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Automated Infrastructure as Code Program Testing
Daniel Sokolowski David Spielmann Guido Salvaneschi

Abstract—Infrastructure as Code (IaC) enables efficient de-
ployment and operation, which are crucial to releasing software
quickly. As setups can be complex, developers implement IaC
programs in general-purpose programming languages like Type-
Script and Python, using PL-IaC solutions like Pulumi and AWS
CDK. The reliability of such IaC programs is even more relevant
than in traditional software because a bug in IaC impacts the
whole system. Yet, even though testing is a standard development
practice, it is rarely used for IaC programs. For instance, in
August 2022, less than 1 % of the public Pulumi IaC programs
on GitHub implemented tests. Available IaC program testing
techniques severely limit the development velocity or require
much development effort.

To solve these issues, we propose Automated Configuration
Testing (ACT), a methodology to test IaC programs in many
configurations quickly and with low effort. ACT automatically
mocks all resource definitions in the IaC program and uses
generator and oracle plugins for test generation and validation.
We implement ACT in ProTI, a testing tool for Pulumi TypeScript
with a type-based generator and oracle, and support for appli-
cation specifications. Our evaluation with 6 081 programs from
GitHub and artificial benchmarks shows that ProTI can directly
be applied to existing IaC programs, quickly finds bugs where
current techniques are infeasible, and enables reusing existing
generators and oracles thanks to its pluggable architecture.
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as Code, DevOps

Daniel Sokolowski, David Spielmann and Guido Salvaneschi, ”Automated
Infrastructure as Code Program Testing,” in IEEE Transactions on Software
Engineering, 2024, doi: 10.1109/TSE.2024.3393070.

Manuscript received 24 November 2023; revised 8 April 2024; accepted
13 April 2024. This work is partially supported by the Swiss National
Science Foundation (SNSF) under Grant 200429 and by Armasuisse S+T.
Recommended for acceptance by P. Runeson.

©2024 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

Infrastructure as Code (IaC) automates software opera-
tions [1] and is a key tool in organizations that aim for reliable,
high-throughput software development and deployment [2].
With IaC, developers specify provisioning, deployment, and
configuration in text-based files that are amenable to well-
known software engineering practices like version control,
code review, and continuous integration. As a result, IaC en-
ables faster, more reproducible software operations [3, 4, 5, 6].

IaC started with imperative scripts, but meanwhile, many
more robust, declarative IaC solutions are available. With
declarative IaC, developers describe the target state of the
deployment instead of the deployment steps [7, 8], which
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are automatically derived. Deployments can be complex—
a trend also driven by modern systems often consisting of
several small components. For example, applications that have
consisted of a monolithic web server and a database now
may comprise tens or hundreds of serverless functions and
microservices. This trend transfers complexity from compo-
nents to their composition, resulting in long, structured IaC
scripts. To cope with such complexity, developers imple-
ment IaC programs—in contrast to IaC scripts—with recent
declarative IaC solutions that adopt general-purpose languages,
e.g., TypeScript, Python, or Java, and not only configuration
languages and DSLs with constrained expressivity like JSON
and YAML. Such Programming Languages IaC (PL-IaC)
solutions come with all abstractions (and tools) of well-known
general-purpose programming languages. To the best of our
knowledge, the industrial-strength PL-IaC solutions available
today are Pulumi [9], the Cloud Development Kit (CDK) of
Amazon Web Services (AWS CDK) [10], and the CDK for
Terraform (CDKTF) [11]. They have existed since 2018–2020
with quickly growing communities. The NPM core packages
of AWS CDK, CDKTF, and Pulumi alone grew from 11 M
downloads in 2020 to 146 M downloads in 2023.1 Pulumi
reported growth from hundreds to 2 000 customers and tens of
thousands to 150 000 end users in the same period [12, 13].

Testing IaC programs is an open research problem and
critical in practice. For example, Rahman et al. [6] urge in their
mapping study of IaC research for more work on testing, and
Guerriero et al. [3] found that declarativity and “impossible
testing” are the most mentioned differences between IaC
and traditional software in 44 semi-structured interviews with
senior developers. The lack of suitable testing techniques is
especially apparent for PL-IaC: while studies found that more
than 50% of public software projects on GitHub use testing
[14, 15], we found only 25 % of the PL-IaC programs use
testing, dropping to 1 % for general PL-IaC [16], which only
Pulumi implements. Because Pulumi provides more-advanced
support and is more open than the CDKs (Section II-A), we
focus on Pulumi.

Current testing techniques for PL-IaC (Section II-B) pose a
dilemma (Section II-C): integration testing is notoriously slow
and potentially causes high infrastructure costs. Unit testing is
the only alternative without these issues, but insightful unit
tests for IaC programs require high development effort. Every
resource definition has to be replaced with a mock faithfully
modeling the cloud resource and implementing configuration
validation and generation logic. Mocking code easily becomes
more complex than the IaC program under test itself, resulting
in very few projects using systematic testing—despite testing

1According to https://npm-stat.com/ for aws-cdk-lib, @aws-cdk/
core, cdktf, and @pulumi/pulumi.
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being crucial for the high-velocity development of reliable
software [17, 18].

To enable efficient testing of IaC programs, we propose
Automated Configuration Testing (ACT). ACT is an auto-
mated framework allowing developers to rapidly unit-test IaC
programs in hundreds of configurations without writing any
code. ACT uses existing mechanisms to mock all resource
definitions in the IaC program automatically. In the mocks,
a generator provides test input, and oracles validate resource
configurations. The approach is open and enables reuse across
projects through pluggable third-party generators and oracles.

We implement ACT in the ProTI testing tool for Pulumi
TypeScript with a default generator and oracle leveraging type
information from Pulumi package schemas. The evaluation on
6 081 Pulumi TypeScript programs from GitHub and generated
artificial benchmarks shows that (1) ProTI can find bugs
reliably and quickly compared to existing testing techniques,
(2) ProTI can be applied to IaC programs without any changes,
(3) ProTI finds bugs often within seconds or tens of seconds,
and (4) ProTI can leverage existing generator and oracle tools
through simple plugins.

This work is the first investigation of testing for IaC
programs. It is relevant because the popularity of PL-IaC is
continuously increasing. Further, testing IaC is open research
with a high impact on the security and reliability of software
systems. ACT and ProTI are novel because they introduce
efficient testing of IaC programs and significant because they
can improve the velocity of correct IaC program development.
Also, ProTI’s pluggable architecture enables researchers to
experiment with new oracles and generators specialized for
PL-IaC. Lastly, our work follows scientific standards [19]
rigorously, and we disclose all developed software, analysis
scripts, and data to ensure verifiability, transparency, reusabil-
ity, and recoverability. ProTI2 is open source and publicly
maintained on GitHub3 with long-term archived releases [20].
The remaining evaluation material is published under the CC-
BY-4.0 license on Zenodo [21]. We only exclude analyzed
third-party code that does not permit re-distribution. In sum-
mary, this paper contributes:

1) A comparison of testing methods for IaC programs,
establishing the testing dilemma of PL-IaC, which is
backed by our previous repository mining study [16].

2) Automated Configuration Testing (ACT): A novel ap-
proach for efficient unit testing of IaC programs.

3) ProTI: A testing tool implementing ACT for Pulumi
TypeScript that is pluggable with third-party generators
and oracles and provides default type-based generators
and oracles based on Pulumi package schemas.

4) An evaluation with 6 081 Pulumi TypeScript programs
from GitHub and benchmarks, showing that ProTI ap-
plies to existing IaC programs, can efficiently find bugs,
and can leverage existing tools as test generators and
oracles through plugins.

2https://proti-iac.github.io
3https://github.com/proti-iac/proti
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Fig. 1: High-level architecture of PL-IaC solutions.

II. PL-IAC AND THE TESTING PROBLEM

We introduce PL-IaC (Section II-A) and IaC program testing
(Section II-B), discuss how existing testing techniques fall
short (Section II-C), and outline our solution in Section II-D.

A. Programming Languages IaC (PL-IaC)

PL-IaC solutions adopt a general-purpose programming
language, e.g., Python or TypeScript. IaC programs define the
declarative target state of the deployment as a directed acyclic
graph (DAG). Each node is a resource with its configuration,
and the arcs are dependencies between resources that constrain
the deployment order. For instance, a (virtual) server must be
created before a web application on it. Similarly, the server
should be created before its DNS record.

While IaC programs describe the target state, the deploy-
ment engine performs the actual deployment actions and main-
tains the deployment’s state. The deployment engine receives
the target state from the IaC program, compares it with the
current state, and performs the required actions to fill the
gap (Figure 1). Further, it provides the IaC program with
information about the deployment state such that the program
can observe infrastructure information only available after a
resource was created, e.g., a dynamically assigned IP.

To define the target state, PL-IaC solutions provide an
embedded DSL that is available as libraries for many pro-
gramming languages. These SDK libraries simply provide a
class for each deployable resource type. In an IaC program,
developers define a resource (i.e., a node in the target state)
by instantiating an object of the resource type’s class. The
resource’s input configuration is provided as an argument
to the constructor. After the deployment engine deploys a
resource, its post-deployment output configuration is available
as properties on the resource’s object. Developers explicitly
define a dependency from a resource A to a resource B (i.e.,
an arc from node A to B in the target state) by referencing
B or one of its output properties in A’s input configuration.
Alternatively, such a dependency can be defined implicitly by
instantiating A in a program part that depends on an output
property of B. Defined resources, their properties, and their
dependencies are immutable. Thus, the target state is mono-
tonically growing throughout the IaC program execution, and
defined resources and dependencies can neither be changed
nor removed.

As a running example, we introduce the Pulumi TypeScript
IaC program of the Random Word Website (RWW) in List-
ing 1, which defines the target state in Figure 2. It deploys a
static website on AWS S3 [22] that displays a word randomly
selected from the array in Line 1.5. Lines 1.6 to 1.8 define the
S3 bucket and Line 1.10 the word-id resource. It receives
range (Line 1.9) as input configuration and is assigned to
rng. After word-id is deployed, the deployment engine

https://proti-iac.github.io
https://github.com/proti-iac/proti
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Listing 1: RWW example: Pulumi TypeScript program that
deploys a static website on AWS S3 showing a random word.4

1.1 import * as pulumi from '@pulumi/pulumi';
1.2 import * as aws from '@pulumi/aws';
1.3 import * as random from '@pulumi/random';
1.4
1.5 const words = ['software', 'is', 'great'];
1.6 const bucket = new aws.s3.Bucket('website', {
1.7 website: { indexDocument: 'index.html' }
1.8 });
1.9 const range = { min: 0, max: words.length };

1.10 const rng = new random.RandomInteger('word-id', range);
1.11 rng.result.apply((wordId) => {
1.12 new aws.s3.BucketObject('index', {
1.13 bucket: bucket, key: 'index.html',
1.14 contentType: 'text/html; charset=utf-8',
1.15 content: '<!DOCTYPE html>' +
1.16 words[wordId].toUpperCase()
1.17 });
1.18 });
1.19
1.20 export const url = bucket.websiteEndpoint;

website: 
 indexDocument: "index.html"

min: 0 
max: 3

bucket: 
key: "index.html" 
contentType: "text/html; charset=utf-8" 
content: "<!DOCTYPE html>GREAT"

«RandomInteger» word-id

«Bucket» website
«BucketObject» index

Fig. 2: Example of a target state described by Listing 1.4

provides a randomly drawn number as the result field of
the resource’s output configuration. Such output configuration
values are available as properties of the resource objects,
in this case as rng.result. To access the value, apply
(Line 1.11) registers a callback (Lines 1.11 to 1.18), which
executes as soon as the random number is available. The
number is used to select a word from the words array
in Line 1.16, which is capitalized and set as content in
the input configuration of the index resource (Lines 1.12
to 1.17). The dependence of index on word-id is defined
implicitly by defining index in the apply callback, a program
part depending on word-id’s output configuration. The de-
pendence on the S3 bucket is made explicit by referencing its
object in the input configuration (Line 1.13). Finally, Line 1.20
exports the website’s URL.

Figure 3 shows the PL-IaC architecture in detail. The IaC
program (e.g., Listing 1) uses the IaC solutions’ SDK (e.g., Pu-
lumi’s SDK is imported in Line 1.1) to deploy an application
in the cloud. A cloud is a collection of resources controllable
through an API, e.g., the random number generator and AWS
public cloud in Listing 1. For each cloud, there is a provider,
the component in the PL-IaC architecture that implements
the cloud-specific SDK library and deployment engine plugin
to define and control the cloud’s resources (for Pulumi, e.g.,
there are providers for AWS, Azure, Google Cloud, etc.). IaC
programs use the provider SDK libraries (e.g., Pulumi’s AWS
and random provider SDK libraries are imported in Lines 1.2
and 1.3) and instantiate objects of their resource types (e.g.,
the S3 bucket in Lines 1.6 to 1.8) to define resources in the
target state. The deployment engine receives the target state

4For brevity, we omit the bucket’s ownership controls, public access block,
and policy resources that are required to allow public access from the Internet.
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Fig. 3: Roles and relationships in PL-IaC solutions.

from the IaC program and compares it to the current state,
which it maintains. To reach the target state, the deployment
engine uses the provider plugins to control the specific clouds,
i.e., to perform actions to create, read, update, delete, and list
the resources (CRUDL actions).

To our knowledge, Pulumi is the only industrial-grade
IaC solution implementing this PL-IaC approach to its full
extent. Pulumi features a CLI that orchestrates the concurrent
execution of the IaC program and the deployment engine. Both
other available PL-IaC solutions—AWS CDK and CDKTF—
support a weaker approach, two-phase PL-IaC (Section VI).
Hence, we focus on Pulumi and TypeScript, which is the
most popular programming language in PL-IaC [16]. We
do not investigate cloud SDKs, e.g., AWS SDK [23] and
Azure SDK [24], because they target the imperative, low-level
management of resources. PL-IaC abstracts the complexities
of CRUD operations for IaC program developers and hides
such SDKs in the provider plugins.

B. Testing IaC Programs

Figure 4 shows the PL-IaC testing techniques available
for Pulumi programs [25], ordered top-to-bottom by time
consumption. Unit Testing IaC programs is like in traditional
software: IaC users run (parts of) the program with a unit
testing framework, mock objects with side effects, i.e., every
resource definition in an IaC program, and add checks. Even
with runtime mocking—like supported by Pulumi—developers
still have to provide the mocking logic. Dry Running simply
executes the IaC program without executing deployment ac-
tions, providing a quick indication of whether the program
terminates and a preview of the target state. Yet, the preview
of dry running is incomplete and neither supports specific
checks nor ensures sufficient coverage. Dry running does
not execute code paths that depend on values available only
after a resource was created. Resource Property Testing and
Stack Property Testing, e.g., with CrossGuard [26], solve these
issues by performing the deployment, making them integration
testing techniques. They check resource configurations against
policies before their deployment and the final observed post-
deployment state. End-to-end Testing, e.g., Pulumi’s integra-
tion testing framework [27], runs the IaC program and vali-
dates the resulting deployment—not only its observed state.

To shed light on the adoption of these testing techniques,
we analyzed all public Pulumi projects on GitHub in August
2022 in our PIPr dataset. For the detailed method, results, and
replication scripts, we refer to the PIPr dataset paper [16].
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Fig. 4: PL-IaC testing techniques and their coverage, ordered
by expected run time and feedback cycle frequency.

TABLE I: Testing techniques in public Pulumi programs on
GitHub (August 2022) [16].

# Projects (% of Total)

Pulumi projects 12 945 (100 %)
with unit testing 118 (1 %)
with property testing 33 (0 %)
with end-to-end testing 22 (0 %)

Briefly, we extracted specific keywords and the file extensions
of all files in the projects’ directory and mapped this data to
testing techniques. Table I summarizes the results, showing
that less than 1 % of all 12 945 projects implement systematic
testing. This minuscule share indicates that developers per-
ceive systematic testing impractical for IaC programs.

C. The Dilemma of IaC Program Testing

Even though neglected by PL-IaC developers, systematic
testing is crucial for the high-velocity development of IaC—no
less than for traditional software [17, 18]. Without testing, e.g.,
it is easy to miss the bug in Listing 1: The random number
ranges from zero to three (Line 1.9), but the words array
index only from zero to two. If three is drawn, Line 1.16 calls
toUpperCase() on undefined, causing an error. We
now consider today’s PL-IaC testing techniques for Listing 1.

For integration testing IaC programs, including end-to-end
and property testing, a single run of Listing 1 takes at least
seconds. Programs with more complex resources may require
hours and cause high infrastructure costs. Testing only a few
configurations can miss corner-case bugs, like in Listing 1.

Dry running is fast and does not require coding. Yet, it can-
not find many errors, including the one in Listing 1, because it
does not execute code depending on output configuration that
is only available post-deployment, e.g., the apply callback
in Lines 1.11 to 1.18.

Unit testing PL-IaC is labor-intensive and error-prone com-
pared to developing the program. First, one has to mock
all resource definitions—three in Listing 1. This step is not
problematic per se, e.g., by adopting the runtime mocking
Pulumi provides. Yet, to create effective mocks, developers
must implement validation logic for the input configuration
and generate output configurations as test inputs for the rest
of the program. Such code simulates the logic of cloud
configuration, which is complex and requires a correct model.
Lastly, developers must ensure the tests cover all relevant cases
and may need to update mocks with every change.

In summary, developers face a dilemma when testing IaC
programs: They either invest excessive programming effort for
efficient unit testing or resort to expensive integration testing,
hampering development velocity.

D. Automated IaC Testing to the Rescue

To solve this issue, we propose Automated Configuration
Testing (ACT), a novel unit testing methodology for fast
testing of IaC programs with low development effort. ACT
automatically mocks all resource definitions. Each mock im-
plements a test oracle to validate the resources’ input con-
figurations and a test generator that provides the resources’
output configurations. With this level of automation, the PL-
IaC program can be tested in many different configurations
without writing testing code.

We implement ACT in ProTI, a testing tool for Pulumi
TypeScript. ProTI’s results depend on oracles and generators,
which are pluggable to foster reuse across programs. ProTI is
equipped with a default oracle and generator based on types
of resource configurations from Pulumi package schemas.
Further, ProTI provides a specification mechanism to refine
oracles and generators in the IaC program where needed.
ProTI tests the example in Listing 1 in hundreds of different
configurations in a short time with no changes to its code. In
each test, ProTI validates all resource configurations, including
different number values for wordId. ProTI will likely test a
case where Line 1.16 fails, detecting the bug in seconds.

III. AUTOMATED CONFIGURATION TESTING

We now introduce Automated Configuration Testing (ACT),
a novel testing methodology for IaC programs. To effectively
address the testing dilemma (Section II-C), ACT is a unit
testing technique because the core issue of integration testing,
being slow and resource-intensive, is caused by the cloud
providers, e.g., AWS and Azure, and cannot be significantly
improved at the side of IaC developers. Thus, we aim to
understand and minimize the developer’s unit testing effort.

A. Why Unit Testing IaC Programs is Effortful: Mocks

Efficient unit testing requires eliminating of integration with
external, slow, and resource-intensive components. For IaC
programs, this means mocking the interaction with the cloud,
which is encapsulated in resource definitions. To this end, all
resource object instantiations, a substantial part of the IaC
program’s code, must be mocked—most of the code in the
RWW example (Listing 1).

Mocking all resource definitions with a naı̈ve mock is trivial,
requiring, e.g., in Pulumi TypeScript, only a couple of lines
of code—independent of the IaC program’s size. Yet, for
effective unit testing, the mocks have to implement the cloud
logic in two crucial aspects. (1) The mocks have to return an
output configuration for each resource input configuration they
receive. This is because, in a real deployment, the cloud pro-
vides the resource’s output configuration to the IaC program
after the resource deployment. As the output configurations
are accessible in the remaining IaC program, they indeed



5

constitute test input. Thus, the returned output configurations
have to be realistic to test the remaining IaC program precisely.
Further, to cover all paths, it may be necessary to return
different output configurations across test executions. (2) To
test the declarative target state the IaC program defines, i.e.,
the cloud configuration to set up and not only the imperative
IaC program execution, the mocks have to validate the received
resource input configurations (i.e., they have to implement test
oracles). This is because the cloud provides feedback to the
IaC program on the resource input configurations by reporting
an error when an invalid configuration is deployed.

Such oracles should be intentless, i.e., they reject config-
urations that are generally invalid, independent of the IaC
program’s context. Ideally, they are further intentful, i.e.,
they also reject configurations that violate the IaC program’s
application-specific goals.

Finally, the significant challenge is that mocks have to
implement both suitable test generators and oracles. Suitable
test generators ensure coverage and minimize false positives
because they do not generate unrealistic test inputs that trigger
issues that would never occur in practice. Suitable test oracles
verify the cloud configuration the IaC program defines. Both
are non-trivial and require a significant amount of code—likely
a multiple of the IaC program’s code. Further, such mocks
mirror the logic of the IaC program under test and the cloud
it uses, leading to code tightly coupled with the IaC program,
ultimately slowing down any future changes.

B. Automating Unit Testing with ACT
To solve these issues, we propose ACT (Figure 5). ACT

automatically mocks all resource definitions by intercepting
the constructors of resource classes, e.g., the constructor of
aws.s3.Bucket in Lines 1.6 to 1.8 of Listing 1. The ACT
resource mocks receive the input configuration of each re-
source and return suitable output configurations. The resource
mocks implement both a test generator and a set of test oracles.

A test generator provides a separate value producer for each
test case. During the execution of a test case, its value producer
receives the resources’ input configurations and returns for
each an output configuration. As the output configurations are
test input, the test case is ultimately defined as the sequence of
output configurations its value producer returns. An oracle is
a predicate function that decides whether the resource’s input
configurations are valid. We distinguish between two kinds
of oracles. Resource oracles receive individual resource input
configurations during the IaC program execution. Deployment
oracles receive the input configuration of all resources after
the IaC program completed, enabling holistic validations.

In ACT, both the generator and the oracles are plugins,
allowing for exchange, adoption, and experimentation with
test generators and oracles. Ideally, these plugins implement
generalized, reusable generation and validation strategies de-
coupled from a specific IaC program. ACT solves the issue
of unit testing IaC programs by moving the development
effort of testing code from the developers of an individual IaC
program to the community. Once the community instantiates
ACT for a specific platform (e.g., .Net or Python; our refer-
ence implementation covers Pulumi Typescript) and provides

CommunityDeveloper
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Definitions

Ad-hoc
Specifications

Resource Mocks

Oracle Plugins

Generator Plugin

CI Input Configuration
CO Output Configuration
COS Specialized Output Configuration

COS
COCI

CO

CI

CI

CO CI

Fig. 5: Overview of ACT.

suitable plugins, developers can test the basic correctness
of the imperative IaC program and its target state without
implementing any code.

ACT’s approach fosters the reuse of plugins across different
applications. However, to ensure that testing is also based
on application-specific knowledge (e.g., intentful oracles, Sec-
tion III-A), a mechanism to augment the community-provided
generators and oracles with application-specific generation and
validation specifications is needed. For this, ACT implementa-
tions can leverage various approaches, e.g., specification DSLs
separated from or embedded into the IaC program code. ProTI
features ad-hoc specifications, an embedded DSL integrated
into the IaC program code (Section IV-C).

C. Running Test Sequences with ACT

With automated test execution, generation, and validation,
ACT can execute the IaC program in many different configu-
rations. For a sequence of tests, the generator plugin provides
a different value producer for each test case. The test case
selection it performs is crucial, i.e., which value producer
instances it chooses, as it determines which and how parts
of the IaC program are tested. ACT terminates once an oracle
finds a bug, the program under test crashes, or, if no bug is
found, after a defined amount of runs or a timeout. Thus, a
generator’s prioritization and selection of test cases is crucial
to ensure relevant bugs are triggered (early).

Conceptually, ACT combines property-based testing
(PBT) [28, 29] and fuzzing [30] techniques for IaC programs.
Both systematically test a program s in many configurations
c ∈ C, which are put into relation by a property p, leading
to ∀c ∈ C. p(c, s(c)) if s is correct. However, the pessimistic
assumption is that s contains a bug, yielding the goal to find
and test a configuration c leading to ¬p(c, s(c)) as early
as possible in a sequence of tests. As the generator plugin
is exchangeable, ACT is amenable to new state-of-the-art
fuzzing and PBT test case selection strategies, e.g., based
on testing feedback [31], search-based techniques [32], code
coverage [33], and combinatorial coverage [34].

D. Discussion

We now discuss bugs in IaC programs, ACT’s design, its
relation to cloud models, and the resulting limitations.

a) IaC Program Bugs: We propose a bug taxonomy for
IaC programs. In contrast to previous, more fine-grained bug
taxonomies, e.g., for IaC defects by Rahman et al. [35], we
focus purely on the required oracle to find a bug. Recent
fuzzing literature, e.g., Su et al. [36] and Li et al. [33],
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commonly distinguishes crash bugs that cause the program
to crash and non-crashing logic bugs, which require a more
precise oracle than crash detection to identify erroneous com-
putations. We add two categories for bugs where the program
logic may be correct, but the resulting resource configuration
is faulty. Configuration bugs are the wrong configuration of
an isolated resource, e.g., setting an IPv4 address to the
invalid value 400.0.0.1. With configuration interaction
bugs, the configuration of the individual resources is valid
but invalid in combination. For example, there is a subnet
192.168.0.1/24 and a server in it has the IP address
192.168.1.2, which is invalid in this subnet. In contrast to
crash and logic bugs, configuration bugs require oracles that
can identify invalid cloud configurations and, for configuration
interaction bugs, even across multiple resources.

Crash bugs and logic bugs are related to “traditional”
code, while configuration (interaction) bugs are related to
the embedded DSL code in IaC programs that defines the
target state of the deployment through instantiating objects
of the resource types’ classes. However, IaC programs mix
traditional code (Lines 1.1 to 1.5, Line 1.9, and Line 1.20 of
Listing 1) with the embedded DSL code (Lines 1.6 to 1.8 and
Lines 1.10 to 1.18). This mixing prevents testing the kinds
of code in isolation and causes existing testing methods to be
only applicable with a huge mocking effort (Section III-A).

b) ACT’s Approach: ACT focuses on finding config-
uration (interaction) bugs. To this end, static analysis is a
suitable alternative; for example, it can easily find the bug in
Listing 1. Yet, we base ACT on automated testing because it
does not incur the limitations of static analysis when covering
complex dynamic behavior of the IaC program code and
supporting all features of the host language. In such systematic
testing, the generator has to exercise the IaC program in
different configurations to find crash and logic bugs that yield
wrong configurations effectively. We argue that covering such
configuration-related crash and logic bugs is sufficient because
IaC programs focus on the configuration, and all relevant logic
drives this purpose. If an IaC program implements complicated
configuration-unrelated logic, it should be separated from the
embedded DSL code and specifically checked with existing,
well-established testing techniques.

c) Cloud Configuration Models: Generators and oracles
implicitly define models of cloud resource configuration. Such
models could be derived from specifications, be hand-crafted,
or, more realistically, be derived from existing approximate
models, including types. For instance, Pulumi providers, i.e.,
vendor-specific plugins (cf. Section II-A) used by Pulumi to
interact with the cloud, are distributed as packages that contain
a schema JSON file defining the types of the resources’ target
and output configuration. Such type definitions are a configura-
tion model that is by design available for all resources Pulumi
supports—even for dynamically typed languages—and they
can be leveraged for type-based generators and oracles [29].
ACT’s open architecture ensures that developers can adopt
and combine available models and plug in domain-specific
optimizations. ACT is not limited to functional properties. For
instance, models of cloud performance and security, predicting
bad performance and insecure setups based on resource con-

TABLE II: ProTI packages: non-blank, non-comment SLOC.

Package Description Source SLOC Test SLOC

@proti-iac/core Core abstractions 758 863
@proti-iac/runner Jest runner 26 51
@proti-iac/test-runner Jest test runner 429 90
@proti-iac/reporter Jest reporter for check results 149 19
@proti-iac/spec Ad-hoc specifications 12 74
@proti-iac/pulumi-
packages-schema

Pulumi packages schema infras-
tructure, oracle, and generator

1 334 1 960

Total 2 708 3 057

figurations, can be embedded in ACT oracle plugins to cover
such non-functional aspects.

Ideally, models for ACT generators and oracles are (1) com-
plete, i.e., they can produce all valid configurations, and
(2) correct, i.e., they include only valid configurations. Incom-
plete models in a generator systematically prevent generating
test cases that may be needed to find bugs, and incorrect
models can yield test cases that never occur in practice.
Incomplete models in oracles can trigger false positives (i.e.,
alerts in the absence of a bug) and incorrect models false
negatives (i.e., missing bugs). In practice, cloud models are
not perfect. For instance, Pulumi package schema types
are complete but not fully correct. In RWW (Listing 1),
a correct generator should generate integers in the range
(Line 1.9) for RandomInteger’s result field (Line 1.11).
Yet, a type-based generator provides any number, includ-
ing outside the range and fractions, because the type of
RandomInteger.result is number. Similarly, a correct
oracle only accepts valid HTML for the content field
(Line 1.16), but a type-based one accepts any string.

In practice, useful test generators and oracles may still
generate irrelevant tests or miss bugs. Even if application-
specific knowledge can further limit the configuration space,
correcting the model in generator and oracle plugins may
overfit the plugins to the specific program, reducing reusability
or slowing down development. ACT addresses these issues by
enabling fine-tuning of test generation and oracles for a spe-
cific application, e.g., ProTI provides an ad-hoc specifications
syntax (Section IV-C).

IV. PROTI: ACT FOR PULUMI TYPESCRIPT

We present ProTI, an instantiation of ACT for Pulumi Type-
Script. ProTI is built upon the popular JavaScript testing tool
Jest [37], fast-check [38] for the test execution strategy and
arbitraries, and Pulumi’s runtime mocking. ProTI comprises
six TypeScript packages (Table II). The first four packages
implement the core abstractions and Jest plugins for a Jest
runner, test runner, and reporter. @proti-iac/pulumi-
packages-schema is a Pulumi-packages-schema-based or-
acle and a generator plugin. @proti-iac/spec implements
the ad-hoc specification syntax. ProTI is used through Jest’s
CLI, which’s configuration it facilitates with a preset. ProTI
preserves Jest’s pre-test features and optimizations, e.g., an
in-memory file system for the code.
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Fig. 6: ProTI test execution: i. – iii. initialization, a. – b. run
initialization, 1. – 4. resource mocking, I. – II. reporting.

A. Test Execution with ProTI
Jest runners distribute tests over multiple workers. They

invoke a test runner for each test suite. ProTI’s runner extends
Jest’s default by (1) verifying the test configuration and (2) for-
warding file system and module resolution information to
ProTI’s test runners, which they had to re-generate otherwise.

ProTI’s test runner is invoked once on the Pulumi.yaml
of each IaC program and implements ACT (Section III).
Figure 6 details the test execution. First, the IaC program
and its dependencies are transpiled to JavaScript (i) and a
configured set of dependencies is preloaded (ii). Preloaded
modules are shared among all IaC program runs, breaking
isolation but reducing overhead. For technical reasons, Pu-
lumi’s SDK must be preloaded. Further, the test coordinator
loads the generator and oracle plugins (iii). ProTI checks the
IaC program in several runs, each configured with its own
test run coordinator (a), managing isolated run states for the
generator and oracles. Each run executes the IaC program
once (b). ProTI mocks all resource definitions by intercepting
the constructors of all resource classes with Pulumi’s runtime
mocking feature. This way, each resource input configuration
CI is run through validations and transformations that the
provider’s SDK may implement in the resources’ constructors.
We call the checked and potentially transformed CI target
configuration CT. For instance, a resource’s CI may contain
additional fields, which is valid in TypeScript’s structural type
system, but the resource constructor does not add them to CT.
ProTI uses CT instead of CI in the remaining ACT workflow.
The mock provides all resources’ target configuration CT to
the generator and oracle plugins (1 – 2), and receives the
output configurations CO to use in the remaining program
execution (3 – 4). Finally, ProTI reports the test results (I – II).

B. Test Generator and Oracle Plugins

In an execution, ProTI loads exactly one generator plugin
and a variable number of oracle plugins, which are invoked in
parallel. We do not provide an explicit mechanism to compose
different plugins; however, when developers write a plugin’s
code, they can also combine other plugins programmatically.
ProTI plugins are implemented as NodeJS modules, exporting
the respective plugin as default and, optionally, an init
function of ProTI’s TestModuleInitFn type that can im-
plement initialization code called by ProTI when loading the
plugin and also implements a plugin configuration interface.
@proti-iac/core implements all plugin-related types.

Generator plugins are implemented as fast-check value
generators of ProTI’s Generator type, i.e., type
Arbitrary<Generator>. The arbitrary is called
once for each test run to provide a Generator and may
implement shrinking, a technique from property-based testing
where, once an error is found, simplified versions are tested
and presented to the developer as an easier-to-understand
alternative if they still trigger the bug [29]. The test run’s
generator is invoked for each resource with its target
configuration and returns its output configuration for the run.
Further, the generator is invoked with the arbitrary of each
ad-hoc generator specification, guiding its execution to enable
deterministic test generation strategies, including shrinking.

Oracle plugins are implemented as a class inheriting from
ProTI’s Oracle<S> type and can leverage state of type S
that is initialized for every test run through a function they
implement and passed to all invocations of the oracle in the
run. For these invocations, oracles implement at least one
out of four resource input configuration validation interfaces,
which are separately called for each resource or once with all
resources, both available synchronously and asynchronously.

For now, ProTI provides default generator and oracle plug-
ins based on Pulumi packages schema types in @proti-iac
/pulumi-packages-schema. The package implements
the infrastructure to automatically retrieve the schemas of
all resources in the IaC program under test. The oracle
translates the schemas’ resource types to validation functions
to dynamically check each resource input configuration. The
generator composes fast-check arbitraries to generate output
configurations, inheriting fast-check’s random value generation
strategy, which is biased towards generating extremes, e.g.,
instead of using an even distribution, it prioritizes generating
small and big values. However, ProTI can be easily extended
with oracles and generator arbitraries based on other model
sources, e.g., codified policies and cloud specifications.

C. Ad-hoc Specifications in ProTI

To fine-tune generators and oracles, ProTI provides ad-
hoc specification syntax. generate(e).with(a) defines
an ad-hoc specification to replace values returned by e with
values from a fast-check arbitrary a. For ad-hoc oracles,
expect(e).to(p) applies an oracle predicate function to
an expression e. In a regular execution, the ad-hoc syntax only
returns the evaluation of the wrapped expression e, with no
change in the semantics of the IaC program. When running
with ProTI, however, generate(e).with(a) calls the
generator plugin with a and returns a value from a. The oracle
syntax still returns the evaluation of e, but it introduces a
check, reporting an error if p(e) is false or fails.

Listing 2 fixes the indexing bug in Listing 1 and is fine-
tuned with ad-hoc specifications. In ProTI executions, the ad-
hoc generator specification in Line 2.12 addresses the impre-
cision of the type-based oracle in Line 1.11, which generates
any number, not only realistic output configuration values.
Instead, Line 2.12 specifies to only generate integer values in
the correct range interval. Further, Lines 2.18 to 2.19 specify
an oracle that checks that the webpage’s content is not empty,
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Listing 2: Listing 1 with ProTI ad-hoc specifications (orange).
2.1 import * as ps from '@proti-iac/spec';
. . . // Same as Lines 1.1 to 1.8

2.10 const range = { min: 0, max: words.length - 1 };
2.11 const rng = new random.RandomInteger('word-id', range);
2.12 ps.generate(rng.result).with(ps.integer(range))
2.13 .apply((wordId) => {
2.14 new aws.s3.BucketObject('index', {
2.15 bucket: bucket, key: 'index.html',
2.16 contentType: 'text/html; charset=utf-8',
2.17 content: '<!DOCTYPE html>' +
2.18 ps.expect(words[wordId].toUpperCase())
2.19 .to((s) => s.length > 0)
2.20 });
2.21 });
2.22 export const url = bucket.websiteEndpoint; // Like Line 1.20

encoding the developers’ application-specific intent to show a
non-empty webpage.

While ProTI implements this embedded specification DSL
for application-specific generator and oracle directives, ACT
implementations could use external DSLs or encourage sep-
arating the specification code into other files, as common
with most testing frameworks today. Such separation is also
possible with ProTI’s ad-hoc specifications but would require
restructuring the IaC program code to improve testability. For
instance, the code augmented with specifications in Listing 2
could be wrapped in functions that separate testing files mock
during testing. We support inlining in ProTI for simplicity,
assuming that few ad-hoc specifications are required with good
plugins. Yet, if a lot of ad-hoc specifications are required,
separation is preferable to avoid the added complexity of
mixing concerns, obfuscating the IaC program code, and
potentially introducing new error sources.

V. EVALUATION

We evaluate ACT’s effectiveness, applicability, perfor-
mance, and extensibility by answering the following research
questions about its ProTI implementation.

RQ1: Can ProTI find bugs reliably? We determined
whether ProTI can find bugs quickly and reliably compared
to existing PL-IaC testing techniques (cf. Section II-B).

RQ2: Is ProTI applicable to real-world open-source code?
We explored whether ProTI can be applied to existing, real-
world IaC programs.

RQ3: How long does ProTI run, and how does the run time
scale? We measured ProTI’s execution duration and scalability
to ensure it is fast enough for realistic IaC programs.

RQ4: Can existing test generation and oracle tools be
integrated into ProTI? We investigated whether ACT allows
to leverage third-party oracles and generators.

The following four subsections present our experiments and
Section V-E discusses their results and threats to validity. We
ran all experiments on serverless AWS Fargate [39] containers
with 1 vCPU and 4GB of memory on AWS Elastic Container
Service (ECS) [40] in the eu-west-1 region (Ireland).

A. Finding Errors in IaC Programs

We compared ProTI with the available testing techniques
for Pulumi TypeScript programs (cf. Section II-B) on nine
variants of the RWW example (Section II-A). The variants are

the following. VC is correct, VS is Listing 2, i.e., VC with
ProTI ad-hoc specifications, and VSDB adds the deployment
of a serverless database to VS. Most remaining variants have
a crash bug according to our bug taxonomy (Section III-D):
VNT has syntax errors, VE always throws an error, which VAE
throws asynchronously, VO is Listing 1, i.e., it has a one-off
bug in asynchronous code that leads to a crash, which we
combine with the ad-hoc specifications of Listing 2 in VSO.
VSB is VS with a configuration bug, setting a string instead
of an object for the bucket’s website property (cf. Line 1.7).

ProTI was configured with the type-based oracle and gen-
erator (Section IV) and up to 100 runs. Unit testing used
Jest [37] and ran the program once with a naı̈ve mock
that returned empty configurations. Dry running executed
pulumi preview. (Dry) property testing executed Pulumi
CrossGuard [26] via (pulumi preview) pulumi up with
the AWSGuard policy pack [41]. All Pulumi commands were
non-interactive with skipped previews. End-to-end testing used
Pulumi’s Go integration testing framework [27], checking the
content of the deployed website. We executed each experiment
10 times after warmup. Table III reports whether an error was
(always) found and the minimum and average run time.

As expected, dry running did not find asynchronous errors
(VAE, VO, and VSO) as it does not run code depending on
unknown output configurations. Property testing and end-to-
end testing found the one-off bugs (VO and VSO) only occa-
sionally. ProTI was the only technique that spotted all errors
reliably. However, the imprecision of the type-based generator,
i.e., generating any number for rng.result and not only
integer values in the defined range, increased the likelihood of
finding the error in VO, but also caused that ProTI identified
VC as faulty; a false positive. This imprecision is resolved in
VS, VSO, VSB, and VSDB with ProTI ad-hoc specifications
(cf. Section IV-B). ProTI always identified bugs in the first test
run, except in VSO, where it required 2 to 6 tests, causing a
slightly longer run time compared to VO.

RQ1: ProTI can find bugs reliably and is able to uncover
errors in edge cases without explicitly testing for them.

B. Applicability to Real-world Programs

We executed ProTI on all 6 081 Pulumi TypeScript pro-
grams in the PIPr dataset [16] of all public IaC programs on
GitHub in August 2022. PIPr contains examples, toy projects,
and production projects in unknown shares and is only filtered
by the relevance criteria inherent to the GitHub Code Search
API [42] we used for the evaluation and that we discuss in
detail in the dataset’s paper [16]. PNPM was used to install
dependencies and TypeScript version 5.1.6 for the execution.

The first two columns of Table IV show the results. We
categorized the executions by the phase in the ProTI run
where a problem was detected: invalid project files that prevent
execution, failures during transpilation, failures during module
preloading, failures during checking, successfully passed, and
crashed executions. Within each category, we grouped errors
by common causes and report their frequency. Both the
categorization and error labeling are based on string matching
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TABLE III: PL-IaC testing techniques on variants of the RWW
example (Listing 1). ∗ faulty variant. Error found ∗ (always
⊛), minimum (average) run time over 10 repetitions.

ProTI Dry Run Property Test
Unit Test Dry Property Test End-to-end Test

∗ VNT: ⊛ 16.7 s (16.8 s) ⊛ 10.0 s (10.3 s) ⊛ 12.4 s (12.4 s)
Non-transpilable ⊛ 1.9 s (2.0 s) ⊛ 11.6 s (11.7 s) ⊛ 47.9 s (65.7 s)

∗ VE: Error ⊛ 7.0 s (7.2 s) ⊛ 2.3 s (2.4 s) ⊛ 4.4 s (4.5 s)
⊛ 2.2 s (2.2 s) ⊛ 3.7 s (3.8 s) ⊛ 52.5 s (59.6 s)

∗ VAE: ⊛ 7.4 s (7.6 s) 3.4 s (3.5 s) ⊛ 9.4 s (9.6 s)
Async Error ⊛ 2.4 s (2.5 s) 4.8 s (4.9 s) ⊛ 50.8 s (60.7 s)

VC: Correct ⊛ 7.5 s (7.6 s) 3.4 s (3.4 s) 9.5 s (9.7 s)
2.7 s (2.7 s) 4.8 s (4.9 s) 53.5 s (59.0 s)

VS: Listing 2 21.0 s (21.1 s) 3.5 s (3.5 s) 9.5 s (9.7 s)
(ad-hoc specs.) 2.8 s (2.9 s) 5.0 s (5.0 s) 52.6 s (62.3 s)

∗ VO: Listing 1 ⊛ 7.4 s (7.6 s) 3.4 s (3.4 s) ∗ 9.4 s (9.6 s)
(one-off bug) 2.7 s (2.7 s) 4.8 s (4.9 s) ∗ 51.9 s (58.4 s)

∗ VSO: Listing 2 ⊛ 8.1 s (8.3 s) 3.5 s (3.6 s) ∗ 9.5 s (9.7 s)
with one-off bug 2.8 s (2.9 s) 4.9 s (5.0 s) ∗ 59.5 s (66.6 s)

∗ VSB: Listing 2 ⊛ 7.6 s (7.8 s) ⊛ 3.5 s (3.5 s) ⊛ 5.6 s (5.7 s)
with config. bug 2.8 s (2.9 s) ⊛ 4.8 s (4.9 s) ⊛ 48.4 s (57.4 s)
VSDB: Listing 2 39.2 s (39.6 s) 8.1 s (8.4 s) 163.4 s (189.9 s)
with AWS RDS 3.1 s (3.1 s) 8.0 s (8.1 s) 212.5 s (265.7 s)

on the execution logs, and the error grouping by open coding.
This process was incrementally performed and implemented
by the first author and reviewed by the second author. The
authors know Pulumi and ProTI well through their research.

On a technical level, ProTI was able to test 40 % of
the IaC programs out of the box. This share is extremely
remarkable and exceeds our initial expectations because (1) we
did not filter for buggy or non-functional programs, (2) ran
all programs with current NodeJS and TypeScript versions,
and (3) did neither look into nor provide any program-specific
environments. We suspect that ProTI can be used for most of
the remaining IaC programs, too, after little effort is invested
to understand their expected execution environment or bug.

The most common reasons why ProTI could not test a
program are module resolution and type checking, failing
1 745 (29 %) and 984 (16 %) executions. The causes include
incompatibility with PNPM, the TypeScript version, unmet
environment assumptions, and incomplete, broken setups.
Among the programs ProTI was able to test, it found issues
in 68 %. The tests found 659 (11 %) executions where the
setup was incomplete, e.g., missing configuration or pro-
grams. Mocking failed in 468 (8 %) executions, which can
be caused by incompatible, outdated Pulumi versions. Our
type-based oracle and generator failed to find type definitions
in 416 (7 %) executions because they are dynamic resources,
stack references, or missing in the provider’s schema. Our
oracle identified invalid resource configurations in 58 (1 %)
executions. ProTI ran only an unknown number of tests in
crashed executions, 100 tests in the passing ones, and only a
single test in 98 % of the executions under checking. In the
other 26 checking executions, ProTI ran between 2 and 38
tests until an error was found. Due to a lack of ground truth, we
cannot determine the precision and recall of the experiment.

RQ2: ProTI can be applied to existing IaC programs.

TABLE IV: Execution time and result classification of ProTI
executions on 6 081 Pulumi TypeScript programs.

Category Error Reason [# programs. (% in category)] Execution Time
# programs. average

(std)

Project invalid Pulumi.yaml 2 (100 %) 1.6 s
2 (0 %) (0.1 s)

Transpilation module resolution 1 335 (50 %), type checking 984
(37 %), program resolution 324 (12 %), legacy
NodeJS 5 (0 %), JSX 1 (0 %)

8.9 s
2 649 (44 %) (5.6 s)

Preloading module resolution 410 (85 %), legacy
NodeJS/Pulumi 20 (4 %), unknown 18 (4 %), syntax
error 18 (4 %), config 16 (3 %)

7.8 s
482 (8 %) (5.9 s)

Checking setup 659 (40 %), mocking 468 (29 %), missing type
definition 416 (25 %), application 86 (5 %), other 64
(4 %), oracle 58 (4 %)

17.2 s
1 633 (27 %) (17.2 s)

Passed 23.4 s
772 (13 %) (11.4 s)

Crashed out of memory 473 (87 %), unknown 70 (13 %) 25.9 s
543 (9 %) (38.9 s)

Total 14.4 s
6 081 (100 %) (17.0 s)

C. Execution Duration and Scaling Behavior

We performed time measurements on Pulumi programs that
define 0, 1, 10, 50, and 100 AWS S3 bucket resources. The
experiment considered two program variants, one defining the
resources independently for parallel deployment, and one in
a dependency chain for sequential deployment. We ran ProTI
three times on each program and repeated the experiment five
times. As the programs are correct, ProTI runs them 100 times
in each execution without identifying a bug. Table V and Fig-
ure 7 report the average execution time in total and separated
by phase. Table V shows the absolute values separately for the
first and consecutive runs. Figure 7 separates the first, second,
and third runs and also shows results as relative values.

Execution times are higher for first runs because the tran-
spilation overhead is significant and, on average, 76 % lower
in subsequent runs (Figure 7). Test runs, transpilation, and
module preloading are the only actions of the test runner taking
significant time. The remaining execution time was consumed
outside the test runner, including Jest’s setup and reporting. A
single test run in the experiments took 10 ms to 5.9 s, and the
duration scales linearly with the resource number.

We found similar execution times in the IaC programs from
GitHub (Table IV). Conservatively approximating a single test
duration by dividing the total run time of all passed ProTI
executions by 100 (the number of runs), we measured test
run durations from 34 ms to 1.0 s; 234 ms on average. It is an
approximation because the total run time also includes over-
head like setup and reporting, and it is conservative because we
assume these contributors are instant, i.e., the test run duration
is likely a bit lower. The RWW experiments (Table III) confirm
these durations, too. Lastly, our experiments show that ProTI
is quicker when it finds a bug because of early termination.

The experiments passing RWW experiments with 6 re-
sources (VS) and 25 resources (VSDB) in Table III confirm
that test time grows with the number of resources (on av-
erage, 21 s and 40 s including overhead). They further show
that the performance of integration testing heavily depends
on the deployment time of the resources—which ProTI is
independent of. Deploying AWS RDS databases takes longer
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TABLE V: Total average execution time of ProTI over 5
repetitions of the duration experiments by first/consecutive
execution and phase for IaC programs with 0, 10, 50, and 100
resources with both independent and chained dependencies.

Resources: 0 1 10 50 100
Phase indep. chain indep. chain indep. chain

R
un

1

Remaining 1.7 s 1.6 s 2.2 s 2.2 s 6.3 s 4.6 s 14.8 s 15.9 s
100 Runs 1.0 s 9.3 s 57.4 s 69.5 s 274.5 s 262.8 s 563.3 s 535.8 s
Preloading 0.7 s 0.7 s 0.7 s 0.7 s 0.7 s 0.7 s 0.7 s 0.7 s
Transpilation 15.1 s 15.2 s 15.3 s 15.3 s 15.2 s 15.3 s 15.3 s 15.3 s
Total 18.5 s 26.8 s 75.6 s 87.7 s 296.6 s 283.4 s 594.2 s 567.8 s

R
un

2
&

3 Remaining 1.6 s 1.6 s 2.2 s 2.3 s 6.3 s 6.3 s 11.1 s 10.0 s
100 Runs 1.4 s 7.4 s 51.7 s 50.3 s 260.8 s 243.1 s 520.2 s 493.6 s
Preloading 0.8 s 0.8 s 0.8 s 0.8 s 0.7 s 0.8 s 0.8 s 0.8 s
Transpilation 3.7 s 3.7 s 3.7 s 3.7 s 3.7 s 3.7 s 3.7 s 3.7 s
Total 7.5 s 13.5 s 58.3 s 57.1 s 271.6 s 253.9 s 535.7 s 508.1 s
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Fig. 7: Average execution time of ProTI over 5 repetitions of
the duration experiments (Table V) by phase, resource count,
and dependency. Results for three consecutive executions (1,
2, 3). In total (top row) and relative (bottom row).

than AWS S3 resources, yielding testing VSDB takes 20×
and 4× longer than VS with property testing and end-to-end
testing, respectively, while ProTI was only 2× slower.

RQ3: A single test run of ProTI typically takes hun-
dreds of milliseconds and test duration scales with the
number of resources—not with their deployment time—
permitting to quickly check hundreds of configurations.

D. Integrating Existing Tools into ProTI
ACT’s effectiveness is crucially dependent on the quality

of its plugins. Many techniques have been developed for
test generation and oracles (cf. Section III-C). To leverage
advanced techniques from related work, ProTI must be open
to extension with them. To demonstrate ProTI’s extendability,
we implemented ProTI plugins using the Radamsa fuzzer [43]
and the Daikon invariant detector [44] with a generator and an
oracle plugin based on existing tools. This experiment assesses
the feasibility of integrating existing approaches; optimizing
them and evaluating their effectiveness and efficiency is the
subject of future work focusing on test generation and oracle
techniques, while this paper focuses on the overall approach.

Radamsa [43] is a fuzzing tool that derives fresh test inputs
from an example. We adopted it for a ProTI generator plugin
that, separately for each resource type, uses the type-based
generator to generate an output configuration example, which
is passed to Radamsa as JSON to generate a list of derived test
inputs. We filter non-parsable configurations from Radamsa’s

results and use the remaining ones as test input in ProTI.
Whenever ProTI runs out of Radamsa-generated inputs, we
repeat the procedure. The generator implementation required
83SLOC, of which only 48 differ from a naı̈ve generator
returning empty configurations.

Daikon [44] is a dynamic invariant detector that identifies
application invariants in a set of program traces. We used
it for an invariant regression oracle that detects behavior
changes across different versions of an IaC program. In the
first ProTI execution, the oracle records all resources’ target
and output states and invokes Daikon on them to find resource
configuration invariants over all runs, e.g., a particular bucket’s
id equals a field of a policy, independent of the concrete value.
In consecutive ProTI executions, we repeat the procedure
and additionally compare the obtained invariants with the
previously generated ones, issuing a warning if an invariant
cannot be found anymore, i.e., it may be violated in the new
program version. The oracle plugin comprises only 120SLOC,
mainly for converting resource configurations between ProTI
and Daikon and managing state across executions.

RQ4: Existing tools can be integrated into ProTI by
implementing a plugin, demonstrating ProTI’s openness
to third-party techniques.

E. Limitations, Threats to Validity, and Implications

Our experiments on ProTI show that ACT can find bugs
quickly and reliably in IaC programs, even in edge cases
(RQ1), can be applied to IaC programs without adjustments
(RQ2), can be fast enough to run hundreds of tests in a short
time (RQ3), and can be extended with existing tools through
generator and oracle plugins (RQ4). Yet, our experiments do
not provide quantitative insight into ACT’s effectiveness, i.e.,
the likelihood that all bugs and no false positives are found
and after which time. Such insights require an IaC program
dataset with correctness annotations, i.e., precise knowledge
about bugs in them. Such evaluation is planned in future work
to assess advanced generator and oracle plugins. This paper
focuses on the feasibility of the ACT approach to test IaC, not
on the precision and recall of a specific testing technique.

Relevant threats to validity in this work include that we
evaluate ACT through ProTI, a single instantiation for one
specific PL-IaC solution and language. Yet, we expect that im-
plementations for other languages and PL-IaC solutions yield
similar results because IaC programs for other tools and other
languages, i.e., the embedded PL-IaC DSL, are, technically,
analogous. The IaC program selection in our experiments is
also a threat. For RQ1, the set of variants in RWW suffices to
demonstrate the behavioral differences of ACT compared to
other techniques; yet, more experiments are needed to show
with statistical significance that these differences are relevant
in practice such that ACT is beneficial on other IaC programs.
For RQ2, we inherit the limitations and validity threats of the
PIPr dataset [16]—including generalizability—but, based on
our experience, we expect the qualitative insight to apply to
other IaC programs. For RQ3, we focused on the number of
resources and their dependencies in IaC programs, showing
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how they influence performance. We rely on our experience
that resource number and dependency are the factors that
most significantly impact performance, but other factors can
be studied with a more comprehensive sensitivity analysis.
The categorization, as well as the error labeling and grouping
in RQ2, may be subjective, an issue we limited through the
review of a second author. Another potential issue is that
ProTI is a random-based testing tool, which, in case of a
bug, may cause the bug to be inconsistently (not) caught by
different test cases across executions. Hence, we apply 10
repetitions for RQ1. For RQ2, we saw negligible variance
in tests. As the programs in RQ3 are correct, they are not
impacted by this threat. RQ4 is also not affected because
it only demonstrates that existing tools can be leveraged in
ACT. RQ4 does not measure ProTI executions to quantify the
effectiveness of specific tools in the context of IaC. This aspect
must be evaluated for each plugin and crucially depends on
the implemented method.

For practitioners, ACT and ProTI are new techniques whose
effectiveness depends, in the long run, on a community effort
to maintain the framework and the test generation and oracle
plugins. Practitioners can now try out ACT with low effort
on existing Pulumi TypeScript IaC programs. This solution
can already reduce the development time through earlier
bug detection and increase the reliability of IaC programs,
supporting faster evolving, functional, secure systems. A user
study assessing user acceptance of ACT and ProTI is left
to future work. For researchers, ACT and ProTI are novel
testbeds that facilitate exploring advanced test generation and
oracle techniques for IaC programs and correct and secure
cloud configuration.

VI. RELATED WORK

We summarize the limitations of two-phase PL-IaC solu-
tions and related work on infrastructure deployment quality,
automated mocking, and related software testing techniques.

A. Limitations of Two-phase PL-IaC

General PL-IaC solutions like Pulumi can observe a re-
source’s state after deployment, the output configuration, and
process the values in the general-purpose language. In contrast,
two-phase PL-IaC solutions like AWS CDK and CDKTF
prohibit IaC programs from accessing the deployment state.
Two-phase PL-IaC solutions (1) execute the IaC program to
generate the target state as a JSON file and (2) provide it to the
deployment engine, i.e., AWS CloudFormation or Terraform.
Such exchange is uni-directional, i.e., with no arrow from the
deployment engine to the IaC program in Figure 1. Due to this
approach, two-phase PL-IaC can only compute on resource
state that can be expressed in the deployment engine’s DSL—
practically limited to referencing values, string interpolation,
and simple value processing. Yet, using an expressive language
to process the externally generated state is the reason for using
general-purpose languages in IaC programs in the first place.
Accordingly, two-phase PL-IaC only provides a subset of PL-
IaC’s capabilities. In fact, AWS CDK code can be embedded
into Pulumi programs, but not vice versa [45].

Unit testing two-phase PL-IaC, i.e., for CDKs [46, 47],
is simpler than for general PL-IaC and does not require
mocking as two-phase IaC programs do not interact with
the deployment engine. We believe this simplification is the
reason unit testing is much more common in CDK projects
than Pulumi [16]. Also, template projects set up through the
CLI include a unit testing setup with a simple test for CDKs
(commented in the templates by default), but not for Pulumi.

B. Infrastructure as Code Quality

Previous work discussed IaC quality and how to improve it,
but it is mainly focused on Puppet, Ansible, and Chef. These
Configuration as Code (CaC) tools have been designed to
configure existing, mutable infrastructure—even though they
also support provisioning. In contrast, PL-IaC does not only
employ general-purpose programming languages instead of
DSLs; it also focuses on infrastructure provisioning (like, e.g.,
Terraform and AWS CloudFormation), typically implementing
immutable infrastructure management. Research on PL-IaC
has been limited to deployment coordination [48, 49].

Hummer et al. [50] proposed an idempotency testing ap-
proach for Chef scripts, which Ikeshita et al. [51] augmented
with verification techniques to minimize the size of the re-
quired test suite. Shambaugh et al. [52] proposed Rehearsal
to verify the determinacy and idempotency of Puppet scripts.
Yet, declarative IaC ensures idempotency by design.

Sharma et al. [53] were the first to identify code smells
in Puppet scripts. Later studies confirmed them for Chef [54].
Rahman et al. surveyed CaC research [6] and identified source
code properties correlating with defects in Puppet scripts [55],
such as hard-coded strings. They further recognized security
smells and proposed linters for Puppet, Ansible, and Chef [56,
57]. Saavedra and Ferreira [58] introduced GLITCH for linters
on a CaC-solution-agnostic intermediate representation. Reis
et al. [59] found that such linters are too imprecise but can be
improved through user feedback.

Opdebeeck et al. [60, 61] analyzed the quality of semantic
versioning and variable-precedence-related code smells in An-
sible. Further, they applied program dependence graph analysis
to Ansible scripts, motivating control- and data-flow analysis
for IaC security smell detection techniques [62]. Dalla Palma
et al. [63, 64, 65] proposed various quality metrics and an
AI defect prediction framework for Ansible scripts. Kumara
et al. [4] and Guerriero et al. [3] explored IaC best practices
and issues in the industry through a grey literature survey
and practitioner interviews. Hassan and Rahman [66] studied
bugs in open-source Ansible test scripts. Borovits et al. [67]
proposed FindICI, an AI-based tool to identify linguistic
inconsistency between documentation, comments, and code in
Ansible scripts, and Chiari et al. [68] surveyed work on static
analysis for IaC, focusing mainly on CaC.

This paper is the first about quality in PL-IaC, which
focuses—unlike CaC—on declarative infrastructure provision-
ing through programs in popular imperative programming
languages. Further, we propose ACT and implement it in
ProTI, enabling efficient unit testing of IaC programs.
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C. Correctness of Infrastructure and Architecture Modeling

Modeling languages are textual or graphical languages that
express a system’s structure. The Topology and Orchestration
Specification for Cloud Applications (TOSCA) is a modeling
language for the topology of cloud applications, resources, and
their orchestration [69]. Bellendorf and Mann [70] surveyed
existing literature on TOSCA. Wurster et al. [71] presented a
systematic review of declarative deployment technologies and
introduced a metamodel for their common core. A follow-
up work [72] leverages such core to define TOSCA Light, a
subset of TOSCA, aiming to reconcile research modeling and
industrial practice. TOSCA Light enables the transformation of
compliant deployment models to technology-specific models.

Architecture description languages (ADL) define applica-
tion components and their relationships. For example, Arch-
Java [73] embeds such specifications in Java source code,
enabling architecture compliance checks at compile time.
Krüger et al. [74] introduced ORS for the compositional
specification, deployment, and dynamic reconfiguration of sys-
tems of services. In contrast to other established ADLs, ORS
separates the application from infrastructure concerns. Terra
and de Oliveira Valente [75] proposed specifying and statically
enforcing dependencies in the software architectures to avoid
erosion. Placement types are a language approach where the
type system checks architectural conformance [76, 77].

ProTI verifies the correct composition of infrastructure
configuration, e.g., through type-based oracles, and enables
application-specific checks through ad-hoc specifications. On
top, ProTI tests the imperative IaC program generating it.

D. Infrastructure Verification

Ensuring infrastructure correctness has been extensively
studied. AWS investigated automatically verifying infrastruc-
ture properties [78, 79, 80], leading to at least two automated
services in production: AWS Tiros verifies reachability queries
on virtual networks [81] and AWS Zelkova performs access
verification on role-based AWS IAM policies [82]. These
solutions verify already deployed setups, but their techniques
should be applicable pre-deployment on IaC programs, which
encode the infrastructure’s configuration. Such pre-deployment
infrastructure verification could also leverage more founda-
tional techniques. E.g., Alloy [83] is a language and analysis
tool to verify structural properties of software. Ahrens et al.
[84] developed a proof system for invariants on reconfigurable
distributed systems. Evangelidis et al. [85] proposed proba-
bilistic verification of performance properties of rule-based
auto-scaling policies. Lastly, Abu Jabal et al. [86] gave a
comprehensive overview of techniques for policy verification,
focused on access control and network management.

Program verification remains an open challenge, either
requiring significant manual effort or being limited to specific
properties [87]. Augmenting ACT with automated verification
of domain-specific properties, e.g., network access constraints,
is a promising direction, orthogonal to ACT’s contribution to
the testing of IaC programs.

E. Automated Mocking

In a study on mocking in open source systems, Spadini et al.
[88] found that developers mock components that are difficult
to handle and that mocking code increases the coupling
between system and test code. According to the authors, the
results motivate the need for mock synthesis. Taneja et al.
[89] proposed MODA, using an efficient, SQL-aware mock
and advanced test generation techniques to automatically test
database applications. Solms and Marshall [90] automatically
generated mocks from explicit component contracts. Various
works synthesize mocks from interaction traces of compo-
nents [91, 92, 93]. In contrast, Zhu et al.’s StubCoder [94]
synthesizes mocks for regression testing solely from the tests’
code, without running the mocked component.

Mocking resource definitions in IaC programs is trivial be-
cause PL-IaC solutions provide an interface to intercept them,
eliminating the need for advanced mocking techniques. Yet,
the mocks’ test generation and validation logic are complex.
ACT encapsulates them into plugins, enabling the integration
of mocking techniques from literature into ProTI.

F. Fuzz and Property-based Testing

Fuzz testing (fuzzing) discovers software vulnerabilities,
typically by treating the program as a closed box and testing
it for hangs and crashes. Yet, input-value-generation-guided
approaches exist; for example, grammar-based fuzzing is an
active research field [95, 96]. Li et al. [33] and Zeller et al. [30]
provided an overview of state-of-the-art fuzzing techniques.
Property-based testing (PBT) [28, 29] is a related approach,
where code is exercised on randomly generated tests, and
results are checked against invariants—the properties.

Various works investigate effective PBT test generators.
Lampropoulos et al. proposed Luck, a language for PBT
generators [97], and coverage-guided PBT [98]. Löscher and
Sagonas introduced targeted PBT [32] and automated it [99]
using search-based techniques to guide the generation. Kuhn
et al. [100] found that most bugs are caused by the inter-
action of only a few parameters, motivating combinatorial
testing [101], which Goldstein et al. [34] applied to PBT
generators by modifying the random generator distributions.
On the intersection with formal methods, Paraskevopoulou
et al. [102] integrated PBT into a proof assistant to verify tests,
and Lampropoulos et al. [103] compiled logical conditions
(inductive relations) to generators and to their soundness
and completeness proofs. De Angelis et al. [104] leveraged
symbolic execution and constraint logic programming to au-
tomatically derive generators.

ACT is fuzzing and PBT for IaC programs. For ProTI,
type-based generators and oracles, prototypes demonstrating
third-party tool integration, and an ad-hoc specification syntax
are available. The approaches above can be integrated or
implemented in ProTI plugins to use them for IaC programs.

VII. CONCLUSION

Testing is rarely used for IaC programs, and available
techniques either hinder development velocity or require much
programming effort. We present Automated Configuration
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Testing (ACT) for quick IaC program testing at low effort and
implement it for Pulumi TypeScript in ProTI. ProTI is ef-
fective on existing IaC programs, and its modular architecture
enables the use of existing third-party and novel test generators
and oracles, breaking ground for future research on effective
test generators and oracles for IaC programs.
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[71] M. Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Leymann,
K. Saatkamp, and J. Soldani, “The Essential Deployment Metamodel:
A systematic review of deployment automation technologies,” SICS
Softw.-Intensive Cyber Phys. Syst., vol. 35, no. 1-2, pp. 63–75, 2020.
DOI: 10.1007/S00450-019-00412-X
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