguously. Similarly to the context 𝐶 from Definition 2, we define the single and dual (in)equality

contexts as 𝑄1
and 𝑄2

respectively. We write 𝑄1 [e] to mean the (in)equality with e replacing the

single hole [] in 𝑄1
. We write 𝑄2 [e1, e2] to mean the (in)equality with e1 replacing the first hole

and e2 replacing the second.

Proof rules. Proof rules of the form Φ ⊩ r define the relationship between the proof goal, the

proof strategy, and the known (in)equalities, and typing information in the proof context.

Definition 10 (Proof Rules).

(P-Intro)

Φ, x : T ⊩ 𝑄0

Φ ⊩ ∀x : T .𝑄0
(P-Contra

−
)

e ≠ e ∈ Φ

Φ ⊩ r
(P-Hyp)

𝑄0 ∈ Φ

Φ ⊩ 𝑄0

(P-Contra
⟲
)

K ei′ = e ∈ Φ e ∈ ei
Φ ⊩ r

(P-Abs)

Γ ⊢ e : T Φ[e ↦→ x], x : T, x = e ⊩ r[e ↦→ x]
Φ ⊩ r

(P-Eq)

e1 = e2 ∈ Φ Φ, 𝑄1?

1
[e2] ⊩ 𝑄1?

2
[e2]

Φ, 𝑄1?

1
[e1] ⊩ 𝑄1?

2
[e1]

(P-Derive)

Φ ⊲ Φ′ Φ′ ⊩ r

Φ ⊩ r

(P-Case)

Φ, xi,j : Ti,j
j
i
, e = Ki xi,j

j, e ≠ Kn xn,j
j
n,n≠i

⊩ r

i

Γ ⊢ e : + Ki
i

Γ ⊢ Ki : Ti,j →
j
Ki

i

Φ ⊩ r

P-Intro introduces all the quantified variables in an (in)equality in the context before proving the

unquantified version. P-Contra
−
allows to terminate any proof if two syntactically equal expressions

are unequal in the proof context encoding reductio ad absurdum. P-Hyp allows to conclude a proof

of an (in)equality if it occurs in the proof context. P-Contra
⟲
is another proof by contradiction

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:14 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

strategy relying on the fact that recursive equalities applied to constructors result in infinite values

which are not possible to construct in the calculus. P-Abs allows to replace all occurrences of some

expression modulo variable renaming with a fresh variable everywhere in the proof context and the

goal. The notation [e ↦→ x] is used to represent this substitution. The notation Φ[e ↦→ x] denotes
the substitution in the (in)equalities in the proof context, i.e., Γ; E+ [e ↦→ x]; E− [e ↦→ x]. Crucially
e must type under Γ to guarantee that it does not include free-variables once it’s lifted from its

surrounding context in a larger expression. P-Eq allows to make use of a known equality to replace

one side of the equality with another somewhere in the context and/or in the goal. P-Derive allows

the context to derive new (in)equalities which may be useful in the proof. The relation Φ ⊲ Φ′

that derives new information is defined in Definition 11. Finally, P-Case performs case analysis

on a union-typed expression: (1) it checks that the analyzed expression has a union type, (2) it

introduces a fresh variable for each argument of each constructor, (3) for each constructor, it forks

the proof with the equality that the expression is equal to some construction of said constructor

and thus unequal to all other constructions using the other constructors.

The rules P-Hyp, P-Abs, and P-Eq are sufficient to prove that equality as represented is symmetric

and transitive. Reflexivity is left to D-Refl.

Derivation rules. The derivation rules in Definition 11 define how known properties, (in)equalities,

and typing information can be used to derive new (in)equalities.

Definition 11 (Derivation Rules).

(D-Refl)

Γ ⊢ e : T

Φ ⊲ Φ, e = e
(D-Inst)

∀x : T .𝑄0 ∈ Φ Γ ⊢ x𝜎 : T

Φ ⊲ Φ, 𝑄0𝜎

(D-Ineq)

Γ ⊢ e1 : T1 Γ ⊢ e2 : T2
T1 @ T2 T2 @ T1

Φ ⊲ Φ, e1 ≠ e2
(D-Arg)

e1 e2 e3 e4 ≠ e1 e2 e3′ e4 ∈ Φ

Φ ⊲ Φ, e3 ≠ e3′

(D-Rule)

Γ ⊢ e : T1 r−−→T2

Φ ⊲ Φ, r[f ↦→ e]
(D-App)

𝑄1 [(𝜆r x :T .e1) e2] ∈ Φ

Φ ⊲ Φ, 𝑄1 [e1 [x ↦→ e2]]

(D-Case)

𝑄1 [Ki ei′ case {Kj ⇒ ej}] ∈ Φ

Φ ⊲ Φ, 𝑄1 [ei ei′]
(D-Fun)

𝑄2 [𝜆r x :T .e1, e2] ∈ Φ

Φ ⊲ Φ, x : T, 𝑄2 [e1, e2 x]

D-Refl allows the context to derive that any well-typed expression is equal to itself. With this rule,

it is possible to prove that equality is an equivalence relation. D-Inst allows a quantified property

to be instantiated to particular values given a mapping 𝜎 of the quantified variables. Propel’s
implementation makes use of this rule whenever a property can be unified with a subexpression

in the proof goal. D-Ineq allows to derive that two expressions whose types do not have a least

upper bound must be inequal. This rule allows us to derive that values constructed with different

constructors must be unequal. D-Arg relies on the fact that the language semantics are deterministic

and thus if two copies of a function application are unequal but have all their arguments but one

equal then that argument must be the one separating both application and both are thus different.

D-Rule allows to move a property from type annotation to the rule context. D-App and D-Case

allow the derivation engine to do symbolic evaluation on the expressions. While the calculus adds

the new rewritten expression alongside the old one in the proof context, Propel’s implementation

discards the old expression to save memory and tame the proof runtime. Finally D-Fun encodes

functional extensionality and says that two functions are equal when their bodies are equal.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:15

3.4.1 Soundness. The calculus is type safe as it satisfies the progress and preservation theorems.

Theorem 1 (Progress). If Γ0; · ⊢ e : T then e is a value or there exists e′ such that e → e′.
Theorem 2 (Preservation). If Γ0; · ⊢ e : T and e → e′ then ·; Γ0; · ⊢ e′ : T.

We further prove the soundness property that, if an expression is given a function type anno-

tated with a property then the property truly holds. For example, if an expression e computes a

commutative function, i.e., Γ0; · ⊢ T comm−−−−−→T→ T then e x1 x2 = e x2 x1 for every x1, x2.
To this end, we first define equality. The first option is syntactic equality which indicate =, is

too weak. For example, it does not allow us to express idempotence of the logical or function:

∀x : 2.x case {⊤ ⇒ ⊤,⊥ ⇒ x} = x. Clearly, both terms are not syntactically equal. Yet, they do

normalize to the same expression. A more suitable definition of equality is syntactic equality up

to normal forms. Definition 12 presents a definition that conveys our intuition for equality for a

type T, which we symbolize with ≡T . It states that two expressions of (1) a constructor type are

equal when they reduce to a construction of that constructor and its arguments are pair-wise equal,

(2) a union type are equal when they are equal at a particular type in that union, (3) a function type

when they normalize to equal values when applied to equal inputs.

Definition 12 (Equality up to normal forms). Given a data type K and two expressions e1, e2
• e1 ≡K e2 if and only if both have the same type K, i.e., Γ0; · ⊢ e1 : K and Γ0; · ⊢ e2 : K, both
reduce to constructions of that constructor, i.e., e1 →∗ K v1 and e2 →∗ K v2, the constructor
takes as many arguments as provided, i.e., Γ0; · ⊢ K : T → K, and each argument is pairwise

equivalent at its expected type, i.e., v1 ≡T v2.
• e1 ≡+ Ki

e2 if and only if there exists an i such that e1 ≡Ki e2.
• let T = T1 r−→T2 then e1 ≡T e2 if and only if both have the same type T, i.e., Γ0; · ⊢ e1 : T, and
Γ0; · ⊢ e2 : T, and assuming e1 →∗ 𝜆r x :T1.e11 and e2 →∗ 𝜆r x :T1 .e22 then for any e3, e4, T1′

such that e3 ≡T1′ e4 and T1′ ⊑ T1 then e11 [x ↦→ e3] ≡T2 e22 [x ↦→ e4].
We may leave out the type annotation from ≡T when it is clear from the context.

To show that Definition 12 matches our intuition of equality up to normal forms, we prove a

fortiori that ≡ is preserved across→ and that ≡ is an equivalence relation.

Lemma 1. Assume e1 → e1′ then e1 ≡T e2 if and only if e1′ ≡T e2.
Lemma 2. ≡T is an equivalence relation at well-typed expressions.

Definition 13 provides a well-typed substitution 𝜎 ⊨ Γ when every variable in Γ is mapped to an

expression of the same type under the empty context. Definition 14 defines equivalent substitutions

under Γ to be the ones that map every variable to equal expressions. In Lemma 3, we show that

expressions equivalent under the same substitution are equivalent under equivalent substitutions.

Definition 13. Let Γ and 𝜎 be given. 𝜎 ⊨ Γ when ·; Γ0; · ⊢ 𝜎 (x) : T for every x : T ∈ Γ.

Definition 14. Let Γ, 𝜎1 ⊨ Γ, and 𝜎2 ⊨ Γ be given. 𝜎1 ≡ 𝜎2 when x𝜎1 ≡T x𝜎2 for every x : T ∈ Γ.

Lemma 3. Let Γ ⊢ e1 : T and Γ ⊢ e2 : T and 𝜎1 ≡ 𝜎2. If e1𝜎1 ≡ e2𝜎1 then e1𝜎1 ≡ e2𝜎2.
Armed with these lemmas we define a valid proof context as one where all its equalities and

properties are equal up to normal form, and inequalities are provably unequal up to normal form

which we denote with .T .

Definition 15. Φ is said to be valid when a substitution 𝜎 ⊨ Γ, dubbed the witness, exists such

that E+≡𝜎 and E−≡𝜎 are true under the assumption that R≡𝜎 . We define E+≡, E−≡ , and R≡ as the

interpretation of E+, E− and R, respectively, as follows: if E+ = e1 = e2 then E+≡ = e1 ≡ e2, if E− =
e1 ≠ e2 then E−≡ = e1 . e2, if r = ∀x : T .e1 = e2 then r≡ = 𝜆x : T.e1 ≡ 𝜆x : T.e2, if r = ∀x : T .e1 ≠ e2
then r≡ = 𝜆x : T.e1 . 𝜆x : T .e2, if R = r then R≡ = r≡, where the many denotes conjunction.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:16 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Next, we prove the followng soundness theorems: a proof context derived from a valid one is

itself valid (Theorem 3), every rule that is proved in a valid context holds (Theorem 4) , and if a

function can be typed then its properties hold (Theorem 5). Finally, we prove the main soundness

theorem (Theorem 6): annotated properties hold on any expression.

Theorem 3. If Φ is valid and Φ ⊲ Φ′, then Φ′ is valid.

Theorem 4. If Φ is valid and 𝜎 is its witness and Φ ⊩ r, then (r𝜎)≡.
Theorem 5. If Γ ⊢ 𝜆r x :T.e and 𝜎 ⊨ Γ and R≡𝜎 , then rT1 [f ↦→ 𝜆r x :T .e𝜎]≡.
Theorem 6. If Γ0; · ⊢ e : T1 r−→T2 and e normalizes, then rT1 [f ↦→ e]≡.

3.4.2 Equality Lifting and Embedding. Selection and connectedness in Section 2.3 require a disjunc-

tion of equalities, yet as presented, the equality set E+ is a conjunction of equalities. By embedding

disjunction and equality from the meta- to the expression-level we can overcome this limitation.

Luckily, equality is the unique relation that is reflexive, symmetric, and antisymmetric, thus em-

bedding equality is akin to using a function with these properties. This embedding is expressed

through the quantification over a reflexive, symmetric, and antisymmetric function in Definition 8.

However, embedding meta-level (in)equalities is only useful if they can be lifted back later. The

following two theorems prove that both lifting and embedding can occur at any time.

Theorem 7. Given a proof context Φ with eq : T refl,sym,antisym−−−−−−−−−−−−−→T → T ∈ Φ and eq a b = ⊥ ∈ Φ
there exists a sequence of derivation Φ ⊲𝑛 Φ′ such that a ≠ b ∈ Φ′.

Theorem 8. Given a proof context Φ with eq : T refl,sym,antisym−−−−−−−−−−−−−→T → T ∈ Φ and eq a b = ⊤ ∈ Φ
there exists a sequence of derivation Φ ⊲𝑛 Φ′ such that a = b ∈ Φ′.

4 EVALUATION AND IMPLEMENTATION
Propel is implemented in Scala 3. It can verify a core language in S-expression syntax and Scala

code through its DSL. Its core is about 10K lines long spread throughout 46 files. The binary is

compiled to native machine code using LLVM.

To evaluate our approach, we selected case studies from a variety of domains where algebraic

properties, such as commutativity or associativity, are essential for correct execution. We compare

against five state-of-the-art verifiers in five different domains, checking a total of 142 properties.

We believe their importance in many domains justifies a proof technique that specializes on these

properties and enables proving them with a high degree of automation. Instead, existing automated

theorem provers are more general.

4.1 Case Studies
We investigated the following areas to cover a variety of use cases across different domains. Thereby,

we focus on the set of essential algebraic properties explored in this paper.

Numeric operations. Segment 1 of Table 1 investigates common numeric operations – such as

addition, multiplication, maximum, minimum – in isolation. Note that the following more complex

use cases often rely on a combination of such operations. We explore two ways of modeling

numerals: (1) the usual Peano encoding of natural numbers and (2) a bit vector encoding closer

to the hardware bit representation. For (1), we provide the results for the different variations of

addition from Section 2.

In addition to the basic algebraic properties that Propel tracks in the types and that concern

single functions, we also prove left and right identities of the operations. While the emphasis of

Propel’s design is not properties on the combination of multiple functions, the properties which

Propel can reason about are instrumental in proving such combining properties.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:17

Replicated Data Types. Segment 2 investigates widely-used conflict-free replicated data types

(CRDTs) [41]. CRDTs require a merge function that is commutative, associative, and idempotent,

i.e., a join on a semilattice, to guarantee merging states without conflicts. We compare versions

using Peano numbers and bit vectors.

Data Flow Engines. Segment 3 investigates data flow engines which use associative operations to

parallelize data processing. For example, a reduce or a fold operation can run in parallel on different

nodes, if the operation is associative as the result on different data can be composed. Existing

engines trust the annotation provided by the developer that a function is associative and this

property is not checked by the framework. We selected both widely-used and recent open-source

engines: Naiad [30], Timely [2] Noir [28], and Apache Beam [1]. We verified the associativity of

several functions used in the respective engine’s unit tests or usage examples. For example, when

merging the results, the WordCount unit test performs addition which must be associative.

Divide and Conquer. Segment 4 investigates well-known text book divide-and-conquer algorithms.

Such algorithms require associative operations in their conquer phase to combine the results that

were independently computed in the divide phase. We examined the Quicksort algorithm and

parallel-friendly implementations of the numeric maximum and minimum over binary trees.

Table 1. Evaluation Results.

Domain Function Property H
i
p
S
p
e
c

Z
e
n
o

C
y
c
l
e
Q

c
v
c
5

V
a
m
p
i
r
e

Pr
op

el
(
n
o
≠
)

Pr
op

el
(
a
u
x
#
)

Pr
op

el

Segment 1. Numeric Operations.
Peano Addition (add1) comm 1 0 0 0 1 2 0

assoc 5 0 1 0 0 1 2 0

left id 1 0 1 0 0 1 0 0

right id 1 0 1 0 0 1 0 0

Addition (add2) comm 1 0 0 1 6 0

assoc 3 ✗ 5 1 6 0

left id 1 0 1 0 0 1 0 0

right id 1 0 1 0 0 1 0 0

Addition (add3) comm 13 0 1 0 0 0 0

assoc 36 ✗ 0 2 0

left id 10 0 1 0 0 0 0 0

right id 6 0 1 0 0 0 0 0

Multiplication comm 2 0 8 0

assoc 13 0 12 0

left id 2 0 1 1 0

right id 2 0 1 2 0

Minimum comm 1 0 1 0 0 0 0

assoc 5 0 1 0 0 0 0

idem 1 0 1 0 0 0 0 0

Maximum comm 1 0 1 0 0 0 0

assoc 5 0 1 0 0 0 0

idem 1 0 1 0 0 0 0 0

left id 1 0 1 0 0 0 0 0

right id 1 0 1 0 0 0 0 0

Bit vectors Addition comm 0 1 0 0 0 0

assoc ✗ 0 10 0

left id 0 1 0 0 0 0 0

right id 0 1 0 0 0 0 0

Multiplication comm ✗ – ✗
assoc ✗ – ✗
left id 0 1 0 0 ✗ – ✗
right id 0 1 2 8 2

Addition comm 0 1 0 0 0 0

(mod 2
𝑛
) assoc ✗ 0 20 0

Multiplication comm ✗ 2 20 2

(mod 2
𝑛
) assoc ✗ ✗ – ✗

Minimum comm ✗ 0 6 0 3

assoc ✗ ✗ 0 3

idem 0 1 0 0 4 0 3

Maximum comm 0 6 0 3

assoc ✗ 0 3

idem 0 1 0 0 4 0 3

left id 0 1 0 0 4 0 3

right id 0 1 0 0 4 0 3

Type Class Laws. Segment 5 investigates some

properties beyond the usual algebraic properties,

which Propel tracks in the types, such as commuta-

tivity and associativity. Although not the main focus

of our approach, we demonstrate how the algebraic

reasoning of Propel can also help prove type class

laws such as composition laws or left and right iden-

tities. For our investigation, we examined the type

class instances defined in Haskell’s Prelude [33].

4.2 TIP benchmarks
Segment 6 applies Propel to the subset of the TIP

benchmarks [16], designed for automated inductive

theorem provers, that checks the fundamental alge-

braic properties investigated in this paper, namely

those that check commutativity, selection, idempo-

tence, injectivity, associativity, reflexivity, irreflexiv-

ity, antisymmetry, symmetry, connectedness or tran-

sitivity.

4.3 Comparison and Parameter Analysis
We consider the following state-of-the-art induc-

tive theorem provers and SMT solvers that can rea-

son by induction. HipSpec [15] adopts a bottom-

up approach (theory exploration), constructing a

library of lemmas before attempting a proof.

Zeno [44], on the other hand, employs lemma
discovery through generalization, synthesizing and

proving lemmas on-demand. CycleQ [23], an ex-

tension of the GHC Haskell compiler, leverages

cyclic proof theory [10, 45]. All three tools parse

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:18 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Table 1. Evaluation Results (continued).

Domain Function Property H
i
p
S
p
e
c

Z
e
n
o

C
y
c
l
e
Q

c
v
c
5

V
a
m
p
i
r
e

Pr
op

el
(
n
o
≠
)

Pr
op

el
(
a
u
x
#
)

Pr
op

el

Segment 2. Replicated Data Types.
GSet comm 1 ✗ 1 – – 0 0 0

assoc 1 ✗ 1 – – 0 0 0

idem 1 ✗ 1 – – 0 0 0

Peano GCounter comm 1 0 1 0 1

assoc 1 0 1 0 1

idem 1 0 1 3 0 0 1

LWWReg comm 55 ✗ 1 2 0 1

assoc ✗ 1 2 0 1

idem 18 0 1 5 0 2 0 1

Bit vectors GCounter comm 1 0 5

assoc 1 0 5

idem 0 1 1 0 5

LWWReg comm 1 ✗ 0 4

assoc ✗ 1 ✗ – ✗
idem 0 1 12 0 4

Segment 3. Data Flow Engines.
Timely Word Count assoc 5 0 1 0 0 1 2 0

Noir Word Count assoc 5 0 1 0 0 1 2 0

Naiad Word Count assoc 5 0 1 0 0 1 2 0

Beam min comm 1 0 1 0 0 0 0

assoc 5 0 1 0 0 0 0

idem 1 0 1 0 0 0 0 0

max comm 1 0 1 0 0 0 0

assoc 5 0 1 0 0 0 0

idem 1 0 1 0 0 0 0 0

sum comm 1 0 0 0 1 2 0

assoc 5 0 1 0 0 1 2 0

times comm 2 0 0 8 0

assoc 13 0 0 12 0

Segment 4. Divide and Conquer.
Quicksort merge assoc 43 0 1 0 0 3 6 0

Tree min comm 1 0 1 0 0 0 0

assoc 5 0 1 0 0 0 0

idem 1 0 1 0 0 0 0 0

Tree max comm 1 0 1 0 0 0 0

assoc 5 0 1 0 0 0 0

idem 1 0 1 0 0 0 0 0

Segment 5. Type Class Laws.
Functor Maybe map id 1 0 1 – – 0 0 0

comp 1 0 1 – – 0 0 0

List map id 2 0 1 – – 1 0 0

comp 2 0 1 – – 0 0 0

Function map id 12 ✗ 1 – – 0 0 0

comp 12 ✗ 1 – – 0 0 0

Pairs map id 1 0 1 – – 0 0 0

comp 1 0 1 – – 0 0 0

State map id 1 ✗ ✗ – – 0 0 0

com 1 ✗ ✗ – – 0 0 0

Semigroup Maybe op assoc 1 0 1 – – 1 2 0

List op assoc 1 0 1 – – 3 10 0

Function op assoc 36 ✗ 1 – – 1 2 0

Pair op assoc 1 0 1 – – 2 6

State op assoc ✗ ✗ – – 3 2 0

Monad Maybe bind assoc 1 ✗ 1 – – 0 0 0

and return left id 1 0 1 – – 0 0 0

right id 1 0 1 – – 0 0 0

List bind assoc 9 ✗ – – ✗ – ✗
and return left id 3 ✗ ✗ – – 3 1 0

right id 2 0 1 – – 3 10 0

Function bind assoc 1 ✗ 1 – – 0 0 0

and return left id 5 ✗ 1 – – ✗ – ✗
right id 5 ✗ 1 – – ✗ – ✗

Pair bind assoc ✗ ✗ – – 2 2 0

and return left id ✗ ✗ – – 1 2 0

right id 0 1 – – 1 1 0

State bind assoc 1 ✗ ✗ – – 0 0 0

and return left id 8 ✗ ✗ – – ✗ – ✗
right id 1 ✗ ✗ – – ✗ – ✗

Haskell code and attempt to prove the properties

defined in it. We also compare against two solvers

capable of inductive reasoning: cvc5 [6] and Vam-
pire [22].
To ensure comparability between the automated

theorem provers and SMT solvers, we reimplemented

the relevant data types with inductive definitions (e.g.,

Peano or bit vector encodings for natural numbers).

Hence, the SMT solvers do not exploit some of their

theories, e.g., for numbers, arrays, or sets, but still

use some theories, in particular for data types. This

approach is in line with common benchmarks for the-

orem provers, to set up a meaningful comparison be-

tween different provers. Aiming at full automation

for the algebraic properties explored in this paper,

we only specify the final property the developer is

interested in and no intermediate auxiliary properties,

leaving the entire verification process to the prover.

As the provers require a specific import format (like

SMTLIB2 or different variants of Haskell), we reim-

plemented each function for every prover, striving

for implementations that are as similar as possible in

Haskell (for HipSpec, Zeno and CycleQ), in SMTLIB2

(for cvc5 and Vampire) and in Propel.
We executed a new instance of the prover for every

file on a Intel Core i7-1185G7, 3 GHz, 32 GiB setup. We

set a timeout of one minute for every proof, as provers

might diverge in the proof search. We consider this

a reasonable duration for interactive theorem prov-

ing. All provers are in native binaries, hence no VM

startup time is required. We further conducted a pa-

rameter analysis by enabling or disabling the tracking

of inequalities and varying the threshold for the num-

ber of generated auxiliary properties to investigate

which aspects of our approach contribute to Propel’s
advantage over state of the art verifiers.

4.4 Results
In Table 1, a ✗ indicates that the prover terminated

unsuccessfully within the time limit. A indicates

that the prover timed out. Otherwise, we report the

verification time in seconds. The last column shows

the results for Propel. The preceding columns show

the results of Propel without tracking inequalities

(“no ≠” column) and the number of auxiliary proper-

ties explored by Propel for the proof (“aux #” column).

The results demonstrate Propel’s deductive power
to prove fundamental algebraic properties in many

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:19

Table 1. Evaluation Results (continued).

Function Property H
i
p
S
p
e
c

Z
e
n
o

C
y
c
l
e
Q

c
v
c
5

V
a
m
p
i
r
e

Pr
op

el
(
n
o
≠
)

Pr
op

el
(
a
u
x
#
)

Pr
op

el

Segment 6. TIP Benchmarks for Algebraic Properties.
bin_plus comm 17 0 1 0 1 0 1

assoc 44 ✗ 1 21 1

bin_times comm 48 2 21 2

assoc ✗ – ✗

int_plus comm 0 0 0 –

assoc ✗ 0 0 –

int_times comm ✗ 8 1

assoc ✗ – ✗

list_append assoc 43 0 1 0 0 3 6 0

nat_geq antisym 8 0 0 ✗ 0 0

refl 3 0 1 0 0 0 0 0

trans 12 ✗ 0 0 0 0

nat_gt asym 4 1 0 0 0 0

irefl 0 0 1 0 0 0 0

trans 12 ✗ 0 0 0 0

nat_leq antisym 1 0 0 ✗ 0 0

refl 0 0 1 0 0 0 0 0

trans 0 0 0 0 0 0

nat_lt asym 1 1 0 59 0 0 0

irefl 0 0 1 0 0 0 0

trans 7 ✗ 0 0 0 0

nat_min comm 0 ✗ 0 ✗ 0 0

assoc 4 ✗ 0 0 0 0

idem 0 0 0 0 0 0 0

nat_max comm 6 ✗ 0 ✗ 0 0

assoc 8 ✗ 0 0 0 0

idem 0 0 0 0 0 0

nat_plus comm 0 0 0 0 1 2 0

assoc 0 0 1 0 0 1 2 0

nat_plus_acc comm 9 ✗ 0 2 0

assoc 32 0 16 0 2 0

nat_times comm 0 0 59 8 0

assoc 0 0 1 12 0

nat_times_acc comm 43 ✗ 2 2 2

assoc ✗ ✗ – ✗

nat_times_alt comm 46 0 2 6

assoc ✗ – ✗

nat_times_weird comm ✗ – ✗
assoc ✗ – ✗

domains. Propel’s design was influenced by investigating

the kind of properties required by replicated data types.

We applied Propel to the other domains only after the im-

plementation of Propel was completed, i.e., they did not

influence its design. The state-of-the-art provers do not per-

form as well as Propel in terms of the number of properties

they can prove, especially when applied to more realistic

use cases such as CRDTs, divide-and-conquer algorithms,

data flow engines, and type class laws. We attribute this

to Propel’s focus on algebraic properties, specifically gen-

erating auxiliary properties that proved useful for such

properties, and tracking both equalities and inequalities.

The SMT solvers we used are not able to reason about

higher-order functions. Hence, they could not verify the

GSet CRDT, which represents sets as functions, and the

type class laws. Hence, we leave the corresponding entries

in the table blank (“–”).

Analysis. Our parameter analysis reveals that Propel’s
deductive power comes from two features. First, Propel’
property generation approach (Section 2.4) is able to gen-

erate the auxiliary properties needed for most proofs for

algebraic properties. The number of properties that Propel
needs to generate for a successful proof (“Propel (aux #)”
column) of some of the more complicated benchmarks (i.e.,

which other provers fail to verify), is a one-digit number

for most cases, indicating that proving algebraic properties

requires discovering auxiliary properties while, with Pro-
pel’s property generation, only a small number of auxiliary

properties needs to be checked.

Second, Propel can reason about both equalities and inequalities and the contradictions that

can be derived from both. Most cases which Propel with a disabled inequality set (“Propel (no ≠)”

column) fail to prove can also not be verified by the other provers. Thus, we believe that not only

recording which expressions were identified to be equal, but also tracking which expressions were

discovered unequal offers significant opportunities for improving the performance of theorem

provers. Reasoning about algebraic properties is the key for populating the inequality set, as

irreflexive, antisymmetric and connected relations dedicate that their arguments are unequal.

5 RELATEDWORK
For an overview of theorem proving, we point the reader to the survey [31]. In this section, we focus

on work dedicated specifically to algebraic properties, inductive theorem provers, inductionless
induction theorem provers, and expressive type systems that enable proving program properties.

Correct Algebraic Properties. Servois [5] iteratively refines a starting hypothesis to create con-

ditions under which two functions commute and two functions commute when the conditions

are always true. Aleen and Clark [3] developed a static analysis technique that probabilistically

determines if an imperative function commutes with itself based on how it modifies a memory

layout. In contrast to verifying a function’s commutativity, Gélineau [21] designed a Haskell library

where special functions are commutative by design. by encapsulating into a monad that imposes

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:20 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

an order on the applied values, rendering their original order unobservable. Yet, it’s unclear how to

ensure other algebraic properties, such as associativity, using the methods above.

Inductive Theorem Provers. Zeno uses algebraic data types to establish the induction hypothe-

sis [43, 44]. The tool checks Haskell code for properties specified in the code. In instances where a

proof gets stuck, Zeno conjectures and attempts to prove additional lemmas. The lemma generation

technique is derived from the generalization step used in Boyer-Moore inductive theorem provers [9]

by changing recurrent subexpressions in an equation into an equation where the subexpression

occurrences are replaced by a variable. Zeno then treats the altered equation as a speculative

proposition to be verified independently. To avoid excessive generalization and eliminate wrong

conjectures early, Zeno tries to find counterexamples before attempting any proof.

HipSpec [15, 17, 46] is another inductive theorem prover for Haskell. Instead of applying general-

ization to formulate lemmas during proof generation as Zeno does, HipSpec constructs a repository

of proven lemmas that can potentially aid in the proving process before starting the proof pro-

cess. It starts by enumerating all equalities between Haskell expressions up to a certain depth

which undergo many filters. First, all equalities containing untypeable expressions are immediately

discarded. Second, all those equating expressions of different types are also discarded. Third, it

discards those that QuickCheck [14] can discover counterexamples for. Fourth, it uses the Z3 SMT

solver [20] to prove the equalities that do not require induction. And finally, the expressions that

remain are passed on to HipSpec’s internal automatic inductive theorem prover for a final round of

filtering. In practical applications, HipSpec managed to verify that widely-used implementations of

specific type classes adhere to type class laws [4].

TheSy [42] employs equality graphs [32] (also known as program expression graphs) to effectively

select a canonical representative from a class of equivalent programs for each expression. Similar to

HipSpec, TheSy enumerates possible lemmas that may help the proof. TheSy enumerates lemmas

by filtering out equivalent programs with the help of equality graphs, thus eliminating the need to

re-prove them. MATHsAiD [29] is similar to HipSpec, aiding mathematicians in their exploration of

theories. The tool employs program synthesis techniques to guide the generation of lemmas [52].

Lemma Enumeration and Generalization. The auxiliary properties proposed by Propel are both
enumerated like HipSpec’s and TheSy’s lemmas, and are a product of generalization like Zeno and

Boyer-Moore provers. Yet, as described in Section 2.4, enumerations follow a strict distributivity

template that produces few expressions, and generalizations are a result of a few data constructor

unfoldings of function arguments.

Like HipSpec and TheSy, Propel pre-compiles a list of potential auxiliary properties that may be

helpful but limits enumeration to the local context of each function and relevant data constructors,

while both HipSpec and TheSy extend their enumeration to all symbols in the environment. While

Propel may overlook certain useful auxiliary properties involving two functions with a distant

relationship, it tends to finalize proofs faster and – based on our evaluation – more effectively for

the properties we are investigating. In addition, while HipSpec asserts lemmas prior to any proof

attempt, Propel performs this process for each function. Hence auxiliary properties about upcoming

functions are not conjectured until the proofs for the current function have been finalized.

Inductionless Induction. Inductive theorem provers, grouped under the terminology of “induc-

tionless induction” or “proof by consistency”, implicitly address induction [18, 50]. This approach

has been revived in the field of cyclic proof theory [10, 45], and is used in automated theorem

prover systems such as Cyclist [11]. An extension of GHC, CycleQ, incorporates a theorem prover

to facilitate equational reasoning [23].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

Automated Verification of Fundamental Algebraic Laws 178:21

Another development is the integration of support for induction into the CVC4 SMT solver,

which achieves this by skolemizing the inductive hypothesis [7, 37]. The SMT solver identifies a

model that aligns with the negation of the inductive hypothesis and fails if the theorem is true.

However, all these systems handle properties as assertions. They do not manage them in types,

like Propel does. The advantage of Propel’s approach of tracking properties at the type level is that

it enables higher-order functions to enforce properties about their inputs.

Type Systems. Dependent type systems such as Coq’s calculus of constructions [19] or Agda’s

type system [8] have the ability to encode functional properties by lifting proof terms to the type

level. Yet, this approach requires the user to manually construct such proof terms. In contrast, we

focus on automating algebraic properties verification.

Our previous work on Propel [53] uses a type system to verify the implementations of CRDTs [41].

focusing only on the properties that are necessary in such domain. Instead, in this work, we apply

Propel to a diverse range of domains and allow developers to express properties – such as type

class laws – that are not built into the prover.

Refinement types, as in LiquidHaskell (LH), enable developers to attach propositions to data types

[40, 47, 51]. While LH delegates the verification of the refinement predicates linked to types to an

SMT solver, LiquidHaskell with Refinement Reflection (LH+RR) empowers programmers to prove

propositions by creating proof objects that testify to the truth of these propositions [48]. This result

can be achieved manually or by invoking the “Proof by Logical Evaluation (PLE)” proof-search

algorithm. Though PLE can automate some proofs, it requires the developer to provide the structure

of the induction by detailing the arguments to the recursive call.

Liu et al. [26] extended LiquidHaskell and Refinement Reflection to attach laws to type class

definitions, which are expressed as members of the type class that instances must implement [47, 48].

Propel differs from Type Class Refinements (TCR) in two primary ways: First, Propel addresses
predefined algebraic properties, resulting in a higher degree of automation. Second, to assert

algebraic properties of functions in TCR, the functions must be represented as a data type and

therefore defunctionalized [38]. This leads to higher-order functions becoming type functions

parameterized by the defunctionalization identifiers, and necessitates manual handling of closures.

As algebraic properties are directly in a function’s type, no such transformation is needed in Propel.
With our solution, we aim to offer abstractions to developers that are not more heavyweight

than needed for our use case. A dependent type system is very expressive but it often requires the

programmers to manipulate proof terms manually. On the other hand, we have found LiquidHaskell

not expressive enough, especially in its lack of quantification – which is consistent with its need of

remaining decidable. We aim for the sweet spot where proofs are automatic while still supporting

quantification (which commutativity, for example, requires).

6 CONCLUSION
Algebraic laws on functions are crucial in mathematics and often serve as a foundation for reasoning

about computations. Despite playing such crucial role in abstract thinking, these laws are often

overlooked in software programming practice. For instance, commutativity and associativity are

key in the correctness of compiler optimizations, big data and data flow processing, distributed

algorithms, data structures, but most languages lack built-in mechanisms to ensure and check the

adherence of operations to these laws.

In this paper, we proposed Propel, a specialized verifier designed for algebraic laws that checks

the adherence of functions to these laws in code. The key insight is Propel’s ability to conjecture

auxiliary properties and to reason about both equalities and inequalities of expressions, which

is crucial to prove the law when other competitors do not succeed. We evaluated Propel across
various domains and properties and demonstrated that our approach outperforms existing tools.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

178:22 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

ACKNOWLEDGMENTS
The authors wish to thank the anonymous reviewers of PLDI 2024 for their valuable comments.

This work is supported by the Swiss National Science Foundation (SNSF), grant 200429.

ARTIFACT AVAILABILITY
The artifact is available on Zenodo [54]. It includes the implementation of Propel as discussed
in Section 3 with the induction rules. The implementation provides our Scala DSL that can be

imported and used in Scala code, and a standalone verifier that checks the properties of functions

implemented in a LISP dialect which is also described in the artifact. Moreover, all the benchmarks

provided in Section 4 have dedicated scripts which can be executed to verify our reported results.

The included README file provides a guide on how to interpret the output of the benchmarks.

REFERENCES
[1] [n. d.]. Apache Beam. https://beam.apache.org/. Accessed: 2013-07-12.

[2] Martín Abadi and Michael Isard. 2015. Timely dataflow: A model. In Formal Techniques for Distributed Objects,
Components, and Systems: 35th IFIP WG 6.1 International Conference, FORTE 2015, Held as Part of the 10th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings
35. Springer, 131–145.

[3] Farhana Aleen and Nathan Clark. 2009. Commutativity Analysis for Software Parallelization: Letting Program

Transformations See the Big Picture. In Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (Washington, DC, USA) (ASPLOS XIV ’09). ACM, New York, NY, USA,

241–252. https://doi.org/10.1145/1508244.1508273

[4] Andreas Arvidsson, Moa Johansson, and Robin Touche. 2019. Proving Type Class Laws for Haskell. In Trends in
Functional Programming, David Van Horn and John Hughes (Eds.). Springer International Publishing, Cham, 61–74.

https://doi.org/10.1007/978-3-030-14805-8_4

[5] Kshitij Bansal, Eric Koskinen, and Omer Tripp. 2018. Automatic Generation of Precise and Useful Commutativity

Conditions. In Tools and Algorithms for the Construction and Analysis of Systems (Lecture Notes in Computer Science), Dirk
Beyer and Marieke Huisman (Eds.). Springer International Publishing, Cham, 115–132. https://doi.org/10.1007/978-3-

319-89960-2_7

[6] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,

Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms for
the Construction and Analysis of Systems: 28th International Conference, TACAS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings, Part I (Munich,

Germany). Springer-Verlag, Berlin/Heidelberg, Germany, 415–442. https://doi.org/10.1007/978-3-030-99524-9_24

[7] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds,

and Cesare Tinelli. 2011. CVC4. In Computer Aided Verification, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.).

Springer-Verlag, Berlin/Heidelberg, Germany, 171–177. https://doi.org/10.1007/978-3-642-22110-1_14

[8] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A Brief Overview of Agda – A Functional Language with Dependent

Types. In Theorem Proving in Higher Order Logics, Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius

Wenzel (Eds.). Springer-Verlag, Berlin/Heidelberg, Germany, 73–78. https://doi.org/10.1007/978-3-642-03359-9_6

[9] R. S. Boyer, M. Kaufmann, and J. S. Moore. 1995. The Boyer-Moore Theorem Prover and Its Interactive Enhancement.

Computers & Mathematics with Applications 29, 2 (Jan. 1995), 27–62. https://doi.org/10.1016/0898-1221(94)00215-7

[10] James Brotherston. 2005. Cyclic Proofs for First-Order Logic with Inductive Definitions. In Automated Reasoning with
Analytic Tableaux and Related Methods, Bernhard Beckert (Ed.). Springer-Verlag, Berlin/Heidelberg, Germany, 78–92.

https://doi.org/10.1007/11554554_8

[11] James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. 2012. A Generic Cyclic Theorem Prover. In Asian
Symposium on Programming Languages and Systems, Ranjit Jhala andAtsushi Igarashi (Eds.). Springer-Verlag, Berlin/Hei-
delberg, Germany, 350–367. https://doi.org/10.1007/978-3-642-35182-2_25

[12] P. Buneman, S. Davidson, and A. Kosky. 1992. Theoretical Aspects of Schema Merging. In Proc. Int’l. Conf. on Extending
Database Technology. Vienna, Austria.

[13] Yu-Fang Chen, Lei Song, and Zhilin Wu. 2016. The Commutativity Problem of the MapReduce Framework: A

Transducer-Based Approach. In Computer Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer

International Publishing, Cham, 91–111. https://doi.org/10.1007/978-3-319-41540-6_6

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

https://beam.apache.org/
https://doi.org/10.1145/1508244.1508273
https://doi.org/10.1007/978-3-030-14805-8_4
https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1016/0898-1221(94)00215-7
https://doi.org/10.1007/11554554_8
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-319-41540-6_6

Automated Verification of Fundamental Algebraic Laws 178:23

[14] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In

Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00). SCM, New York,

NY, USA, 268–279. https://doi.org/10.1145/351240.351266

[15] Koen Claessen, Moa Johansson, Dan Rosen, and Nick Smallbone. 2012. HipSpec: Automating Inductive Proofs of

Program Properties. 16–5. https://doi.org/10.29007/3qwr

[16] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. 2015. TIP: Tons of Inductive Problems. In

Intelligent Computer Mathematics, Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge

(Eds.). Springer International Publishing, Cham, 333–337. https://doi.org/10.1007/978-3-319-20615-8_23

[17] Koen Claessen, Nicholas Smallbone, and John Hughes. 2010. QuickSpec: Guessing Formal Specifications Using Testing.

In Tests and Proofs, Gordon Fraser and Angelo Gargantini (Eds.). Springer-Verlag, Berlin/Heidelberg, Germany, 6–21.

https://doi.org/10.1007/978-3-642-13977-2_3

[18] Hubert Comon. 2001. Inductionless Induction. North-Holland, Amsterdam, Chapter 14, 913–962. https://doi.org/10.

1016/B978-044450813-3/50016-3

[19] Thierry Coquand and Gérard Huet. 1986. The Calculus of Constructions.

[20] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction
and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer-Verlag, Berlin/Heidelberg, Germany,

337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[21] Samuel Gélineau. 2010. Commutative Composition: a conservative approach to aspect weaving. https://escholarship.

mcgill.ca/concern/theses/gq67jr62t

[22] Márton Hajdú, Petra Hozzová, Laura Kovács, Johannes Schoisswohl, and Andrei Voronkov. 2020. Induction with

Generalization in Superposition Reasoning. In Intelligent Computer Mathematics, Christoph Benzmüller and Bruce

Miller (Eds.). Springer International Publishing, Cham, 123–137. https://doi.org/10.1007/978-3-030-53518-6_8

[23] Eddie Jones, C.-H. Luke Ong, and Steven Ramsay. 2022. CycleQ: An Efficient Basis for Cyclic Equational Reasoning. In

Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation
(San Diego, CA, USA) (PLDI ’22). ACM, New York, NY, USA, 395–409. https://doi.org/10.1145/3519939.3523731

[24] Simon Peyton Jones. 2003. Haskell 98 language and libraries: the revised report. Cambridge University Press.

[25] Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui, and Keshav Pingali. 2011. Exploiting the commutativity

lattice. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation
(32rd PLDI’11). ACM Press (NY), San Jose, CA, USA, 542–555.

[26] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou. 2020. Verifying Replicated

Data Types with Typeclass Refinements in Liquid Haskell. Proceedings of the ACM on Programming Languages 4,
OOPSLA, Article 216 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428284

[27] M. Snir, W. Otto, S. Huss-Lederman, D.W. Walker and J. Dongarra. 1996. MPI: The Complete Reference. MIT Press.

[28] Luca De Martini, Alessandro Margara, Gianpaolo Cugola, Marco Donadoni, and Edoardo Morassutto. 2023. The Noir

Dataflow Platform: Efficient Data Processing without Complexity. arXiv:2306.04421 [cs.DC]

[29] Roy L McCasland, Alan Bundy, and Patrick F Smith. 2017. MATHsAiD: Automated mathematical theory exploration.

Applied Intelligence 47, 3 (2017), 585–606. https://doi.org/10.1007/s10489-017-0954-8

[30] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. 2013. Naiad: a timely

dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. 439–455.
[31] M. Saqib Nawaz, Moin Malik, Yi Li, Meng Sun, and M. Ikram Ullah Lali. 2019. A Survey on Theorem Provers in Formal

Methods. arXiv:1912.03028 [cs.SE]

[32] Charles Gregory Nelson. 1980. Techniques for Program Verification. Ph. D. Dissertation. Stanford, CA, USA. AAI8011683.
[33] The University of Glasgow. 2023. Prelude. https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html. Last

accessed on 16 Nov 2023.

[34] W. Pottenger. 1998. The Role of Associativity and Commutativity in the Detection and Transformation of Loop-Level

Parallelism. ACM press, New York, 188–195.

[35] Rachel Pottinger and Philip A. Bernstein. 2009. Associativity and Commutativity in Generic Merge. In Conceptual
Modeling: Foundations and Applications - Essays in Honor of John Mylopoulos (Lecture Notes in Computer Science,
Vol. 5600), Alexander Borgida, Vinay K. Chaudhri, Paolo Giorgini, and Eric S. K. Yu (Eds.). Springer, 254–272.

[36] Rachel A. Pottinger and Philip A. Bernstein. 2003. - Merging Models Based on Given Correspondences. In Proceedings
2003 VLDB Conference, Johann-Christoph Freytag, Peter Lockemann, Serge Abiteboul, Michael Carey, Patricia Selinger,

and Andreas Heuer (Eds.). Morgan Kaufmann, San Francisco, 862–873. https://doi.org/10.1016/B978-012722442-

8/50081-1

[37] Andrew Reynolds and Viktor Kuncak. 2015. Induction for SMT Solvers. In Verification, Model Checking, and Abstract
Interpretation, Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen (Eds.). Springer-Verlag, Berlin/Heidelberg,

Germany, 80–98. https://doi.org/10.1007/978-3-662-46081-8_5

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

https://doi.org/10.1145/351240.351266
https://doi.org/10.29007/3qwr
https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-642-13977-2_3
https://doi.org/10.1016/B978-044450813-3/50016-3
https://doi.org/10.1016/B978-044450813-3/50016-3
https://doi.org/10.1007/978-3-540-78800-3_24
https://escholarship.mcgill.ca/concern/theses/gq67jr62t
https://escholarship.mcgill.ca/concern/theses/gq67jr62t
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1145/3519939.3523731
https://doi.org/10.1145/3428284
https://arxiv.org/abs/2306.04421
https://doi.org/10.1007/s10489-017-0954-8
https://arxiv.org/abs/1912.03028
https://hackage.haskell.org/package/base-4.19.0.0/docs/Prelude.html
https://doi.org/10.1016/B978-012722442-8/50081-1
https://doi.org/10.1016/B978-012722442-8/50081-1
https://doi.org/10.1007/978-3-662-46081-8_5

178:24 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

[38] John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the
ACM Annual Conference – Volume 2 (Boston, Massachusetts, USA) (ACM ’72). ACM, New York, NY, USA, 717–740.

https://doi.org/10.1145/800194.805852

[39] Martin C. Rinard and Pedro C. Diniz. 1997. Commutativity Analysis: A New Analysis Technique for Parallelizing

Compilers. ACM Trans. Program. Lang. Syst 19, 6 (1997), 942–991.
[40] John Rushby, Sam Owre, and Natarajan Shankar. 1998. Subtypes for Specifications: Predicate Subtyping in PVS. IEEE

Transactions on Software Engineering 24, 9 (Sept. 1998), 709–720. https://doi.org/10.1109/32.713327

[41] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-Free Replicated Data Types.

In Stabilization, Safety, and Security of Distributed Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.).

Springer-Verlag, Berlin/Heidelberg, Germany, 386–400. https://doi.org/10.1007/978-3-642-24550-3_29

[42] Eytan Singher and Shachar Itzhaky. 2021. Theory Exploration Powered by Deductive Synthesis. In Computer Aided
Verification, Alexandra Silva and K. Rustan M. Leino (Eds.). Springer International Publishing, Cham, 125–148. https:

//doi.org/10.1007/978-3-030-81688-9_6

[43] Willam Sonnex, Sophia Drossopoulou, and Susan Eisenbach. 2011. Zeno: A tool for the automatic verification of

algebraic properties of functional programs.

[44] William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. 2012. Zeno: An Automated Prover for Properties of

Recursive Data Structures. In Tools and Algorithms for the Construction and Analysis of Systems, Cormac Flanagan

and Barbara König (Eds.). Springer-Verlag, Berlin/Heidelberg, Germany, 407–421. https://doi.org/10.1007/978-3-642-

28756-5_28

[45] Christoph Sprenger and Mads Dam. 2003. On the Structure of Inductive Reasoning: Circular and Tree-Shaped Proofs in

the 𝜇Calculus. In Foundations of Software Science and Computation Structures, Andrew D. Gordon (Ed.). Springer-Verlag,

Berlin/Heidelberg, Germany, 425–440. https://doi.org/10.1007/3-540-36576-1_27

[46] Irene Lobo Valbuena and Moa Johansson. 2015. Conditional Lemma Discovery and Recursion Induction in Hipster.

Electronic Communications of the EASST 72 (2015).

[47] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for

Haskell. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg,

Sweden) (ICFP ’14). ACM, New York, NY, USA, 269–282. https://doi.org/10.1145/2628136.2628161

[48] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.

2017. Refinement Reflection: Complete Verification with SMT. Proceedings of the ACM on Programming Languages 2,
POPL, Article 53 (Dec. 2017), 31 pages. https://doi.org/10.1145/3158141

[49] William E. Weihl. 1988. Commutativity-Based Concurrency Control for Abstract Data Types. IEEE Trans. Computers
37, 12 (1988), 1488–1505. http://doi.ieeecomputersociety.org/10.1109/12.9728

[50] Claus-Peter Wirth. 2005. History and Future of Implicit and Inductionless Induction: Beware the Old Jade and the Zombie!
Springer-Verlag, Berlin/Heidelberg, Germany, 192–203. https://doi.org/10.1007/978-3-540-32254-2_12

[51] Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound Checking through Dependent Types. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation (Montreal, Quebec, Canada)

(PLDI ’98). ACM, New York, NY, USA, 249–257. https://doi.org/10.1145/277650.277732

[52] Weikun Yang, Grigory Fedyukovich, and Aarti Gupta. 2019. Lemma Synthesis for Automating Induction over Algebraic

Data Types. In Principles and Practice of Constraint Programming, Thomas Schiex and Simon de Givry (Eds.). Springer

International Publishing, Cham, 600–617. https://doi.org/10.1007/978-3-030-30048-7_35

[53] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2023. Type-Checking CRDT Convergence. Proc. ACM
Program. Lang. 7, PLDI, Article 162 (jun 2023), 24 pages. https://doi.org/10.1145/3591276

[54] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2024. Automated Verification of Fundamental Algebraic
Laws. https://doi.org/10.5281/zenodo.10949342

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 178. Publication date: June 2024.

https://doi.org/10.1145/800194.805852
https://doi.org/10.1109/32.713327
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-030-81688-9_6
https://doi.org/10.1007/978-3-030-81688-9_6
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
http://doi.ieeecomputersociety.org/10.1109/12.9728
https://doi.org/10.1007/978-3-540-32254-2_12
https://doi.org/10.1145/277650.277732
https://doi.org/10.1007/978-3-030-30048-7_35
https://doi.org/10.1145/3591276
https://doi.org/10.5281/zenodo.10949342

	Abstract
	1 Introduction
	2 Lawfulness of Operations
	2.1 The Propel Language by Example
	2.2 The Algebraic Properties in Propel
	2.3 Propel's Fundamental Algebraic Properties
	2.4 Propel's Auxiliary Properties
	2.5 Developer-Defined Properties
	2.6 Verification Strategy
	2.7 Limitations

	3 Formalization
	3.1 Syntax
	3.2 Evaluation Rules
	3.3 Type Checking
	3.4 Property Checking

	4 Evaluation and Implementation
	4.1 Case Studies
	4.2 TIP benchmarks
	4.3 Comparison and Parameter Analysis
	4.4 Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

