
297

Type-Safe Dynamic Placement with First-Class Placed Values

GEORGE ZAKHOUR, PASCAL WEISENBURGER, and GUIDO SALVANESCHI,
University of St. Gallen, Switzerland

Several distributed programming language solutions have been proposed to reason about the placement of

data, computations, and peers interaction. Such solutions include, among the others, multitier programming,

choreographic programming and various approaches based on behavioral types. These methods statically

ensure safety properties thanks to a complete knowledge about placement of data and computation at compile

time. In distributed systems, however, dynamic placement of computation and data is crucial to enable

performance optimizations, e.g., driven by data locality or in presence of a number of other constraints such as

security and compliance regarding data storage location. Unfortunately, in existing programming languages,

dynamic placement conflicts with static reasoning about distributed programs: the flexibility required by

dynamic placement hinders statically tracking the location of data and computation.

In this paper we present Dyno, a programming language that enables static reasoning about dynamic

placement. Dyno features a type system where values are explicitly placed, but in contrast to existing

approaches, placed values are also first class, ensuring that they can be passed around and referred to from

other locations. Building on top of this mechanism, we provide a novel interpretation of dynamic placement

as unions of placement types. We formalize type soundness, placement correctness (as part of type soundness)

and architecture conformance. In case studies and benchmarks, our evaluation shows that Dyno enables

static reasoning about programs even in presence of dynamic placement, ensuring type safety and placement

correctness of programs at negligible performance cost. We reimplement an Android app with ∼ 7K LOC

in Dyno, find a bug in the existing implementation, and show that the app’s approach is representative of a

common way to implement dynamic placement found in over 100 apps in a large open-source app store.

CCS Concepts: • Software and its engineering→ Distributed programming languages; Domain specific

languages; • Theory of computation→ Distributed computing models.

Additional Key Words and Phrases: Distributed Programming, Multitier Programming, Placement Types, Scala,

Dynamic Placement, Union Types

ACM Reference Format:
George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2023. Type-Safe Dynamic Placement with

First-Class Placed Values. Proc. ACM Program. Lang. 7, OOPSLA2, Article 297 (October 2023), 32 pages.

https://doi.org/10.1145/3622873

1 INTRODUCTION
When developing a distributed system, programmers implement the different components as sepa-

rate modules that are later executed on different machines. The information about placement of
data and computation in the distributed system can be exploited to reason about software correct-

ness, fault tolerance and optimization. Yet, most programming languages do not directly support

abstractions for placement. Thus, recent research investigated dedicated language constructs that

support expressing explicit and static placement information. Serrano et al. [2006] and Cooper et al.

[2006] introduce a language with two function annotations: client and server, that indicate where a

Authors’ address: George Zakhour, george.zakhour@unisg.ch; Pascal Weisenburger, pascal.weisenburger@unisg.ch; Guido

Salvaneschi, guido.salvaneschi@unisg.ch, University of St. Gallen, Torstrasse 25, St. Gallen, SG, 9000, Switzerland.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART297

https://doi.org/10.1145/3622873

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

HTTPS://ORCID.ORG/0009-0000-5042-1207
HTTPS://ORCID.ORG/0000-0003-1288-1485
HTTPS://ORCID.ORG/0000-0002-9324-8894
https://doi.org/10.1145/3622873
https://orcid.org/0009-0000-5042-1207
https://orcid.org/0000-0003-1288-1485
https://orcid.org/0000-0002-9324-8894
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3622873

297:2 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

function is executed. Later, Murphy VII et al. [2008] developed type systems for placements based

on modal logic where possible worlds represent different places. Type-based approaches have not

only been successful in modeling places but also their interaction. In particular, multiparty session

types [Honda et al. 2008] statically specify the communication protocol for passing messages over

channels between different locations. Similarly, choreographic programming [Giallorenzo et al.

2020] guarantees safe communication protocols across locations encoded by different role type

parameters. Finally, information flow type systems have been applied to define the placement of

data and computation such that private data does not leak to untrusted parties [Zdancewic et al.

2002]. The approaches above ensure compile time guarantees of important software properties,

such as architectural conformance, confidentiality of private data, and protocol correctness but

require all placement to be determined statically.

Dynamic Placement. In a number of computing domains, dynamic placement decisions are

essential. First, the placement of a computation and of the data it generates can be dynamically

selected. For example, in a controller–worker system, the controller decides – based on the execution

environment and the job’s parameters – which worker is best suitable [Yang et al. 2016]. In such case,

the result of the computation is placed dynamically on the location where it has been generated.

Second, computation can depend on data that is moving among places. For example, frequently-

accessed data in a remote database is stored in a cache for faster access [Arani et al. 2020; Zulfa et al.

2020]. An application that manipulates data should be able to do so for both data in the database

or in the cache. In contrast, data not in the database nor in the cache might need to be handled

differently. For example, data from a client must be sanitized before storage.

The principles above have been applied extensively. Data-intensive computer clusters dynamically

choose function placement to co-locate data and computation to handle system resources such as file

and memory reads/writes more efficiently [Amiri et al. 2000; Karve et al. 2006]. Network function

virtualization separates services such as routers and firewalls from dedicated hardware, allowing

them to be moved among network devices, improving scalability [Clayman et al. 2014]. Query

processing dynamically places operators to optimize cost metrics such as latency or throughput, e.g.,

by pushing selections near the sources [Zhou et al. 2005]. Geo-distributed data centers dynamically

place frequently used data geographically closer to the consumer [Teyeb et al. 2017].

What these kinds of dynamic placement decisions have in common is that the placement, once

chosen, is fixed. Whereas the peer on which data is dynamically placed is picked at run time –

and this decision itself can be based on dynamically available data such as latency or environment

variables – the peer that has been selected for the dynamic placement cannot change. Thus, we

consider a model where the placement decision is dynamic but dynamically placed data cannot

change its placement at run time.

Dynamic Placement without Language Support. The lack of programming abstractions for dynamic

placement is addressed by developers via encoding placement information in the program.

The first option is to extract the common interface. For example, a client–server system or a

controller–worker system would be designed simply as a system with a single placement imple-

menting the request–response protocol, and a database–cache system would be designed as a

system where all places can store data. Extracting the common interface means treating the system

as an homogeneous one; made of a single type of place, effectively losing the precision required to

distinguish different kinds of nodes. This approach may result in run time errors because differences

among nodes are abstracted away, e.g., producing side effects on the wrong node or an attempt to

retrieve data from a node that is not reachable. For example, in a client–server–database system,

developers must ensure that data is always in the database, sensitive computations are run on the

server, and the client is not able to communicate with the database except through the server.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:3

The second option is that no interface is explicitly extracted and only the programmer is aware

of the equivalent functionalities among places. Thus, places exhibit different interfaces and it is

possible to statically reason about where each functionality is located. Yet, the fact that the location

of some functionalities can be decided dynamically is not reflected in the program and the same

functionality has to be implemented multiple times for different places, leading to code repetitions.

Correct dynamic placement can still be guaranteed but at the high cost of reorganizing code and

sacrificing composability and modularity (see Section 5).

Safe Dynamic Placement. In this paper, we present Dyno, a language with a novel type system

that is able to capture uncertainty of placement. Dyno follows the tradition of successfully applying

language and type system features to increase the safety of distributed systems and fills the gap in

current approaches to support dynamic placement, which is common in distributed systems but

not directly tackled by languages so far.

Dyno’s type system enables static reasoning about the placement of values not bound to a

specific place before execution – only to a known subset of places. In Dyno, placements are not

just annotations but rather a fundamental part of the type system. Placements, however, must be

treated differently from data types. Whereas all peers of a distributed system can create a value of

some data type, peers should not be able to create a value placed on another peer, e.g., the cache

cannot create a value and type it as a value on the database. Dyno’s type safety for dynamically

placed values stems from the fact that (i) the introduction form for remote references guarantees

correct placement and (ii) the type systems tracks the (dynamic) placement of values.

We interpret placed values as remote references: For a function that takes a placed value as

input, any interpretation that copies the value to the function’s execution location would effectively

mingle placement and origin; two concepts which are not generally identical. Remote references fit

our model more naturally since a remote reference is placed where the function is evaluated while

pointing to a value on the location indicated in the placed value’s type. Hence, the interpretation of

dynamic placement is derived from the type-union of the previously mentioned remote references,

each placed on a different place.

Example. The following example shows a database–cache retrieval interface in Dyno:

1 def retrieve(key: Key): Data at (Database | Cache) on Server =
2 if (cached(key)) on[Cache].run.capture(key){ remote ref readCache(key) }.asLocal
3 else on[Database].run.capture(key){ remote ref readDB(key) }.asLocal

Depending on whether a key is in the cache or in the database (checked by cached(key), Line 2),

the code either creates a reference (via remote ref) to the value in the cache (Line 2) or to the value

in the database (Line 3). Since both branches create placed values with different placements, the

type of retrieve is Data at (Database | Cache) on Server (Line 1), i.e., a reference on the Server

to a Data value that lives on the Cache or the Database. The union type Database | Cache expresses

placement uncertainty.

Contribution. We present a type system that allows representing dynamic placement at the type

level, providing static type safety for dynamically placed remote values.
1
In summary, this paper

makes the following contributions:

• We introduce the design of Dyno, a distributed language where data and computation locations

are explicit and have first-class status. We propose a novel type-level interpretation of dynamic

placement as a combination of placement types and union types (Section 3 and Section 4).

1
All artifacts presented in this paper are publicly available at https://doi.org/10.5281/zenodo.8148841

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

https://doi.org/10.5281/zenodo.8148841

297:4 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

• We show how existing programming frameworks for distributed systems fall short to support

safe dynamic placement of computation and data and demonstrate how these issues can be

addressed with Dyno (Section 5).

• We define a formalization of Dyno with a type system where placed values are first-class

citizens, prove that it is sound, and that it preserves architectural conformance even in the

case of dynamic placement (Section 6).

• We describe Dyno’s implementation (Section 7) and present an evaluation that illustrates

several applications where our type system enables simpler and more robust code, increasing

safety (Section 8.1) at a negligible performance overhead (Section 8.2). In a larger case study

with ∼ 7 K LOC, we reimplement an open-source Android application (Section 8.3) inDyno and
discover a placement bug in the existing implementation. We show that dynamic placement –

encoded as URL schemes – occurs in over a hundred open-source Android applications in the

F-Droid app store. (Section 8.4).

2 BACKGROUND
Our approach builds on languages where placement is explicit. We show an encoding of placement

based on Scala since we adopt it throughout the paper. However, similar ideas apply to other

languages with explicit placement [Murphy VII et al. 2008; Reynders et al. 2020].

In the flavor of explicit placement that we use to illustrate our approach in the rest of the paper,

the components of the distributed system (e.g., database, cache, and app) are modeled as peer
types and their architectural relation as ties, i.e., a description of the system’s architecture. Hence,

peer types represent logical places (i.e., two components could be deployed to the same physical

machine). Ties are of three kinds: single ties between two peer types guarantee that every instance

of the first peer type is connected to exactly one instance of the other; optional ties between two

peers types guarantee that every instance of the first is connected to at most one instance of the

other while enabling an instance of the other peer to join and leave; and multiple ties allow every

instance of the first to be connected to zero or more instance of the other, and like optional ties,

enables peers to join and leave. Thus, optional and multiple ties allow for dynamic topologies

within the architectural constraints. We have chosen to allow these multiplicities in Dyno to stay in
line with previous work on expressing architectural relations [Balzer 2011; Harkes and Visser 2014;

Steimann 2013, 2015], which statically models only a subset of zero, one, zero-or-one, zero-or-more,

and one-or-more relations. We find this is a sweet spot in the design space between providing

useful static guarantees and keeping the type system simple. Moreover we have found that more

granular multiplicities are rarely needed in practice.

Throughout this paper we use an encoding that embeds peer types and their constraints into

Scala types. The encoding uses a combination of subtyping, type refinements, and compound types.

1 @peer type App <: { type Tie <: Single[Database] with Single[Cache] }
2 @peer type Database <: { type Tie <: Multiple[App] }
3 @peer type Cache <: { type Tie <: Multiple[App] }

The first line specifies that every application is tied to a single database and a single cache. The

remaning lines specify that every database and cache must be tied to any number of applications

but never to each other.

Figure 1 illustrates three possible configuration of multiple databases, caches, and applications

connected in different ways. Boxes with rounded corners represent peers that belong to the

configuration, and edges represent an established network connection between the two peers. As-is,

the architecture in the previous code snippet describes the configurations in Figures 1a and 1c but

it does not describe the configuration in Figure 1b.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:5

cache1

app1 app2

db1

(a) Diamond.

cache1 cache2

app1

db1 db2

(b) Star.

cache1 cache2

app1 app2

db1 db2

(c) Disconnected linear.

Fig. 1. Configurations of a database–cache–application architecture

We can now place values and methods on the peers defined in the architectural specification.

The following code snippet follows the database–cache retrieval example from Section 1:

4 def readCache(key: Key): Data on Cache = /* ... */
5

6 def readDB(key: Key): Data on Database = /* ... */
7

8 def retrieve(key: Key): Data on App =
9 if (cached(key)) on[Cache].run.capture(key){ readCache(get(key)) }.asLocal
10 else on[Database].run.capture(key){ readDB(query(key)) }.asLocal

The placement types on methods or values using the on keyword indicate on which peers the

methods are executed and the values are located. For example, the readCache method is placed on

the cache, readDB on the database and retrieve on the application. Placing a method or a value

on a peer means that it is evaluated on the given peer. For example, when calling retrieve, the

method is executed on the App, i.e., Lines 9 and 10 are evaluated in the App context. Any attempt to

call retrieve directly on the cache or on the database is rejected by the type system.

Instead, diverting the control flow to a remote peer is explicit using the on[...].run.capture

(...){ ... } construct, which specifies the peer on which the execution takes place, the values

transferred over the network, and the expression to execute in the context of the remote peer.

The captured expressions are first evaluated to a value then serialized and transfered over the

network, i.e., the captured values are copied and peers do not share mutable state. The asLocal

marker accesses a remote value transferring the value over the network and constructing a local

copy. For example, retrieve either reads the data from the cache (Line 9) or the database (Line 10),

depending on whether a given key is cached or not.

Placement ensures some safety properties: For example, directing the control flow from the

database to the cache and vice versa would violate the specified architecture and thus is rejected by

the compiler. Hence, encoding placement at the type level allows the compiler to statically enforce

architectural constraints and interleaving local and remote code allows type-checking across the

complete distributed system.

3 DYNO PROGRAMMING ABSTRACTIONS
In this section, we introduce Dyno’s abstractions and we show how they can be combined to

support type-safe dynamic placement.

3.1 First-class Placed Values
In Dyno, the type T at P expresses the placement of remote values. A value of type T at P is a

first-class placed value that can be passed as argument, returned by a function, and bound to an

identifier. For example, in a controller–worker application driven by a client, the type of a function

that receives a job from a client and returns the job’s result after it is executed on a worker is

(Job at Client) => (Result at Worker).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:6 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

We interpret values of type T at P as remote references that point to values of type T at place P.

Unlike T on P (see Section 2), T at P does not represent where expressions are evaluated but rather

where evaluated values live. Hence, the type T at P indicates that a value of type T exists at a peer

P and can be retrieved remotely while a value of type T on P indicates that a value of type T can be

used only in the context of P. Whereas T at P can occur anywhere in the type, T on P cannot occur

as part of another type, i.e., T on P cannot be a function’s argument type, nor be its return type,

nor be an argument to a type-level operator. Thus, the type of the aforementioned job-execution

function, if it exists on the controller, is (Job at Client) => (Result at Worker) on Main.

Creating and using first-class placed values. Using first-class placed values in the running database–
cache example of the introduction, the following code places a method on the server which takes a

key as argument and returns a value of type Data that lives on the database:

def retrieveFromDatabase(key: Key): Data at Database on App = /* ... */

For an expression e of type T, executing remote ref e at peer P creates a remote reference to a

local value that has type T at P. A remote reference retains its type when it is copied to another

peer. We now show an implementation of retrieveFromDatabase:

def retrieveFromDatabase(key: Key): Data at Database on App =
on[Database].run.capture(key){ remote ref readDB(query(key)) }.asLocal

The call to on[Database].run moves the program flow from the App to the Database. The cache

retrieves the cached value and creates a reference to the value via remote ref, which has type

Data at Database. The remote reference is returned to the server through asLocal.

Analogously, we place retrieveFromCache on the App to get a Data at Cache from the Cache:

def retrieveFromCache(key: Key): Data at Cache on App =
on[Cache].run.capture(key){ remote ref readCache(get(key)) }.asLocal

To retrieve the value to which a remote reference points, i.e. to dereference it, we call deref on

the remote reference (i.e., on a value of type T at P). Thus, both asLocal and deref signal a remote

access and the creation of a local copy of remote values. The following code snippet dereferences

the result of retrieveFromDatabase:

on[App] { retrieveFromDatabase(/* some key */).deref }

This line of code type-checks if the server is tied to both the database and the cache. Thanks to

the type-level encoding of the architecture, we can statically reject remote dereferences that would

fail at run time, providing safety through compiler checks.

3.2 Dynamically Placed Values
Dyno’s core feature to track dynamically placed values statically are placement union types. For
example, the type Data at (Database | Cache) is a remote reference to a value of type Data that

lives either at a Database or at a Cache. The actual placement is chosen at run time. A modified

version of the retrieveFromDatabase method returns a value of type Data at (Database | Cache)

on the App:

def retrieveFromDatabase(key: Key): Data at (Database | Cache) on App =
on[Database].run.capture(key){ remote ref readDB(query(key)) }.asLocal

It is valid to assign to a variable of type T at (P | Q) a remote reference with type T at P or with

type T at Q. Similarly, it is valid to call a function expecting a T at (P | Q) with a remote reference

of type T at Q. Hence, the above snippet type-checks. Dereferencing a remote reference of type

T at (P | Q) using the deref method type-checks if it is evaluated on a peer tied to both P and Q.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:7

Using first-class dynamically placed values, we combine both methods retrieveFromDatabase

and retrieveFromCache into a single retrieve method:

def retrieve(key: Key): Data at (Database | Cache) on App =
if (cached(key)) on[Cache].run.capture(key){ remote ref readCache(get(key)) }.asLocal
else on[Database].run.capture(key){ remote ref readDB(query(key)) }.asLocal)

The method provides a uniform way to query both the database and the cache while retaining

the correctness of the placement information.

3.3 Placement Inspection
Dyno’s core features aim at making it possible to treat placed values safely and independently of

their dynamically chosen place. In certain situations, however, user code may be required to make

decisions based on the run time placement of a value. Thus, placed values provide an interface to

access the concrete placement associated to them at run time.

First, calling v.peer on a placed value v retrieves the peer on which the referenced data lives.

Second, if v was dynamically placed on P | Q, then v.toEither[P, Q] retrieves a value of type

Either[T at P, T at Q] which enables an exhaustive pattern match on the peer type a reference

points to. The fromEither performs the reverse operation.

In the running database–cache example, we can use this feature to add the fetched data to the

cache if it originated from the database. The following code assumes an add method on the Cache:

1 on[App] {
2 val cursor: Data at (Database | Cache) = retrieve(/* some key */)
3

4 cursor.toEither[Database, Cache] match {
5 case Left(dbCursor) =>
6 val data = dbCursor.deref
7 on[Cache].run.capture(data){ add(data) }
8 data
9 case Right(cacheCursor) => cacheCursor.deref } }

From the cursor reference to some data on the database or the cache, we pattern match on the

placement (Line 4). If the retrieved value originated from the database (Line 5), we add it to the

cache (Line 7) and return it (Line 8). Otherwise, we return the already cached value (Line 9).

4 DYNO IN ACTION
This section demonstrates how Dyno’s abstractions for first-class dynamically placed values enable

accounting for uncertainty in dynamic placement decisions.

4.1 Dynamically Distributed Data Structures
First-class placed values enable expressing distributed data structures that span multiple peers.

Without them, some tasks can be tedious and sometimes impossible [Giallorenzo et al. 2021].

Let us consider an application that merges two sorted remote linked lists of integers into one.

Figure 2 shows the three conceptual steps involved in the merge. The lists are comprised of cells,

each of which is a pair of an integer and a reference to the next cell. We represent each cell as the

outer solid box, the pair as the two adjacent inner boxes, references as arrows, and the network

boundary between peers as a dashed line. Horizontal dashed lines represent instances of the same

peer type while vertical ones represent different peer types. In Figure 2a, the CPU peers hold each

a linked list, and the GPU peer holds one. Without dynamic placement references are only allowed

to cross horizontal separations between peers of the same type. In Figure 2b, all peers move their

linked list to the first CPU which proceeds to merge the two lists. At this stage, the merged list is a

local one and not a distributed one as all its members are on a single peer. In Figure 2c, we move

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:8 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

7

5 4

1

0

CPU0

CPU1

GPU

(a) Separate lists before merging.

7

5 4

1

0

CPU0

CPU1

GPU

(b) Moving lists and local merging.

7

5 4

1

0

CPU0

CPU1

GPU

(c) Keeping data at its origin.

Fig. 2. First-class dynamically placed values as remote references are needed for merging remote lists.

the cells back to where they originated. This forces some references to become remote ones. So

dynamic placement allows crossing vertical separations as well as horizontal ones.

The place to which the references point depends on the run time values in the list. Hence, the

references are dynamically placed values. If we represent the left peer by the peer type CPU and the

right peer by GPU, we can type the next cell reference as Cell at (CPU | GPU).

The following code implements the merge of Figure 2 (but without actually ever constructing

the intermediate state Figure 2b with the complete list transferred from one peer to the other):

1 @peer type CPU <: { type Tie <: Multiple[GPU] }
2 @peer type GPU <: { type Tie <: Multiple[CPU] }
3

4 type RemoteList = List[Int] at (CPU | GPU)
5

6 sealed trait DList
7 case class DCell(head: Int, tail: DList at (CPU | GPU)) extends DList
8 case object DNil extends DList
9

10 def sortByHead(l1: RemoteList, l2: RemoteList): Option[(RemoteList, RemoteList)] on (CPU | GPU) = {
11 def head(l: RemoteList): Option[Int] = on(l.peer).run.capture(l){ l.deref.headOption }.asLocal
12 (head(l1), head(l2)) match {
13 case (Some(h1), Some(h2)) => if (h1 <= h2) Some((l1, l2)) else Some((l2, l1))
14 case (Some(h1), None) => Some((l1, l2))
15 case (None, Some(h2)) => Some((l2, l1))
16 case (None, None) => None } }
17

18 def merge(l1: RemoteList, l2: RemoteList): DList at (CPU | GPU) on (CPU | GPU) = sortByHead(l1, l2) match {
19 case None => remote ref DNil
20 case Some((small, big)) => on(small.peer).run.capture(small, big){
21 small.deref match {
22 case smallHead :: smallTail => remote ref DCell(smallHead, merge(remote ref smallTail, big))
23 case Nil => merge(big, remote ref Nil) } } }

Lines 1 to 2 declare the peer types CPU and GPU – both with ties to each other. We omit the code

on the CPU and GPU to generate the lists. Line 4 defines a RemoteList as a reference to an ordinary

list placed on the CPU or on the GPU.
2
Lines 6 to 8 define a dynamically placed distributed list. The

sortByHead function (Lines 10 to 16) takes two references to remote lists, and returns a pair with

the list with the smallest head first. The merge function (Lines 18 to 23) takes two references to

2Dyno’s implementation allows generalizing RemoteList to be polymorphic over placements. A polymorphic RemoteList
can be defined as follows:

sealed trait RemoteList[P, T]
case class Nil[P, T]() extends RemoteList[P, T]
case class Cons[P, T](head: T, tail: RemoteList[P, T] at P) extends RemoteList[P, T]

Multitier modules that are polymorphic over placements were described by Weisenburger and Salvaneschi [2019].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:9

remote lists, and produces a reference to a dynamically placed distributed list on the CPU or on the

GPU. Lines 20 to 23 access the peer holding the smallest head and uses it to construct a DCell list

whose tail is the result of the recursive call. Crucially, the recursive call can jump back and forth

between the places where the smallest head is.

This implementation avoids copying the complete list onto the merging peer. Instead, we always

copy only the head of the list currently needed for comparison, which allows us to merge the

two lists in bounded memory. Hence, merging lists beyond a single machine’s capacity becomes

possible. After merging, every consumer who may partially traverse the list can be sent the head of

the list and a reference to its tail as opposed to the entire list.

4.2 Dynamically Placed Computations

inputEmail()
on Server

inputPass(email)
on Auth

profile(email)
on Server

Fig. 3. Web session state machine.

In Dyno, it is possible to reason about dynamically placed

closures. References to placed closures can be moved to

other peers who can only use them to remotely evaluate the

closure at the peer on which the closure was created.
3

Web applications are often stateful and traditionally im-

plemented with session tokens, i.e., keys of a (persistent)

map on the server, which contains the information required

by the next step to progress through the Web application.

Instead of managing such a map, we replace session tokens

with placed closures that capture the information needed by the next step.

Consider an example where a user logs into their profile page. First, the user is asked their email,

then the computation moves to an authentication service that asks the user’s password. The request

is repeated if the credentials are incorrect. Otherwise, the computation moves back to the server

and provides the contents of the user’s profile. The state machine of this application is in Figure 3.

The boxes are the user’s states, the arrows are the transitions between states, and the dashed line is

the network boundary. The following code implements the example:

1 @peer type Client <: { type Tie <: Single[Server] with Single[Auth] }
2 @peer type Server <: { type Tie <: Single[Client] with Single[Auth] }
3 @peer type Auth <: { type Tie <: Single[Client] with Single[Server] }
4

5 case class Response(body: String, next: Option[String => Response at (Server | Auth)])
6

7 def inputEmail() = on[Server] { Response("E−Mail: ", Some(remote ref { email =>
8 if (validate(email))
9 on[Auth].run.capture(email){ inputPass(email) }.asLocal else inputEmail() })) }
10

11 def inputPass(email: String) = on[Auth] { Response("Password: ", Some(remote ref { pass =>
12 if (verify(email, pass))
13 on[Server].run.capture(email){ profile(email) }.asLocal else inputPass(email) })) }
14

15 def profile(email: String) = on[Server] { Response(s"Welcome $email", None) }
16

17 def callNext(next: String => Response at (Server | Auth), input: String): Response on Client =
18 on(next.peer).run.capture(next, input){ (next.deref)(input) }.asLocal
19

20 def main() = on[Client] {
21 def run(response: Response): Option[Response] = {
22 println(response.body)
23 response.next match { case Some(next) => run(callNext(next, io.StdIn.readLine())) case _ => None } }
24 run(on[Server].run{ inputEmail() }.asLocal) }

3
We do not allow dereferencing a placed closure remotely as this would entail copying all values that are implicitly captured

in the closure. In contrast, Spores [Miller et al. 2014] make captured values explicit and allow to transfer the closure.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:10 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Trusted Keys Public Keys

Key

Manager

Resource

Manager

Client

0xf0 0x12

𝑘

(a) Key request to key manager.

Trusted Keys Public Keys

Key

Manager

Resource

Manager

Client

0xf0 0x12

𝑘

(b) Key moved to the client.

Trusted Keys Public Keys

Key

Manager

Resource

Manager

Client

0xf0 0x12

𝑘

(c) Key moved to resource manager.

Fig. 4. A remote reference can move to a peer that has no ties to the peer the referenced value is at.

The architecture features three peers: a server, a client, and an authentication service (Lines 1

to 3). Line 5 defines a response which has a body and possibly a reference to the next stage of the

application. Stages are represented by dynamically placed closures that refer to closures on the

server or on the authentication service since the application’s execution moves between both peers.

The user can be at three different stages (Lines 7 to 15). The inputEmail method (Line 7)

corresponds to the stage of the user inputing their email. If the email is not valid, the next stage is

the same stage again. Otherwise, the next stage is represented by the result of inputPass(email).

The inputPassmethod (Line 11) lives on the authentication service. Crucially, the email is captured

inside the closure created at Line 9, i.e., when the reference is created, the email is stored in the

closure. If the email–password pair is correct, the computation is transferred back to the server

when the closure wrapping profile(email) is called. The profile method (Line 15), which does

not have any continuation, defines the end of the application. The main method (Line 20) starts

with the response of inputEmail() on the server and keeps calling each response’s continuation

with an input until there are no continuations to execute. callNext (Line 17) calls its placed closure

argument on the peer on which it is located (next.peer).

The example uses union placement types to enable static reasoning about the execution location

of remote continuations. In particular, the type system guarantees that every remote continuation

is invokable by the client (i.e., the architecture specifies a connection from the client to the locations

that can inhabit possible continuations), ensuring that every state is reachable from the client.

4.3 Architecture-Conformant Dynamic Placement
The Dyno type system forbids accessing a value that is dynamically placed on a peer that the

accessor has no ties to. This restriction applies to the data referenced by the placed value and not the

reference itself that encodes the dynamic placement. For example, a client with no tie to a database

may get hold of a reference to data in the database but cannot directly access the referenced data.

Figure 4 shows the movement of a value 𝑘 along an architecture with five peers: a database of

trusted keys, a database of public keys, a key manager, a resource manager, and a client. Only the

peers connected by a thick grey edge are tied, and thus can communicate. Solid arrows represent

remote references that can be dereferenced while dashed arrows represent remote references that

cannot. Values are represented in a box. First, in Figure 4a, the client has requested the key manager

to create a key for it. If the user has a trusted key, the resource manager will return a reference

pointing to the trusted key. If the user is not trusted, the reference will point to a public key. Thus,

the key is dynamically placed. Second, in Figure 4b, the client has received the key from the key

manager. The key still points to the correct key on either database. However, since the client does

not have a tie to either of them, the client is unable to dereference the reference and obtain the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:11

referenced value of the key, trusted or not. Finally, in Figure 4c, the client has sent the key to the

resource manager. In contrast to the situation with the client, the resource manager is allowed to

dereference the key reference only if it comes from the trusted key database since a tie to it exists.

The following code implements the interaction of Figure 4:

1 @peer type Client <:{type Tie <:Single[KeyManager] with Single[ResourceManager]}
2 @peer type KeyManager <:{type Tie <:Single[Client] with Single[TrustedKeyDB] with Single[PublicKeyDB]}
3 @peer type ResourceManager <:{type Tie <:Single[Client] with Single[TrustedKeyDB]}
4 @peer type TrustedKeyDB <:{type Tie <:Single[KeyManager] with Single[ResourceManager]}
5 @peer type PublicKeyDB <:{type Tie <:Single[KeyManager]}
6

7 def getKey(userId: ID): Key at (TrustedKeyDB | PublicKeyDB) on KeyManager =
8 if (userId == adminId) on[TrustedKeyDB].run.capture(userId){ remote ref key.get(userId) }.asLocal
9 else on[PublicKeyDB].run.capture(userId){ remote ref key.get(userId) }.asLocal
10

11 def getResource(key: Key at (TrustedKeyDB | PublicKeyDB)) : Option[Resource] on ResourceManager = {
12 key.toEither[PublicKeyDB, TrustedKeyDB].toOption map { trustKey => unlockResource(trustKey.deref) } }
13

14 def main() = on[Client] {
15 val key: Key at (TrustedKeyDB | PublicKeyDB) = on[KeyManager].run.capture(myId){ getKey(myId) }.asLocal
16 val resource: Option[Resource] = on[ResourceManager].run.capture(key){ getResource(key) }.asLocal
17 /* use the resource here */ }

Lines 1 to 5 define the peers and their ties as in the architecture of Figure 4. The getKey function

(Lines 7 to 9) lives on the key manager. If the user asking for the key is the admin, a reference to a

trusted key is returned, otherwise a reference to a public key. The resource manager’s getResource

function (Lines 11 to 12) examines the placement of the reference. If the key is from the trusted key

database, trustKey.deref fetches the key. Otherwise, toOption yields None. Fetching type-checks

thanks to the tie between the resource manager and the trusted key database. Fetching from the

public key database would lead to a compilation error because such access would violate the

architecture. Finally, Lines 14 to 17 define the client’s main function, which obtains a key reference

from the key manager using getKey and passes it to the resource manager’s getResource function.

5 PLACEMENT CORRECTNESS
Thanks to the first-class treatment of placed values which allows us to retain the referenced value’s

placement in the type, accessing placed values is safe and conforms to the architectural constraints.

For every dereference, the type system checks if a tie between the dereferencing peer and the

referenced peer exists in the architecture. Thus, in Dyno, if a remote reference has the type T at (P

| Q), it is guaranteed to point to data of type T either at P or at Q. We call this property placement
correctness (which will formalize later). Informally: placements do not lie.

In lack of a type systemwith support for dynamic placement, developers can add a tag to data that

represents the placement, but without enforcing the correctness of the tag. Enforcing correctness

without support from the type system hinders modularity.

Tagging does not guarantee placement correctness. In languages that lack support for first-class

placed values, one can alternatively tag values with placement information, e.g., by always trans-

mitting a pair (Data, Tag) or through an ad-hoc insertion of the place in the type. An example is

manually encoding the placed value Data at Cache through a CacheCursor class, which is a simple

wrapper of a Cursor pointer to a Data value (similarly, a DBCursor encodes a Data at Database):

1 case class CacheCursor(cursor: Cursor)
2 case class DBCursor(cursor: Cursor)
3

4 def retrieve(key: Key): Either[CacheCursor, DBCursor] on App =
5 if (cached(key)) Left(CacheCursor(on[Cache].run.capture(key){ get(key) }.asLocal))
6 else Right(DBCursor(on[Database].run.capture(key){ query(key) }.asLocal))

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:12 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

However, in such solution, the data being wrapped could have been computed elsewhere. The

placement tag is not statically checked, so the programmer could accidentally wrap cache data

with DBCursor or wrap database data with CacheCursor. The following code is the same as above

but with the the CacheCursor and DBCursor creation swapped in both branches by accident. The

code type-checks since correct placement cannot be statically enforced:

1 def retrieve(key: Key): Either[CacheCursor, DBCursor] on App =
2 if (cached(key)) Right(DBCursor(on[Cache].run.capture(key){ get(key) }.asLocal))
3 else Left(CacheCursor(on[Cache].run.capture(key){ get(key) }.asLocal))

Guaranteeing placement correctness sacrifices modularity. The placement tag can be statically

checked if an encoding similar to the one in the following listing is chosen. For example, calling

Cache.remoteRef[Cursor] anywhere outside Lines 5 and 7 would result in a compilation error.

Because Cache extends Place, Cache inherits remoteRef, such that Cache.remoteRef is only in

scope in Lines 5 and 7 since it is protected. Moreover, because the constructor of Ref is private

to Place, constructing a Ref anywhere outside the scope of Place (Lines 1 and 3) results in a

compilation error, including inside Cache and DB. Therefore, the only way to obtain a value of type

Ref is by calling either DB.retrieveFromDatabase or Cache.retrieveFromCache. However this

code sacrifices modularity: the Cache and DB objects cannot be separated from any function that

places values on them. Since these functions are arbitrary, embedding them in the Cache and DB

context violates the separation of concerns.

1 trait Place {
2 case class Ref[T] private[Place] (val data: T)
3 protected def remoteRef[T](data: T): Ref[T] = new Ref(data) }
4

5 object Cache extends Place {
6 def retrieveFromCache(k: Key): Ref[Int] =
7 remoteRef(on[Cursor].capture(k){ get(k) }.asLocal) }
8

9 object DB extends Place {
10 def retrieveFromDatabase(k: Key): Ref[Int] =
11 remoteRef(on[DB].capture(k){ query(k) }.asLocal) }
12

13 object App extends Place {
14 def retrieve(k: Key): Either[Cache.Ref[Cursor], DB.Ref[Cursor]] =
15 if (cached(k)) Left(Cache.get(k)) else Right(DB.query(k)) }

In Dyno, such placement issues cannot occur as the introduction form remote ref for references

guarantees correct placement without sacrificing modularity. Correctness for remote access is

ensured by lifting placement to the type-level and tracking the placement in the type. Hence,

placement correctness is part of type soundness – ensured statically by the type checker.

6 FORMALIZATION
In this section we formalize a core calculus for Dyno that models first-class placed values with

union placement types for dynamic placement that respect the architectural properties of peers

and ties. We formally state and prove the placement correctness property defined in Section 5.

Section 6.1 presents the syntax of the core calculus, Section 6.2 presents the evaluation rules,

Section 6.3 presents the typing rules, and in Sections 6.4 and 6.5 we prove properties about the

calculus such as type soundness and architectural soundness.

6.1 Syntax
The syntax for the Dyno core calculus is in Definition 1. The placement types have one of two

general forms: concrete peer types – represented as a lowercase p – or a union of at least one peer

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:13

type – represented as an uppercase P. We use the over-bar notation to represent a sequence of

zero, one, or more repetitions of the syntactic form under the bar. The types in the calculus are

– in order of presentation: basic types, function types, reference types, and peer instance types.

The expressions in the calculus are the usual variables, applications, and functions, extended with:

explicit peer instances 𝜋
p
P whose actual run time peer type is p (superscript) and its static peer type

annotation is the P peer type union (subscript); references ℓT at 𝜋p
P to values of type T on a peer

instance 𝜋
p
P ; peerof e extracts the peer instance from a reference; broadP e broadens the placement

of a reference e to the union placement type P; the on(e1).capture(x = e2) { refT e3 } construct
executes e3 of type T on the peer e1 after explicitlymoving all expressions e2 used by e3 and returning
a remote reference to the remote value; the dereference operator e1 deref {x ⇒ e2; ⇒ e3} executes
e2 with the dereferenced value bound to x if the value exists

4
or e3 otherwise; the placement-match

construct e1 match {x at p ⇒ e2} executes a match’s branch based on the actual placement of a

remote reference; and similarly e1 match {x is p ⇒ e2} is a pattern match over peer instances. The

values of the calculus are abstractions, peer instances, and references to remote values.

Definition 1 (Syntax).

Placement Types P ::= p1, p2
Types T ::= B | T1 → T2 | T at P | Peer P

Expressions e ::= x | e1 e2 | 𝜆x : T . e | 𝜋
p
P | ℓT at 𝜋pP | peerof e | broadP e

| on(e1) .capture(x = e2) { refT e3 } | e1 deref {x ⇒ e2; ⇒ e3}
| e1 match {x at p ⇒ e2} | e1 match {x is p ⇒ e2}

Values v ::= 𝜆x : T . e | 𝜋
p
P | ℓT at 𝜋pP

6.2 Evaluation Rules
The evaluation rule takes the form Ω;𝜎 ⊲ e →𝜋 Ω′

;𝜎 ′ ⊲ e′ and expresses that e evaluates to e′ on
the peer instance 𝜋 under the peer configuration Ω and the store 𝜎 , updating them to Ω′

and 𝜎 ′

respectively. Peer configurations, stores and the evaluation context are defined in Definition 2.

Definition 2 (Evaluation Context).

Configurations Ω ::= 𝜋1 : p;𝜋2 ↣ 𝜋3
Stores 𝜎 ::= · | 𝜎, ℓT at 𝜋p = e | 𝜎, ℓT at 𝜋p = ⊥
Eval. Contexts E ::= [] | E e | v E | peerof E | broadP E | E match {x at p ⇒ e}

| E match {x is p ⇒ e} | E deref {x ⇒ e1; ⇒ e2}
| on(E) .capture(x = e1) { refT e2 }
| on(v1).capture(x1 = v2, x2 = E, x3 = e1) { refT e2 }

A peer configuration Ω is a collection of peer instances with their type and a list connected peer

instances. A store 𝜎 is a partial function from placed labels to expressions. The evaluation context

dictates a deterministic, left-to-right, eager evaluation strategy.

We present the evaluation rules in three parts: Definition 3 presents a deterministic and sequential

execution model; Definition 4 adds two rules that introduce non-determinism to model concurrent

execution; Definition 5 adds a rule that allows the configuration Ω to change.

Definition 3 (Evaluation Rules).

(E-App) Ω;𝜎 ⊲ (𝜆x : T . e) v →𝜋1 Ω;𝜎 ⊲ e [x/e] (E-Peerof) Ω;𝜎 ⊲ peerof ℓT at 𝜋pP →𝜋 ′
Ω;𝜎 ⊲ 𝜋

p
P

4
A value exists if the remote reference points to a value and not to nowhere. A reference that points nowhere will point to

the bottom value as described in Definition 2.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:14 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

(E-Broad) Ω;𝜎 ⊲ broadP2 ℓT at 𝜋pP1 →
𝜋 ′

Ω;𝜎 ⊲ ℓT at 𝜋pP2 (E-Context)

Ω;𝜎 ⊲ e →𝜋 Ω′
;𝜎′ ⊲ e′

Ω;𝜎 ⊲ E[e] →𝜋 Ω′
;𝜎′ ⊲ E[e′]

(E-Match)

p1 = p2,i

Ω;𝜎 ⊲ ℓT at 𝜋p1P match {x at p2 ⇒ e} →𝜋 ′
Ω;𝜎 ⊲ ei [ℓT at 𝜋p1p1 /xi]

(E-PMatch)

p1 = p2,i

Ω;𝜎 ⊲ 𝜋
p1
P match {x is p2 ⇒ e} →𝜋 ′

Ω;𝜎 ⊲ ei [𝜋
p1
p1 /xi]

(E-Deref-OK)

(𝜋 = 𝜋 ′ ∨ 𝜋 ′ ↣ 𝜋 ∈ Ω) 𝜎 (ℓT at 𝜋p) = v

Ω;𝜎 ⊲ ℓT at 𝜋pP deref {x ⇒ e1; ⇒ e2} →𝜋 ′
Ω;𝜎 ⊲ e1 [v/x]

(E-Deref-Err)

(𝜋 ′ ↣ 𝜋 ∉ Ω ∨ 𝜎 (ℓT at 𝜋p) = ⊥ ∨ ℓT at 𝜋p ∉ dom 𝜎)
Ω;𝜎 ⊲ ℓT at 𝜋pP deref {x ⇒ e1; ⇒ e2} →𝜋 ′

Ω;𝜎 ⊲ e2

(E-Rem-Move)

𝜋 ′ ↣ 𝜋 ∈ Ω

Ω;𝜎 ⊲ on(𝜋pP).capture(x = v) { refT e } →𝜋 ′
Ω;𝜎 ⊲ on(𝜋pP).capture() { refT e [v/x] }

(E-Rem-Eval)

𝜋 ′ ↣ 𝜋 ∈ Ω Ω;𝜎 ⊲ e →𝜋 Ω′
;𝜎′ ⊲ e′

Ω;𝜎 ⊲ on(𝜋pP).capture() { refT e }
→𝜋 ′

Ω;𝜎 ⊲ on(𝜋pP) .capture() { refT e′ }

(E-Rem-OK)

𝜋 ′ ↣ 𝜋 ∈ Ω ℓT at 𝜋p ∉ 𝜎

Ω;𝜎 ⊲ on(𝜋pP) .capture() { refT v }
→𝜋 ′

Ω;𝜎, ℓT at 𝜋p = v ⊲ ℓT at 𝜋pP

(E-Rem-Err)

𝜋 ′ ↣ 𝜋 ∉ Ω ℓT at 𝜋p ∉ 𝜎

Ω;𝜎 ⊲ on(𝜋pP) .capture(x = v) { refT e } →𝜋 ′
Ω;𝜎, ℓT at 𝜋p = ⊥ ⊲ ℓT at 𝜋pP

Definition 4 (Concurrent Evaluation Rules).

(E-Conc-Rem)

𝜋 ′ ↣ 𝜋 ∈ Ω ℓT at 𝜋p ∉ 𝜎

Ω;𝜎 ⊲ on(𝜋pP) .capture() { refT e }
→𝜋 ′

Ω;𝜎, ℓT at 𝜋p = e ⊲ ℓT at 𝜋pP

(E-Conc-Lab)

Ω;𝜎 ⊲ e1 →𝜋 Ω′
;𝜎′ ⊲ e1′

ℓT at 𝜋p ∉ e1′

Ω;𝜎, ℓT at 𝜋p = e1 ⊲ e2
→𝜋 ′

Ω′
;𝜎′, ℓT at 𝜋p = e1′ ⊲ e2

Definition 5 (Distributed Evaluation Rules). (E-Dist) Ω𝑡 ;𝜎 ⊲ e →𝜋 Ω𝑡+1;𝜎 ⊲ e

We describe each rule briefly: E-App and E-Context are standard; E-Peerof extracts the peer

instance from a remote reference; E-Broad broadens a peer’s placement annotation; E-Match

and E-PMatch picks the branch of a match expression whose placement or peer (respectively)

is identical to the one in the remote reference or peer (respectively); E-Deref-OK dereferences

a reference when a connection exists; E-Deref-Err executes the fail branch of the dereference

when a connection does not exist; E-Rem-Move moves all the captured values, by copying them,

to the remote peer instance; E-Rem-Eval reduces a remote expression after moving all captured

expressions, this rule is expected to be applied over and over until the remote expression evaluates to

a value unless E-Conc-Rem is applied to break this chain, in which case it will resume with a series

of applications of E-Conc-Lab; E-Rem-OK creates a new entry in the store to the remote expression

when it is a value and reduces to a remote reference to the store entry only if a connection to the

remote peer instance exists; E-Rem-Err applies whenever the connection to a remote peer does

not exist and returns a reference that points to ⊥; E-Conc-Rem allows to bypass E-Rem-Eval to

use E-Rem-OK by allowing the remote reference to point to an expression instead of a value, this

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:15

does not mean that it is possible to dereference an unevaluated expression as E-Deref-OK and E-

Deref-Err still require the reference to point to a value, or bottom, for a dereference to be possible;

E-Conc-Lab allows the reduction of an expression in the codomain of a store; E-Dist allows to

step the evaluation configuration through an arbitrary specified sequence of configurations.

6.3 Typing Rules
The typing rules take the form A; Γ ⊢ e : T on p and express that e has type T and is placed on p
under the architectureA and the typing context Γ. The architectureA and the typing context Γ are

defined in Definition 6. An architecture is a collection of peer types and tie declarations between

them. We assume that all peer types used in tie declarations belong to the peer type collection.

Ties are of two kinds (1) singles: indicated by ↦→1
and (2) multiples: indicated by ↦→∗

. When the

multiplicity of a tie is irrelevant we use ↦→. A typing context is a binding of variables to their types

and the peer type on which they are placed.

Definition 6 (Typing Context).

Architectures A ::= p1; p2 ↦→1 p3; p4 ↦→∗ p5 Typing Contexts Γ ::= x : T on p

Definition 7 (Typing Rules).

(T-Var)

x : T on p ∈ Γ

A; Γ ⊢ x : T on p
(T-Abs)

A; Γ, x : T1 on p ⊢ e : T2 on p

A; Γ ⊢ 𝜆x : T1 . e : T1 → T2 on p
(T-App)

A; Γ ⊢ e1 : T1 → T2 on p
A; Γ ⊢ e2 : T1 on p

A; Γ ⊢ e1 e2 : T2 on p

(T-Peer)

p1 ∈ P

A; Γ ⊢ 𝜋p1P : Peer P on p2
(T-Label)

p1 ∈ P

A; Γ ⊢ ℓT at 𝜋p1P : T at P on p2

(T-Peerof)

A; Γ ⊢ e : T at P on p

A; Γ ⊢ peerof e : Peer P on p
(T-Broad)

A; Γ ⊢ e : T at P1 on p
P1 ⊆ P2

A; Γ ⊢ broadP2 e : T at P2 on p

(T-Match)

A; Γ, x : T1 at p2 on p1 ⊢ e2 : T2 on p1
A; Γ ⊢ e1 : T1 at P on p1

P = p2 ∀i ≠ j. p2,i ≠ p2,j
A; Γ ⊢ e1 match {x at p2 ⇒ e2} : T2 on p1

(T-PMatch)

A; Γ, x : Peer p2 on p1 ⊢ e2 : T2 on p1
A; Γ ⊢ e1 : Peer p2 on p1

∀i ≠ j. p2,i ≠ p2,j

A; Γ ⊢ e1 match {x is p2 ⇒ e2} : T2 on p1

(T-Remote)

A; Γ ⊢ e1 : Peer p2 on p1 p1 ↦→ p2 ∈ A
A; Γ ⊢ e2 : T2 on p1 mobile T2 A; x : T2 on p2 ⊢ e3 : T1 on p2

A; Γ ⊢ on(e1) .capture(x = e2) { refT1 e3 } : T1 at p2 on p1

(T-Deref)

A; Γ ⊢ e1 : T1 at p2 on p1 p1 ↦→ p2 ∈ A mobile T1
A; Γ, x : T1 on p1 ⊢ e2 : T2 on p1 A; Γ ⊢ e3 : T2 on p1

A; Γ ⊢ e1 deref {x ⇒ e2; ⇒ e3} : T2 on p1

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:16 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

We describe briefly the rules: T-Var, T-Abs, and T-App are standard rules extended with peer

placement – notice that a function call type checks when both the function and its argument are

placed on the same peer type; T-Peer and T-Label enforce that a peer instance’s actual type belongs

to its peer type union annotation; T-Peerof extracts the peer type from a remote reference type;

T-Broad broadens the placement of a remote reference if and only if no previous placement is lost;

T-Match enforce that the branches are exhaustive and each handles a unique placement type and

all branches have the same type; T-PMatch similarly allows pattern matching on peer instances

based on their type; T-Remote allows a remote execution when a tie, regardless of its multiplicity,

to all the peers in a union placement type exists, when the remote expression typechecks under

the captured expressions, and when the type of those expressions is mobile; T-Deref enforce that

dereferencing only applies when a tie exists and the data type is mobile. A mobile type is defined

to be any type that is not a function.

Definition 8 (Mobile Types). (M-Base) mobile B (M-Ref) mobile T at P (M-Peer) mobile Peer P

6.4 Type Soundness
This section lists the properties that the core calculus enjoys, which we prove for the complete

concurrent and distributed extension of the calculus, i.e., for the evaluation rules in Definitions 3

to 5.

The first major result is type soundness. The calculus is type-sound given the following well-

formedness conditions for configurations and the (usual) well typedness condition for stores.

Definition 9 states that an evaluation configuration satisfies an architecture when all peer instances

have a known peer type and that single ties are respected. Definition 10 defines a consistent sequence

of evaluation configurations to be one where peer instances never change types. Definition 11

defines a configuration to be coherent with any expression, including those in the domain and

codomain of a store, when all the literal peer instances in those expressions are annotated with the

known peer type in the configuration. Definition 12 defines a store to be well typed when all the

expressions in its codomain are well typed.

Definition 9 (Architecture Satisfaction). A configuration Ω satisfies an architecture A, written

Ω ⊨ A, when p ∈ A for every 𝜋 : p ∈ Ω. And if p1 ↦→1 p2 ∈ A then for every 𝜋 : p1 ∈ Ω there

exists a unique 𝜋 ′
: p2 ∈ Ω such that 𝜋 ↣ 𝜋 ′ ∈ Ω.

Definition 10 (Consistent Configurations). A sequence {Ω𝑡 }𝑡 ∈N is consistent when for every 𝜋 : p ∈
Ω𝑡0 and t > t0, if 𝜋 : p′ ∈ Ω𝑡 then p′ = p.

Definition 11 (Coherent Configuration). A sequence {Ω𝑡 }𝑡 ∈N is coherent with an expression e and

a store 𝜎 when: (1) for every sub-expression of e of the form 𝜋
p
P there exists a 𝑡 ∈ N such that

𝜋 : p ∈ Ω𝑡 , (2) for every ℓT at 𝜋p ∈ dom 𝜎 then there exists a 𝑡 ∈ N such that 𝜋 : p ∈ Ω𝑡 , and (3)

for every e ∈ codom 𝜎 then {Ω𝑡 }𝑡 ∈N is coherent with e.

Definition 12 (Well typed Store). A store 𝜎 is well typed under A; Γ when there exists a type T and

peer type p such that A; Γ ⊢ e : T on p for every e ∈ codom 𝜎 .

The usual progress and preservation theorems (Theorems 1 and 2) hold under the assumption

of a coherent and consistent configuration and a well typed context as defined in Definitions 9

to 12. Theorem 1 prevents Ω from changing to rule out trivial progress by only applying E-Dist

repeatedly without reducing the term.

Theorem 1 (Type Progress). Let Ω ⊨ A and 𝜋 : p ∈ Ω such that Ω is picked from a consistent
and coherent sequence of configurations with e and a well typed store 𝜎 under A; · be given. If
A; · ⊢ e : T on p then e is a value, or there exists e′ such that Ω;𝜎 ⊲ e →𝜋 Ω;𝜎 ′ ⊲ e′.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:17

Theorem 2 (Type Preservation). Let Ω ⊨ A and 𝜋 : p ∈ Ω such that Ω is picked from a consistent
and coherent sequence of configurations with e and a well typed store 𝜎 under A; Γ be given. If
A; Γ ⊢ e : T on p and Ω;𝜎 ⊲ e →𝜋 Ω′

;𝜎 ′ ⊲ e′ then A; Γ ⊢ e′ : T on p.

Whereas these two theorems are usually enough to prove type safety, in our system we must

prove two additional lemmas that allow the inductive proof to be sound [Wright and Felleisen

1994]. Lemma 1 states a well typed store remains well typed after one application of the evaluation

rule as long as the expression being reduced is well typed. And similarly, Lemma 2 states that a

coherent configuration remains coherent. We do not need a consistency preservation theorem since

consistency neither depends on expressions nor on stores: in fact, from Definition 10, it is clear

that if a sequence {Ω𝑡 }𝑡≥𝑡0 is consistent then {Ω𝑡 }𝑡≥𝑡1 is still consistent when 𝑡1 ≥ 𝑡0.

Lemma 1 (Store well typeness Preservation). Let Ω ⊨ A and 𝜋 : p ∈ Ω such that Ω is picked
from a consistent and coherent sequence of configurations with e and a well typed store 𝜎 under A; Γ
be given. If A; Γ ⊢ e : T on p and Ω;𝜎 ⊲ e →𝜋 Ω;𝜎 ′ ⊲ e′ then 𝜎 ′ is well typed under A; Γ.

Lemma 2 (Configuration Coherence Preservation). Let Ω ⊨ A and 𝜋 : p ∈ Ω such that Ω is
picked from a consistent and coherent sequence of configurations with e and a well typed store 𝜎 under
A; · be given. If A; · ⊢ e : T on p and Ω;𝜎 ⊲ e →𝜋 Ω;𝜎 ′ ⊲ e′ then Ω is coherent with e′ and 𝜎 ′.

6.5 Properties of Dynamic Placements and Architectural Soundness
In our calculus, it is not possible to modify the value a remote reference points to once it is created.

Moreover it is not possible to accidentally refer to a reference that was not yet created. Thus the

dependency graph of remote references is acyclical. Theorem 3 is the formal expression of these

observations and Definition 13 defines an acyclical store.

Definition 13 (Non-Circular Store). The empty store · is non-circular. The store 𝜎, ℓT at 𝜋p = ⊥
is non-circular when 𝜎 is non-circular. And the store 𝜎, ℓT1 at 𝜋

p1 = e is non-circular when 𝜎 is

non-circular and for every sub-expression of e of the form ℓT2 at 𝜋
p2
P then ℓT2 at 𝜋

p2 ∈ dom 𝜎 .

Theorem 3 (Non-Circular Store). Let Ω ⊨ A and 𝜋 : p ∈ Ω such that Ω is picked from a
consistent and coherent sequence of configurations with e and a well typed store 𝜎 under A; · be
given. If A; · ⊢ e : T on p, and e does not contain any sub-expression of the form ℓT at 𝜋p

P , and
Ω; · ⊲ e ↠𝜋 Ω;𝜎 ⊲ e′ then 𝜎 is non-circular.

A design goal for the calculus is that computations must only use locally available resources. If a

computation requires a remote value then it must explicitly dereference it. Theorem 4 proves that

this goal was achieved. It states that, if an expression type checks under a context, then stripping

away all non-local variables from that context, Definition 14, will not affect type checking.

Definition 14 (Restricted Γ). If Γ is a typing context and p is a peer type then Γ |p is the sub-context

of Γ that only contains the bindings on p.

Theorem 4 (Local Placement). If A; Γ ⊢ e : T on p then A; Γ |p ⊢ e : T on p.

Another design goal of the calculus is for the placement in the type of references to accurately

reflect the placement of the actual remote reference. Under dynamic placement the placement types

in the reference type must include the actual placement type of the reference. Corollary 1, which

follows directly from type safety, shows that this property holds.

Corollary 1 (Correct Reference Placement). Let Ω ⊨ A and 𝜋 : p ∈ Ω such that Ω is picked
from a consistent and coherent sequence of configurations with e and a well typed store 𝜎 under A; Γ
be given. If A; Γ ⊢ e : T at p2 on p1 and Ω; · ⊲ e ↠𝜋 Ω′

;𝜎 ⊲ ℓT at 𝜋p3
P then P = p2 and there exists i

such that p3 = p2,i.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:18 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Finally, we state a theorem that formalizes our intuition about architectural ties: if a tie is not

declared in the architecture then, even if the configuration includes such a connection, it cannot

be used to access values remotely. Definition 15 allows us to restrict a configuration under two

peer instances by disconnecting them directly or disconnecting any proxy peer that can be used to

relay values. Theorem 5 states that, under a restricted configuration extended with a connection

between two peer instances whose types are not declared to be tied, references on the first instance

cannot affect a computation happening on the second instance.

To formalize the intuition of this non-interaction, we define in Definition 16 “disagreeing stores”

to be two stores that agree on values on the different peers but disagree on at least one value’s place-

ment on a particular peer. Then the architectural soundness theorem states that under disagreeing

states the evaluation of an expression does not change.

Definition 15 (Restricted Ω). Let Ω and 𝜋 : p, 𝜋 ′
: p′ ∈ Ω be given. We denote by Ω/𝜋↣𝜋 ′ any

sub-configuration of Ω that satisfies: (1) for every 𝜋 ′′
: p′′ ∈ Ω then 𝜋 ′′

: p′′ ∈ Ω/𝜋↣𝜋 ′ , and (2) for

every sequence 𝜋1 ↣ 𝜋2, · · · , 𝜋n ↣ 𝜋n+1 ∈ Ω such that 𝜋1 = 𝜋 and 𝜋n+1 = 𝜋 ′
then there exists 𝑖

such that 𝜋i↣ 𝜋i+1 ∉ Ω/𝜋↣𝜋 ′ .

Definition 16 (Disagreeing Stores). Two stores 𝜎1 and 𝜎2 are said to disagree on a place type p1 if (1)
for every ℓT at 𝜋p2 ∈ dom 𝜎1 ∪ dom 𝜎2 such that p1 ≠ p2 then 𝜎1 (ℓT at 𝜋p2) = 𝜎2 (ℓT at 𝜋p2), and
(2) there exists ℓT at 𝜋p1

such that 𝜎1 (ℓT at 𝜋p1) ≠ 𝜎2 (ℓT at 𝜋p1).

Theorem 5 (Architectural Soundness). Let Ω ⊨ A and 𝜋 : p ∈ Ω such that Ω is picked
from a consistent and coherent sequence of configurations with e and two well typed stores 𝜎1, 𝜎2
under A; Γ be given. If A; Γ ⊢ e : T on p1 and 𝜋1 : p1 ∈ Ω and 𝜋2 : p2 ∈ Ω and 𝜋1 ≠ 𝜋2 and
p1 ↦→ p2 ∉ A and 𝜎1, 𝜎2 only disagree on p2, and Ω/𝜋1↣𝜋2

, 𝜋1 ↣ 𝜋2;𝜎1 ⊲ e →𝜋1 Ω′
;𝜎 ′

1
⊲ e1, and

Ω/𝜋1↣𝜋2
, 𝜋1↣ 𝜋2;𝜎2 ⊲ e →𝜋1 Ω′

;𝜎 ′
2
⊲ e2 then e1 = e2.

7 IMPLEMENTATION
Dyno is implemented on top of ScalaLoci [Weisenburger et al. 2018] which itself is an extension to

Scala and the Scala type system. We chose ScalaLoci since its type system already allows expressing

placement within types. This placement, however, is only static and not first-class, i.e., one cannot

express first-class values of type Int on DB or values of type Int at (DB | Cache). Recall from

Section 6 the difference between on and at: the former is a type annotation only used during type

checking and exists only in the typing judgement, whereas at is a type constructor that has an

introduction and elimination form.

Dyno’s type-checker is a Scala macro that is executed at compile-time and transforms Scala ASTs.

Dyno implements two notable extensions: First, we give every peer instance a GUID, which is a

unique identifier of type java.util.UUID as provided by the Java standard library to distinguish

different instances. This is analogous to the 𝜋p expression with the peer type p. Second, we introduce
a Ref[T] class which wraps two GUIDs: one for the peer instance and one for the value. The class

exposes a dereferencing method that moves the value from the peer instance whose GUIDs are

identical to the wrapped GUIDs to the local instance. Since this operation could fail, the method

returns an option. This is equivalent to returning a nullable reference in the formalism through

E-Rem-OK and E-Rem-Err (note that deref checks the validity of the reference through E-Deref-

OK and E-Deref-Err, hence nullable references are safe). Thus, Dyno associates GUIDs to every

remote value reference that is created by remote ref. These GUIDs are recorded in a map that is

not exposed to the developer and only used internally by the remote ref and deref constructs.

This map is thus equivalent to a slice of 𝜎 whose domain are all references created at the instance.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:19

8 EVALUATION
Themain hypothesis of Dyno’s design is that union types to represent dynamic placement (1) reduce

the complexity of handling dynamic placement decisions, (2) increase type safety and (3) come at

negligible cost to the run time performance.

We evaluate these hypotheses with side-by-side comparisons of variants of the same applications

(Section 8.1), benchmarking different variants (Section 8.2) and applying Dyno to a large open-

source application (Section 8.3). Finally, we provide an intuition of to what extend developers have

to deal with dynamic placement by mining the F-Droid open-source app repository [Gultnieks

2010] (Section 8.4). In such study, we check for the specific dynamic placement approach used in

the case study of Section 8.3, showing that this approach is not uncommon and providing a lower

bound for the number of critical run time checks related to dynamic placement in the repository.

8.1 Analysis of Variants: Dynamic Placement in Dyno vs. Java RMI vs. Akka Typed
We validate our first two hypotheses with side-by-side comparisons of alternative designs of

applications from different domains. The case studies are full versions of the minimal examples in

Section 4. We compareDyno implementations against functionally equivalent variants implemented

in (i) Java RMI [Downing 1998] – supported on the JVM out of the box – (ii) Akka Typed [Lightbend

Inc 2020] as a state-of-the-art distributed actor system, and (iii) ScalaLoci [Weisenburger et al. 2018]

which supports placement types but not dynamic placement. We first shortly describe each case

study. Then we describe the issues with existing approaches and quantify their impact on the code

base.

• Unified Feed of Twitter and Mastodon Messages. This case study merges the message feed from

two sources into a single list of messages (similar to Section 4.1). One source retrieves the

messages from Twitter tweets, the other from Mastodon [Mastodon 2016], a Twitter-like

application. A client peer interacts with both sources for displaying the messages to the user.

The client only needs to fetch the elements in the distributed list that it displays without

pulling the entire message history.

• Web Sessions. This case study is a multi-user administrative panel, implemented as a stateful

request–response application (similar to Section 4.2) that spans over the administrators’ client

driving the interaction, a server peer, an authentication service peer, and an administration

service peer. We use placed closures for the callbacks that are executed when the user “follows”

the links in the application.

• Resource Management. This case study controls a users’ access to resources. Users can unlock

resources if their keys are stored in a trusted key database (similar to Section 4.3). In this case

study, the user can further ask a supervisor peer to trust a public key. If the supervisor agrees,

the key is added to the trusted key database.

We categorize the issues that we faced in the case studies into three groups, described in the

following paragraphs. For each, we quantify how much Dyno improves safety, identifying the

code locations in Java RMI and Akka Typed that access a dynamically placed value (Table 1):

creation of remote references (“Creation” column), acquisition of references that were created

remotely (“Acquisition” column) and dereference operations (“Access” column). In all variants,

when accessing remote data, the value’s data type is statically checked. Yet, static checks in the

Java RMI and Akka Typed do not cover a value’s placement.

Placement correctness. In both Java RMI and Akka Typed, one can accidentally swap the correct

placement with a wrong one. For instance, in the first case study, both the Twitter and Mastodon

peers hold a sorted TwitterFeed and a MastodonFeed object for messages. Hence, it is easy to have

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:20 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Table 1. Code metrics for the case studies.

Case Study Version Creation Acquisition Access LOC

Feeds

RMI 3 1 1 148

Akka 3 1 2 173

ScalaLoci 4 5 3 178

Dyno 3 4 2 147

Sessions

RMI 9 3 3 154

Akka 7 9 14 132

ScalaLoci 17 26 17 176

Dyno 14 23 14 125

Resources

RMI 2 4 5 151

Akka 2 6 4 207

ScalaLoci 3 6 4 115

Dyno 2 5 3 98

the Twitter peer construct a MastodonFeed and

vice-versa. Similarly, in RMI, the reference to

the callback in the second case study can be

accidentally moved to the client, transferring a

secret over the network. The type system does

not prevent these errors because the local ob-

ject and the remote object of another place have

identical type, i.e., remote access looks like lo-

cal access. In Akka, invoking a remote function

and retrieving its result entails separate mes-

sages, which requires maintaining the state to

keep track of their correlation. Hence, the type

system does not help the developer reasoning

statically on placement.

The ScalaLoci implementations do maintain placement correctness since they are implemented

in the style outlined in Section 5. The disadvantage of this style is that it sacrifices modularity

which required us to introduce code duplication in multiple places – for each placement type in

fact – which is reflected in the inflated number of lines of code (“LOC” column).

Dyno does not suffer from such issues. First, remote references to data and the data they point

to have different types. As a result, one cannot accidentally fetch data from another peer without

explicitly moving the execution there. Second, creating a remote reference is guaranteed to have the

correct placement. Since placement correctness crucially relies on attaching the correct placement

when creating a reference, the reference creation count is a measure of critical spots in the code

where a reference – or a reference-like object, such as the keys of a manually managed reference

table – are created (“Creation” column in Table 1). In such spots in Akka and RMI, as placement is

manually encoded, one can use the wrong placement, i.e., placement correctness could be violated.

Whereas the number of spots where remote references (or encodings of the same) are created does

not differ widely across case studies, the reported numbers quantify the spots were Dyno features

improved safety, confirming our hypothesis.

Architectural safety. Architectures can be enforced statically to some degree with Akka Typed,

but not with RMI – since the type system is completely oblivious to placement. In RMI variants

of our case studies, a registry acts as a centralized component that all peers connect to and it

is used to store and move references. Therefore, any reference in the registry can be read by

any peer who has access. In the Akka implementation of the second case study, for example, we

need to manually maintain a table with references that remote actors can access with a message

that requests a referenced value. Such messages may include the actor reference to reply to, but

there is no guarantee that the correct actor reference is actually used. Also, a message cannot

enforce a specific place, neither for the sending actor, nor for the receiving one. The implication on

dynamic placement is that there cannot be strict placement guarantees – static or dynamic. With

messages that can be relayed and actor references that can be ignored, encoding placement is at

best conventionally agreed upon.

In Dyno, there is no central registry for references. Instead, each peer stores its own references

and access to them is subject to architectural checks. Further, Dyno relieves developers from

maintaining a reference table manually – which is error-prone.

As Dyno performs architectural checks to verify the validity of accesses to referenced values, we

report the number of dereference operations (“Access” column in Table 1). These places may harbor

violation to the architectural safety: a peer with no tie to another may try to dereference a reference

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:21

pointing to a value on the latter. The reference acquisition count measures the places where a

remote reference has been acquired by a peer without necessarily dereferencing it (“Acquisition”

column). While the number of accesses to remote references does not vary much across variants,

the numbers indicate the spots were Dyno provides static safety checks that RMI and Akka do not.

Both Dyno and ScalaLoci contain placement types and statically-enforced architectural ties thus

architectural safety is guaranteed in both.

Communication boilerplate. Handling dynamic placement manually induces overhead and in-

creases accidental complexity that is not part of the application logic. For example, in Akka Typed,

decoupled send and receive operations may require an actor to queue incoming requests for some

remotely referenced data until potentially required pending responses from other actors were re-

ceived. Manually maintaining this state between messages is potentially complex. In particular, the

amount of code needed to handle such state increases with the number of peers that communicate.

Among the case studies, the third one defines the most peers and thus the most complex cross-peer

communication, making the communication overhead most evident.

For both Java RMI and Dyno, each remote method is declared with its argument and return types.

RMI, however, requires an additional interface definition for each remote object.

We report the lines of code (LOC) to measure the boilerplate necessary to implement dynamic

placement (“LOC” column in Table 1). Since the case studies are implemented in the same language

but with different technologies, all implementations share the same core and differ only in the

treatment of references and dynamic placement. Depending on the structure of the cases study

(number of peers and interaction patterns), either Akka or RMI may require less management

overhead as the respective other variant – for remote interface definitions in RMI or coordinating

sends and corresponding receives in Akka. In all case studies,Dyno reduces the amount of potentially

error-prone user code to manually handling dynamic value placement. This observation is in line

with our hypothesis the Dyno reduces the complexity of handling dynamic placement.

8.2 Performance

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

Cache Hits (%)

T
i
m
e
(
s
)

Dyno 5 K

RMI 5K

Dyno 2.5 K
RMI 2.5 K

Fig. 5. Benchmark for database–cache.

To evaluate the potential impact of dynamic placement in-

troduced by Dyno, we implemented a benchmark in Dyno
and in RMI based on the database–cache system of Section 3.

We measure the performance of 2.5 K (red circle) and 5K

(blue square) retrieve operations for various cache hit/miss

rates. We use the RMI performance as a reference. The re-

sults are in Figure 5. The x-axis is the percentage of cache

hit rate out of 2.5 K and 5K retrievals, ranging from only

cache misses (0 %) to all, but one, cache hits (100 %). The

y-axis denotes the time in milliseconds to retrieve the 2.5 K

and 5K references from the database or the cache. We used

Redis [Macedo and Oliveira 2011], an in-memory key–value

store, for the cache and MariaDB [Kenler and Razzoli 2015]

for the database. The benchmark was executed on a 4.8 GHz Intel Core i7 with 32GB of RAM.

The results show that when 60 % of the retrieval operations are repeated, then the database–cache

system shaves off 38% of its time when 2.5 K retrievals are made and 35 % when 5K retrievals are

made. Crucially, in contrast to existing systems, this benefit does not come at the cost of placement

correctness and architectural guarantees.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:22 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

8.3 Open-Source Case Study
AntennaPod [AntennaPod Developers 2011] is a widely-used open-source Android application

for managing and playing podcasts. Its media playing subsystem amounts to 6.66 kLOC over five

components distributed across three different nodes. We reimplemented AntennaPod’s ad hoc

approach to represent placement using in Dyno, increasing safety at numerous critical points in

the code.

Dynamic Placement in AntennaPod. The media player in AntennaPod can be placed on the local

device or on a remote device. The local media player is capable of playing both local and remote

episodes, the remote one can only play remote episodes. Thus, from the point of view of a media

player, the episode it is given is dynamically placed. Similarly, from the point of view of the database,

the byte-stream of an episode whose metadata (i.e., URL) it stores is also dynamically placed.

Placement Representation. To dynamically place the media player functionality, both the local

player LocalPSMP and the remote player CastPsmp extend a common abstract class. Similarly, for

media whose metadata can be local or remote, FeedMedia and RemoteMedia implement a common

interface. The separation between local and remote byte-streams, on the other hand, is modeled

using a different mechanism: First, a boolean flag indicating whether the media was downloaded or

not, and second, the scheme component of the URL string, e.g., a remote episode has http or https

as the scheme, whereas a local one has content as its scheme or is a schemeless absolute path.

Architectural Constraints. Placing the three entities (media player, metadata, byte-stream) re-

motely or locally amounts to eight potential dynamic placement combinations. AntennaPod deems

one of these combinations – playing an episode whose byte-stream is local on the remote player –

too complex and prohibits it. CastPsmp eliminates such combination by checking whether a URL

string starts with the content scheme and throws an exception if it does.

Design Issues and Placement Bug. Representing placement manually caused convoluted logic that

relied on various nested run time checks to maintain non-obvious invariants. Thus, upholding such

invariants correctly is prone to programming errors. In particular, we found that AntennaPod fails

to perform the check on URLs correctly. In our experiment, we were able to violate the architectural

constraints by creating an RSS feed for a podcast that contains media URLs with schemeless absolute

paths. When a user subscribes to this podcast, the local player plays a file from the player’s device

if it happens to exist or it fails. We argue that these error-prone run time checks are only necessary

due to the lack of proper abstractions that guarantee architectural constraints.

App

Remote
FS

Cast
Psmp

Local
Psmp

Local
FS

Fig. 6. Architectural constraints of
the AntennaPod case study.

A Safe Version of AntennaPod. We reimplemented the compo-

nents of AntennaPod’s media playing subsystem in Dyno. We

use different placements for the different roles (FS, PSMP, and

App) and their location (local and remote). We place the locally

available byte-streams on the LocalFS peer and remote byte-

streams on RemoteFS. LocalPsmp and CastPsmp are the peers

that manage the local and remote media playback, respectively.

App is the peer on which the Android application is be executed,

which also maintains a downloaded-from-relation between ref-

erences to the LocalFS and the RemoteFS. The architecture con-

necting the five peers is visualized in Figure 6. Nodes are the

peer types and edges are the architectural ties among them. Ruling out the prohibited dynamic

placement scenario – remotely playing a downloaded episode – is hence clearly enforced by the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:23

architecture: Any attempt to dereference a reference to a local file on the remote player will fail to

type-check as their is no architectural tie between the two peers.

Summary. To quantify the advantage of the Dyno reimplementation, we first identified branch-

ings that dynamically check properties of the URL and the boolean flags maintained by the media

objects, and any run time type check related to how placement is modeled in the original implemen-

tation. We found 84 such run time checks which can result in the application taking an incorrect

branch if they are erroneous or incomplete (as is the case with the bug described earlier).

By tracking the placement in the types and using Dyno’s type system, we can guarantee that

placement assumptions made by any function are always explicit and cannot be violated.

8.4 Dynamic Placement in the F-Droid App Store
As it is difficult to automatically determine if an application is adopting dynamic placement in

general, we focus on a specific case: the encoding of dynamic references through URLs, which

resulted into the bug we found in AntennaPod. We scanned F-Droid [Gultnieks 2010] – the largest

app store of open-source apps with over 3 K repositories – for projects that check a URL’s schema.

In total we have found 133 projects that do so, showing that placement is a common issue. Among

the 499 files that contain such checks, after manual inspection, we spotted 420 checks in a branch

condition – meaning that a schema’s URL, whether it’s a file, a database entry, or a remote resource,

guides the program’s logic. We observed two reasons for branching based on the URL scheme: to

pick the appropriate API that handles each URL correctly, and to eliminate a case by exiting early.

An example of the first category is in the Alarmio alarm clock app:

1 if (backgroundUrl.startsWith("http"))
2 Glide.with(imageView.getContext()).load(backgroundUrl).into(imageView);
3 else if (backgroundUrl.contains("://")) {
4 if (backgroundUrl.startsWith("content://")) {
5 String path = Uri.parse(backgroundUrl).getLastPathSegment();
6 if (path != null && path.contains(":"))
7 path = "/storage/" + path.replaceFirst(":", "/");
8 else
9 path = Uri.parse(backgroundUrl).getPath();
10 Glide.with(imageView.getContext()).load(new File(path)).into(imageView); }
11 else
12 Glide.with(imageView.getContext()).load(Uri.parse(backgroundUrl)).into(imageView); }
13 else
14 Glide.with(imageView.getContext()).load(new File(backgroundUrl)).into(imageView);

The code takes different branches based on the location of the background image to display for

a ringing alarm. This is necessary as the code to load the image differs between places and the

language does not allow abstracting over placements.

The second category can be found, among others, in the F-Droid app itself, in the VLC media

player app and in the Elements secure messenger. The following code from F-Droid’s, executed

when a repository is created, returns early for specific places (i.e., for the content and file place):

1 if (repo.getAddress().startsWith("content://") || repo.getAddress().startsWith("file://")) {
2 // no need to show a QR Code, it is not shareable
3 return; }

The following example from the the VideoLAN Client (VLC) media player is part of the imple-

mentation of a MediaLibrary and returns a wrapped media object given its URI. The code cannot

return a valid media object for all places and returns null in such cases:

1 public MediaWrapper getMedia(Uri uri) {
2 if ("content".equals(uri.getScheme())) return null;
3 final String vlcMrl = Tools.encodeVLCMrl(uri.toString());
4 return mIsInitiated && !TextUtils.isEmpty(vlcMrl) ? nativeGetMediaFromMrl(vlcMrl) : null; }

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:24 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Next we show an example from the Element’s application for secure group chatting – executed

whenever a ringtone is being set. The code ignores the file location because not treating this

location specially has already led to run time errors, as indicated by the comment:

1 value = uri.toString()
2 if (value.startsWith("file://")) {
3 // it should never happen
4 // else android.os.FileUriExposedException will be triggered.
5 // see https://github.com/vector−im/riot−android/issues/1725
6 return }

All the error-prone run time checks discussed aboves can be avoided using Dyno’s approach of

tracking placement in the type system as (1) the type system can rule out cases that can never happen

statically and (2) dynamic case distinctions based on the placement of a value enjoy exhaustiveness

checks thanks to describing potential placements as union type.

9 RELATEDWORK
Multitier Web Languages. Dyno’s language support to specify the placement of data and com-

putation is similar to multitier programming, which emerged in the Web context to remove the

separation between client and server code. The same multitier language is used for all tiers and the

compiler takes care of the translation to the target platform (e.g., to JavaScript for the Browser tier).

Hop [Serrano et al. 2006] and Hop.js [Serrano and Prunet 2016] are dynamically typed languages

that follow a traditional client–server communication scheme with asynchronous callbacks. In

Links [Cooper et al. 2006] and Opa [Rajchenbach-Teller and Sinot 2010], functions are annotated to

specify either client- or server-side execution. Both languages also follow the client–server model

and feature a static type system. Other examples for multitier languages include the ML-based

Ur/Web language [Chlipala 2015] and the Eliom language [Radanne et al. 2016] and the JavaScript-

based StiP.js [Philips et al. 2018] that uses slicing to separate the server and client parts of the

program by detecting dependencies between both. Due to the restriction to client–server Web

applications, all approaches above lack language abstractions for architectural specifications and

multiple peers. Further, they do not feature language support for dynamic placement.

Languages With (Automatic) Placements. In languages such as Fabric [Liu et al. 2017, 2009]

distribution and persistence is checked based on security and privacy policies and information flow

among peers. Fabric performs remote calls using the @ notation and require two checks, one at

compile-time and one at run time. Hence, Fabric’s remote calls can fail at run time due to security

reasons. In contrast, placement is always explicit in Dyno and the type system ensures that a call

never violates the architectural specification at run time. We believe that, in addition to Dyno’s
architectural checks, an information flow type system could check security properties similar to

Fabric.

Fabric’s persistence layer, inspired by the persistence abstractions in Thor [Liskov et al. 1996]

and Theta [Liskov et al. 1995], allows the transparent distribution of the functions and objects to

the different roles. The compiler effectively separates the program and generates the roles that

each peer must perform. Similar to abstracting remote access in Java RMI (discussed in Section 8.1),

persistence abstractions lack placement correctness and architectural safety which are one of our

design goals.

Approaches that make distribution and persistence largely transparent to developers based on

crosscutting concerns such as security or privacy (e.g., Fabric) or performance or offline availability

(e.g., StiP.js [Philips et al. 2014]) apply to a domain for which the developer can provide domain-

specific knowledge. Dyno lies in a point in the design space that is general and where such

automation is not possible. On the other hand, Dyno offers explicit means for developers to reason

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:25

about placements. The reason is that – without further domain knowledge – the differences between

local and remote invocations cannot be completely abstracted away [Waldo et al. 1994].

Multitier Languages With Placement Types. Following IS5, the intuitionistic modal logic of Simp-

son [1994], Murphy VII et al. [2004] developed Lambda 5, where worlds known from modal logic

correspond to Dyno’s peers. The authors provide an interpretation for ^𝐴 to mean a reference for

a resource of type 𝐴 in some world (the exact world is not captured in the typing). The only values

that inhabit ^𝐴 are references of the form𝑤.ℓ where𝑤 is a specific world and ℓ is a label. The ^𝐴
type coincides with our references if the architecture of the program only defines one peer type

that is connected to itself. The interpretation of □𝐴 means that a resource of type 𝐴 can be used in

any world. The intuition is that if a resource still types from the point of view of a newly-created

abstract world where nothing is known, then this resource can be used in any world.

Murphy VII et al. [2008] designed the ML5 multitier language based on Lambda 5. The □ operator
is replaced with the “shamrock” operator which introduces an hypothetical world that can occur

in the type. Yet, developers cannot choose a world to substitute for the abstract one introduced

through the operator. Instead, the current world is always picked. In contrast, peer type variables

support instantiating a peer variable with a concrete peer type. In this paper, we tackle this problem

using ScalaLoci’s peer types [Weisenburger et al. 2018] which were inspired by ML5. Generalizing

multitier languages for the web client–server setup [Weisenburger et al. 2020], ScalaLoci extended

type judgments with peer types to indicate expression placement. Yet, in ScalaLoci, peer types are

part of the typing judgments and not the types themselves.

Aggregate programming. Multitier programming resembles aggregate programming in that it

promotes a global, high-level view to the developer of a computing system. This approach empha-

sizes global patterns that emerge as the result of local interactions and computations, avoiding

the need for any centralized governance. The field computing model [Lafuente et al. 2017; Mamei

and Zambonelli 2004; Viroli et al. 2019] conceptualizes the behavior of distributed setups as a

“computational field” where a function links nodes in a network to data points. The Field calcu-

lus [Audrito et al. 2019] facilitates distributed computational processes across devices in a geospatial

framework including networks of sensors, autonomous robots, or any system with a spatial compo-

nent. Operations are visualized through the computational field, i.e., relations between space-time

and data elements. Devices have the capacity to access and alter the immediate values of the

fields and, by sensing data from adjacent devices, to determine new values for these fields. This

enables a programming paradigm where challenges such as concurrency, asynchronous functions,

network dialogues, potential loss of messages, and system disruptions do not need to be addressed

directly [Audrito et al. 2022].

Choreographies. Similar to the multitier programming paradigm, in choreographic programming,

a concurrent system is defined as a single compilation unit, which is a global description of

the interactions and computations of the distributed system’s connected components [Lanese

et al. 2008; Montesi 2014]. With its formal foundations rooted in process calculi [Baeten 2005],

choreographic programming has been used to investigate new techniques on information flow

control [Lluch Lafuente et al. 2015], deadlock-free distributed algorithms [Cruz-Filipe and Montesi

2016], and protocols for dynamic run time code updates for components [Preda et al. 2017]. Role

parameters in the choreographic language Choral [Giallorenzo et al. 2020] recall Dyno’s peer types
and can be freely instantiated with different arguments. To the best of our knowledge, uncertainty

of placement decisions has not been explored so far in the context of choreographies.

HasChor [Shen et al. 2023] is a state-of-the-art implementation of a choreography library in

Haskell. In HasChor peer instances are identified in the type and thus peer types do not exist.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:26 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

This forces all applications expressed in HasChor to have a static architecture. To get around this

limitation HasChor allows quantifying over peer instances, but this placement polymorphism differs

greatly from the one supported by Dyno; quantified peers stand for any peer, thus roles expressed

in the types do not exist. Therefore HasChor is unable to represent fine-grained dynamic placement

without resorting to encoding placement and enforcing it dynamically through techniques similar

to the ones in 5.

Session Types. Multiparty session types [Honda et al. 2008] model communication protocols

in distributed systems by capturing the structure and behavior of the communication between

multiple processes at the type level. Session types ensure that communication is well-formed and

adheres to a predefined protocol. The different processes can be seen as representing different

places and hence specifying their communication as placing certain parts of the communication

protocol on certain processes. Yet, in contrast to Dyno, the processes that communicate are static

and cannot express dynamic placement.

10 CONCLUSION
Dynamic placement of computation and data is crucial in many distributed software systems. In

this paper, we present the design of Dyno, a programming language where placed values are first

class. This feature enables a novel interpretation of dynamic placement as union (placement) types.

We provide a formalization that shows that our type system is sound and it ensures placement

correctness and architectural conformance. Our evaluation shows thatDyno can reduce the potential
errors in applications using dynamic placement.

ACKNOWLEDGMENTS
We would like to thank Lukas Lehmann for the implementation of the first prototype of this work

and all reviewers of this paper for their comments and suggestions. This work is supported by

the Swiss National Science Foundation (SNSF), grant 200429, and the Basic Research Fund of the

University of St. Gallen (GFF) through the International Postdoctoral Fellowship (IPF) 1031569.

DATA AVAILABILITY STATEMENT
The artifact is available on Zenodo [Zakhour et al. 2023]. It includes the implementation of Dyno
as well as scripts which can be executed to reproduce our evaluation results.

REFERENCES
Khalil Amiri, David Petrou, Gregory R. Ganger, and Garth A. Gibson. 2000. Dynamic Function Placement for Data-Intensive

Cluster Computing. In Proceedings of the 2000 USENIX Annual Technical Conference (USENIX ATC ’00). USENIXAssociation,

San Diego, CA, 16 pages. https://www.usenix.org/conference/2000-usenix-annual-technical-conference/dynamic-

function-placement-data-intensive-cluster

AntennaPod Developers. 2011. AntennaPod – The Open Podcast Player. https://antennapod.org, https://github.com/

AntennaPod/AntennaPod. Accessed: 2023-07-30, Commit: 88289d0.

ZacharyArani, Drake Chapman, ChenxiaoWang, Le Gruenwald, Laurent d’Orazio, and Taras Basiuk. 2020. A Scored Semantic

Cache Replacement Strategy for Mobile Cloud Database Systems. In ADBIS, TPDL and EDA 2020 Common Workshops
and Doctoral Consortium, Ladjel Bellatreche, Mária Bieliková, Omar Boussaïd, Barbara Catania, Jérôme Darmont, Elena

Demidova, Fabien Duchateau, Mark Hall, Tanja Merčun, Boris Novikov, Christos Papatheodorou, Thomas Risse, Oscar

Romero, Lucile Sautot, Guilaine Talens, Robert Wrembel, and Maja Žumer (Eds.). Springer International Publishing,

Cham, 237–248. https://doi.org/10.1007/978-3-030-55814-7_20

Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvaneschi, and Mirko Viroli. 2022. Functional Programming

for Distributed Systems with XC. In Proceedings of the 36th European Conference on Object-Oriented Programming
(ECOOP ’22) (Berlin, Germany) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 222), Karim Ali and Jan

Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, Article 20, 28 pages. https:

//doi.org/10.4230/LIPIcs.ECOOP.2022.20

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

https://www.usenix.org/conference/2000-usenix-annual-technical-conference/dynamic-function-placement-data-intensive-cluster
https://www.usenix.org/conference/2000-usenix-annual-technical-conference/dynamic-function-placement-data-intensive-cluster
https://antennapod.org
https://github.com/AntennaPod/AntennaPod
https://github.com/AntennaPod/AntennaPod
https://doi.org/10.1007/978-3-030-55814-7_20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20

Type-Safe Dynamic Placement with First-Class Placed Values 297:27

Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob Beal. 2019. A Higher-Order Calculus of

Computational Fields. ACM Transactions on Computational Logic 20, 1, Article 5 (Jan. 2019), 55 pages. https://doi.org/10.

1145/3285956

J. C. M. Baeten. 2005. A Brief History of Process Algebra. Theoretical Computer Science 335, 2–113 (May 2005), 131–146.

https://doi.org/10.1016/j.tcs.2004.07.036

Stephanie Balzer. 2011. Rumer: A programming language and modular verification technique based on relationships. Ph. D.
Dissertation. Zürich, Switzerland. https://doi.org/10.3929/ethz-a-007086593

Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming the Web. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). ACM, New York, NY, USA,

153–165. https://doi.org/10.1145/2676726.2677004

Stuart Clayman, Elisa Maini, Alex Galis, Antonio Manzalini, and Nicola Mazzocca. 2014. The Dynamic Placement of

Virtual Network Functions. In 2014 IEEE Network Operations and Management Symposium (NOMS ’14). 1–9. https:

//doi.org/10.1109/NOMS.2014.6838412

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming without Tiers. In Proceedings
of the 5th International Conference on Formal Methods for Components and Objects (Amsterdam, Netherlands) (FMCO
’06), Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever (Eds.). Springer-Verlag, Berlin,

Heidelberg, 266–296. https://doi.org/10.1007/978-3-540-74792-5_12

Luís Cruz-Filipe and Fabrizio Montesi. 2016. Choreographies in Practice. In Proceedings of the 36th IFIP International
Conference on Formal Techniques for Distributed Objects, Components, and Systems (Heraklion, Greece) (FORTE ’16), Elvira
Albert and Ivan Lanese (Eds.). Springer-Verlag, Berlin, Heidelberg, 114–123. https://doi.org/10.1007/978-3-319-39570-8_8

Troy Bryan Downing. 1998. Java RMI: Remote Method Invocation (1st ed.). IDG Books Worldwide, Inc., USA.

Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2020. Choreographies as Objects. arXiv:2005.09520

Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and Pascal Weisenburger. 2021.

Multiparty Languages: The Choreographic and Multitier Cases. In Proceedings of the 35th European Conference on Object-
Oriented Programming (ECOOP ’21) (Aarhus, Denmark) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 194),
Anders Møller and Manu Sridharan (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

Article 22, 27 pages. https://doi.org/10.4230/LIPIcs.ECOOP.2021.22

Ciaran Gultnieks. 2010. F-Droid – Free and Open Source Android App Repository. https://f-droid.org. Accessed: 2023-07-30.

Daco Harkes and Eelco Visser. 2014. Unifying and Generalizing Relations in Role-Based Data Modeling and Navigation. In

Software Language Engineering, Benoît Combemale, David J. Pearce, Olivier Barais, and Jurgen J. Vinju (Eds.). Springer

International Publishing, Cham, 241–260. https://doi.org/10.1007/978-3-319-11245-9_14

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, CA, USA) (POPL
’08). ACM, New York, NY, USA, 273–284. https://doi.org/10.1145/1328438.1328472

A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, and A. Tantawi. 2006. Dynamic Placement for

Clustered Web Applications. In Proceedings of the 15th International Conference on World Wide Web (Edinburgh, Scotland)
(WWW ’06). ACM, New York, NY, USA, 595–604. https://doi.org/10.1145/1135777.1135865

Emilien Kenler and Federico Razzoli. 2015. MariaDB Essentials. Packt Publishing Ltd.
Alberto Lluch Lafuente, Michele Loreti, and Ugo Montanari. 2017. Asynchronous Distributed Execution of Fixpoint-Based

Computational Fields. Logical Methods in Computer Science 13 (2017). Issue 1. https://doi.org/10.23638/LMCS-13(1:13)2017

Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008. Bridging the Gap between Interaction-

and Process-Oriented Choreographies. In Proceedings of the 6th IEEE International Conference on Software Engineering
and Formal Methods (Cape Town, South Africa) (SEFM ’08). IEEE Computer Society, Washington, DC, USA, 323–332.

https://doi.org/10.1109/SEFM.2008.11

Lightbend Inc. 2020. Akka Scala Documentation, Release 2.4.20. Accessed: 2023-07-30.
B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Maheshwari, A. C. Myers, M. Day, and L. Shrira. 1996. Safe and

Efficient Sharing of Persistent Objects in Thor. In Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data (Montreal, Quebec, Canada) (SIGMOD ’96). ACM, New York, NY, USA, 318–329. https://doi.org/10.

1145/233269.233346

Barbara Liskov, Dorothy Curtis, Mark Day, Sanjay Ghemawat, Robert Gruber, Paul Johnson, and Andrew C. Myers. 1995.

Theta Reference Manual. http://www.cs.cornell.edu/andru/papers/thetaref.pdf. (1995). Accessed: 2023-07-30.

Jed Liu, Owen Arden, Michael D. George, Andrew C. Myers, Toby Murray, Andrei Sabelfeld, and Lujo Bauer. 2017. Fabric:

Building Open Distributed Systems Securely by Construction. Journal of Computer Security 25, 4–5 (Jan. 2017), 367–426.

https://doi.org/10.3233/JCS-15805

Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers. 2009. Fabric: A Platform for Secure

Distributed Computation and Storage. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(Big Sky, MT, USA) (SOSP ’09). ACM, New York, NY, USA, 321–334. https://doi.org/10.1145/1629575.1629606

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.3929/ethz-a-007086593
https://doi.org/10.1145/2676726.2677004
https://doi.org/10.1109/NOMS.2014.6838412
https://doi.org/10.1109/NOMS.2014.6838412
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-319-39570-8_8
https://arxiv.org/abs/2005.09520
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://f-droid.org
https://doi.org/10.1007/978-3-319-11245-9_14
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1135777.1135865
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1145/233269.233346
https://doi.org/10.1145/233269.233346
http://www.cs.cornell.edu/andru/papers/thetaref.pdf
https://doi.org/10.3233/JCS-15805
https://doi.org/10.1145/1629575.1629606

297:28 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Alberto Lluch Lafuente, Flemming Nielson, and Hanne Riis Nielson. 2015. Discretionary Information Flow Control for
Interaction-Oriented Specifications. Lecture Notes in Computer Science, Vol. 9200. Springer-Verlag, Berlin, Heidelberg,

427–450. https://doi.org/10.1007/978-3-319-23165-5_20

Tiago Macedo and Fred Oliveira. 2011. Redis Cookbook: Practical Techniques for Fast Data Manipulation. O’Reilly Media.

Marco Mamei and Franco Zambonelli. 2004. Programming Pervasive and Mobile Computing Applications with the TOTA

Middleware. In Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications. IEEE
Press, Piscataway, NJ, USA, 263–273. https://doi.org/10.1109/PERCOM.2004.1276864

Mastodon. 2016. Mastodon: Your self-hosted, globally interconnected microblogging community. https://github.com/mastodon/

mastodon Accessed: 2023-07-30.

Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: A Type-Based Foundation for Closures in the Age of

Concurrency and Distribution. In ECOOP ’14, Richard Jones (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 308–333.

https://doi.org/10.1007/978-3-662-44202-9_13

Fabrizio Montesi. 2014. Kickstarting Choreographic Programming. In Proceedings of the 13th International Workshop on Web
Services and Formal Methods (Eindhoven, Netherlands) (WS-FM ’14), Thomas Hildebrandt, António Ravara, Jan Martijn

van der Werf, and Matthias Weidlich (Eds.). Springer-Verlag, Berlin, Heidelberg, 3–10. https://doi.org/10.1007/978-3-

319-33612-1_1

Tom Murphy VII, Karl Crary, and Robert Harper. 2008. Type-Safe Distributed Programming with ML5. In Trustworthy
Global Computing (Sophia-Antipolis, France), Gilles Barthe and Cédric Fournet (Eds.). Springer-Verlag, Berlin, Heidelberg,
108–123. https://doi.org/10.1007/978-3-540-78663-4_9

TomMurphy VII, Karl Crary, Robert Harper, and Frank Pfenning. 2004. A Symmetric Modal Lambda Calculus for Distributed

Computing. In Proceedings of the 19th IEEE Symposium on Logic in Computer Science (Turku, Finland) (LICS ’04). IEEE,
Piscataway, NJ, USA, 286–295. https://doi.org/10.1109/LICS.2004.1319623

Laure Philips, Joeri De Koster, Wolfgang DeMeuter, and Coen De Roover. 2018. Search-based Tier Assignment for Optimising

Offline Availability in Multi-tier Web Applications. The Art, Science, and Engineering of Programming 2, 2, Article 3 (Dec.

2018), 29 pages. https://doi.org/10.22152/programming-journal.org/2018/2/3

Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang De Meuter. 2014. Towards Tierless Web Development

without Tierless Languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software (Portland, OR, USA) (Onward! ’14). ACM, New York, NY, USA, 69–81.

https://doi.org/10.1145/2661136.2661146

Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro. 2017. Dynamic Choreographies:

Theory And Implementation. Logical Methods in Computer Science 13, 2 (April 2017), 57 pages. https://doi.org/10.23638/

LMCS-13(2:1)2017

Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. 2016. Eliom: A core ML language for Tierless Web Programming. In

Proceedings of the 14th Asian Symposium on Programming Languages and Systems (Hanoi, Vietnam) (APLAS ’16), Atsushi
Igarashi (Ed.). Springer-Verlag, Berlin, Heidelberg, 377–397. https://doi.org/10.1007/978-3-319-47958-3_20

David Rajchenbach-Teller and Franois-Régis Sinot. 2010. Opa: Language Support for a Sane, Safe and Secure Web. http:

//owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_OPA_by_Rajchenbach-Teller.pdf. In Proceedings of the
OWASP AppSec Research (Stockholm, Sweden). Accessed: 2023-07-30.

Bob Reynders, Frank Piessens, and Dominique Devriese. 2020. Gavial: Programming the Web with Multi-Tier FRP. The Art,
Science, and Engineering of Programming 4, 3, Article 6 (Feb. 2020), 32 pages. https://doi.org/10.22152/programming-

journal.org/2020/4/6

Manuel Serrano, Erick Gallesio, and Florian Loitsch. 2006. Hop, A Language for Programming the Web 2.0. In Companion to
the 21th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (Portland, OR,
USA) (OOPSLA Companion ’06). ACM, New York, NY, USA.

Manuel Serrano and Vincent Prunet. 2016. A Glimpse of Hopjs. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming (Nara, Japan) (ICFP ’16). ACM, New York, NY, USA, 180–192. https://doi.org/10.

1145/2951913.2951916

Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor: Functional Choreographic Programming for All (Functional

Pearl). Proceedings of the ACM on Programming Languages 7, ICFP, Article 207 (Aug. 2023), 25 pages. https://doi.org/10.

1145/3607849

Alex K. Simpson. 1994. The Proof Theory and Semantics of Intuitionistic Modal Logic. Ph. D. Dissertation. http://hdl.handle.

net/1842/407

Friedrich Steimann. 2013. Content over Container: Object-Oriented Programming with Multiplicities. In Proceedings
of the 2013 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software
(Indianapolis, Indiana, USA) (Onward! ’13). ACM, New York, NY, USA, 173–186. https://doi.org/10.1145/2509578.2509582

Friedrich Steimann. 2015. None, One, Many – What’s the Difference, Anyhow?. In 1st Summit on Advances in Programming
Languages (SNAPL ’15) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 32), Thomas Ball, Rastislav Bodik,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

https://doi.org/10.1007/978-3-319-23165-5_20
https://doi.org/10.1109/PERCOM.2004.1276864
https://github.com/mastodon/mastodon
https://github.com/mastodon/mastodon
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1007/978-3-319-33612-1_1
https://doi.org/10.1007/978-3-319-33612-1_1
https://doi.org/10.1007/978-3-540-78663-4_9
https://doi.org/10.1109/LICS.2004.1319623
https://doi.org/10.22152/programming-journal.org/2018/2/3
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1007/978-3-319-47958-3_20
http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_OPA_by_Rajchenbach-Teller.pdf
http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_OPA_by_Rajchenbach-Teller.pdf
https://doi.org/10.22152/programming-journal.org/2020/4/6
https://doi.org/10.22152/programming-journal.org/2020/4/6
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1145/3607849
https://doi.org/10.1145/3607849
http://hdl.handle.net/1842/407
http://hdl.handle.net/1842/407
https://doi.org/10.1145/2509578.2509582

Type-Safe Dynamic Placement with First-Class Placed Values 297:29

ShriramKrishnamurthi, Benjamin S. Lerner, and GregMorrisett (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

Dagstuhl, Germany, 294–308. https://doi.org/10.4230/LIPIcs.SNAPL.2015.294

Hana Teyeb, Nejib Ben Hadj-Alouane, Samir Tata, and Ali Balma. 2017. Optimal Dynamic Placement of Virtual Machines in

Geographically Distributed Cloud Data Centers. International Journal of Cooperative Information Systems 26, 03 (2017).
https://doi.org/10.1142/S0218843017500010

Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei, and Danilo Pianini. 2019. From Distributed

Coordination to Field Calculus and Aggregate Computing. Journal of Logical and Algebraic Methods in Programming 109

(2019). https://doi.org/10.1016/j.jlamp.2019.100486

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. 1994. A Note on Distributed Computing. https://scholar.harvard.

edu/waldo/publications/note-distributed-computing. Sun Microsystems Laboratories (1994). Accessed: 2023-07-30.
Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Distributed System Development with ScalaLoci.

Proceedings of the ACM on Programming Languages 2, OOPSLA, Article 129 (Oct. 2018), 30 pages. https://doi.org/10.

1145/3276499

Pascal Weisenburger and Guido Salvaneschi. 2019. Multitier Modules. In Proceedings of the 33rd European Conference on
Object-Oriented Programming (ECOOP ’19) (London, UK) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 134),
Alastair F. Donaldson (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, Article 3, 29 pages.

https://doi.org/10.4230/LIPIcs.ECOOP.2019.3

Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. 2020. A Survey of Multitier Programming. Comput. Surveys
53, 4, Article 81 (Sept. 2020), 35 pages. https://doi.org/10.1145/3397495

A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation 115, 1 (1994),

38–94. https://doi.org/10.1006/inco.1994.1093

Fan Yang, Jinfeng Li, and James Cheng. 2016. Husky: Towards a More Efficient and Expressive Distributed Computing

Framework. Proceedings of the VLDB Endowment 9, 5 (Jan. 2016), 420–431. https://doi.org/10.14778/2876473.2876477

George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2023. Type-Safe Dynamic Placement with First-Class Placed
Values. https://doi.org/10.5281/zenodo.8148841

Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. 2002. Secure Program Partitioning. ACM
Transactions on Computer Systems 20, 3 (Aug. 2002), 283–328. https://doi.org/10.1145/566340.566343

Yongluan Zhou, Beng Chin Ooi, and Kian-Lee Tan. 2005. Dynamic Load Management for Distributed Continuous Query

Systems. In 21st International Conference on Data Engineering (ICDE ’05). 322–323. https://doi.org/10.1109/ICDE.2005.54

Mulki Indana Zulfa, Rudy Hartanto, and Adhistya Erna Permanasari. 2020. Caching strategy for Web application – a

systematic literature review. International Journal of Web Information Systems 16, 5 (Jan. 2020), 545–569. https:

//doi.org/10.1108/IJWIS-06-2020-0032

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

https://doi.org/10.4230/LIPIcs.SNAPL.2015.294
https://doi.org/10.1142/S0218843017500010
https://doi.org/10.1016/j.jlamp.2019.100486
https://scholar.harvard.edu/waldo/publications/note-distributed-computing
https://scholar.harvard.edu/waldo/publications/note-distributed-computing
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://doi.org/10.1145/3397495
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.14778/2876473.2876477
https://doi.org/10.5281/zenodo.8148841
https://doi.org/10.1145/566340.566343
https://doi.org/10.1109/ICDE.2005.54
https://doi.org/10.1108/IJWIS-06-2020-0032
https://doi.org/10.1108/IJWIS-06-2020-0032

297:30 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

A DYNO ANTENNAPOD IMPLEMENTATION
The following code listing shows the data types and the signatures of the important functions in

our reimplementation. App uses the metadatamap to track whether a remote media has been saved

(when the remote media is in the keyset of the map), and whether it has been downloaded (when

the reference to the local file is a Some). The savemethod takes a reference to a remote file and puts

it into the metadata map, mapping to None. The download method on App instructs the LocalFS

peer to download a copy of the byte-stream locally and return a reference to it which it will store in

the metadata map. The toByteStream method maps a media file that is dynamically placed into a

byte-stream that is dynamically placed. Similarly, play, whose source code is explained later, takes

a dynamically placed media file and player to play the file.

1 class Media(url: String)
2 trait Player { def play(s: Array[Byte]): Unit }
3

4 val metadata: Map[Media at RemoteFS, Option[Media at LocalFS]] on App
5 def save (p: Media at RemoteFS): Unit on App
6 def download (p: Media at RemoteFS): Media at LocalFS on App // deals with URLs
7

8 def toByteStream (p: Media at (LocalFS | RemoteFS)): Array[Byte] at (LocalFS | RemoteFS) on App // deals with URLs
9 def play (m: Media at (LocalFS | RemoteFS), p: Player at (LocalPsmp | CastPsmp)): Unit on App

To illustrate how architectural constraints are enforced and do not need to be handled explicitly,

we expand the definition of play in the code listing that follows. Lines 4 to 5 compute a stream from

references using the toByteStream function. Once the stream reference is obtained, an explicit

pattern match on the placement of the player must be performed, otherwise dereferencing the

media would fail at compile-time (Lines 9 and 13). The exhaustive pattern match on the dynamically

placed value has to handle each placement case (Line 11).

1 def play (m: Media at (LocalFS | RemoteFS),
2 p: Player at (LocalPsmp | CastPsmp): Unit = on[App] {
3

4 val s: Array[Byte] at (LocalFS | RemoteFS) = toByteStream((m.toEither[LocalFS, RemoteFS] flatMap {
5 remoteMedia => metadata.get(remoteMedia).toLeft(remoteMedia) }).fromEither)
6

7 p.toEither[LocalPsmp, CastPsmp] match {
8 Left(p) => on[LocalPsmp].run.capture(p, s) {
9 p.deref.play(on(s.peer).run.capture(s) { s.deref }.asLocal) },
10 Right(p) => s.toEither[LocalFS, RemoteFS] match {
11 Left(_) => error("Cannot play local file remotely")
12 Right(s) => on[CastPsmp].run.capture(p,s) {
13 p.deref.play(on(s.peer).run.capture(s) { s.deref }.asLocal) } } } }

Worthy of note is that the media byte-stream will only ever be sent across the wire when the

reference is dereferenced, i.e., the data will only travel across the tie between a player and a file

system without any hops.

Qualitative Conclusions. Qualitatively, the example of the play function illustrates two differences

between AntennaPod’s version and Dyno’s. First, due to the representation of placement as an

implementation of a common interface in AntennaPod, there are two play functions for each

placement, and the setup before playing is duplicated verbatim. Our single play function eliminates

code duplication and uses explicit language constructs to direct control flow dynamically to different

peers. Second, these constructs guarantee safe access to dynamically placed values in contrast to

AntennaPod, where placement checks – as shown earlier – are incomplete and hidden behind

nested function calls.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

Type-Safe Dynamic Placement with First-Class Placed Values 297:31

B PROOFS
This appendix lists the proof of every result from Sections 6.4 and 6.5. When we deem parts of proofs

not insightful we present them crudely without delving too deep in the details. The presentation of

the proofs follows the same order as they appear in Section 6.

Proof of Progress (Theorem 1). The proof follows the traditional proof by structural induction

on the typing derivation. Case T-Var: does not apply. Cases T-Abs, T-Label, T-Peer: follows trivially

from the fact that the expression is a value. Case T-App: follows by the induction hypothesis

or by applying E-App. Case T-Broad: follows from applying E-Context or E-Broad. Case T-

Peerof: follows from applying E-Context or E-Peerof. Case T-Match and T-PMatch: follows

from applying E-Context or E-Match or E-PMatch. The latter two rules’ precondition follow

immediately from the precondition of the typing rule. Case T-Deref: follows from applying E-

Context or either E-Deref-OK or E-Deref-Err. One of the latter two rules must apply since the

disjunction of their preconditions is always true when the codomain of 𝜎 contains values. If it

does not then E-Conc-Lab applies. Case T-Remote: follows from E-Context or by the induction

hypothesis or by E-Rem-Move, E-Rem-Eval, E-Rem-OK, or E-Rem-Err. □

Proof of Preservation (Theorem 2). The proof follows the traditional proof by structural in-

duction on the typing derivation. The cases for T-Peer, T-Label, T-Var, and T-Abs do not apply

because no evaluation rules exists to reduce the expression. Case T-Broad: follows by the induction

hypothesis or by using E-Broad and T-Broad again. Case T-Peerof: follows by the induction

hypothesis or by using E-Peerof and T-Peer. Cases T-App, T-Match, and T-PMatch: follow by the

induction hypothesis or using the fact that the type is preserved under substitution. Case T-Deref

follows from the induction hypothesis, or either from the reduction E-Deref-OK or E-Deref-Err

followed by the preservation of types under substitution. T-Remote follows from the induction

hypothesis, or from the preservation of types under substitution, or from using T-Label.

If at any time E-Conc-Rem or E-Conc-Lab are used then the theorem follows by the induction

hypothesis and the assumption that 𝜎 is well-typed and that Ω is coherent with it. □

Proof of Store Well-Typeness Preservation (Lemma 1). By structural induction on the eval-

uation rules. Cases E-Dist, E-App, E-Broad, E-Match, E-PMatch, E-Peerof, E-Deref-OK, E-

Deref-Err, E-Rem-Move: follows trivially because the store is not modified. Cases E-Context and

E-Rem-Eval: follows from the induction hypothesis. Cases E-Rem-Err: follows from the definition

of a well-typed store and the fact that 𝜎 is well-typed. Cases E-Rem-OK and E-Conc-Rem: follows

from the preconditions of T-Remote which is assumed to apply. Case E-Conc-Lab: Using the

induction hypothesis and Theorem 2. □

Proof of Configuration Coherence Preservation (Lemma 2). By structural induction on the

evaluation rules. Cases E-Context, E-Rem-Eval, and E-Conc-Lab: follows from the induction

hypothesis. Cases E-Conc-Rem, E-Rem-OK, E-Rem-Err, E-Broad, and E-Peerof: follows from the

assumption with the observation that no new labels or peers are created. Cases E-App, E-Match,

E-PMatch, E-Deref-Err, and E-Deref-OK: from the observation that coherence is preserved

under substitution. □

Lemma 3 (Single Reference Creation). Let Ω ⊨ A and 𝜋 : p ∈ Ω such that Ω is picked from
a consistent and coherent sequence of configurations with e and a well-typed store 𝜎 under A; Γ be
given. If A; Γ ⊢ e : T on p and Ω;𝜎 ⊲ e →𝜋 Ω′

;𝜎 ′ ⊲ e′ then dom 𝜎 ′ = dom 𝜎 or 𝜎 ′ = 𝜎, ℓT at 𝜋p
: e′′

or 𝜎 ′ = 𝜎, ℓT at 𝜋p
: ⊥.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

297:32 George Zakhour, Pascal Weisenburger, and Guido Salvaneschi

Proof. By structural induction on the evaluation then either the first case follows for E-App,

E-Peerof, E-Broad, E-Match, E-PMatch, E-Deref-OK, E-Deref-Err, E-Rem-Move, and E-Dist

because the store is left unchanged. For the cases E-Context, E-Rem-Eval, and E-Conc-Lab

then the lemma follows using the induction hypothesis. For the cases E-Rem-OK, E-Rem-Err, and

E-Conc-Rem then the last case follows from the observation that a single reference is being added

to the store. □

Proof of Non-Circular Store (Theorem 3). Using induction on the number of evaluations per-

formed. First, by definition the empty store · is non-circular. Next, assume that 𝜎 is non-circular.

From the single reference creation lemma (Lemma 3) we know that after an evaluation then

dom 𝜎 ′ = dom 𝜎 or 𝜎 ′ = 𝜎, ℓT at 𝜋p
: e′′ or 𝜎 ′ = 𝜎, ℓT at 𝜋p

: ⊥.
The first case holds by another reasoning by induction on the number of derivations where we

attempt to prove that a reference not in the domain of 𝜎 cannot occur in its codomain. The inductive

argument is as follows: the base case where the store is empty is vacuously true. Reasoning by

contradiction, assume that the label to be added to the domain of 𝜎 already occurs in its codomain.

The only rules that allow adding a reference are E-Rem-OK and E-Conc-Rem whose precondition

requires that the label not be in the codomain. Armed with this result, observe that the only rule

worth discussing that doesn’t degenerate to 𝜎 ′ = 𝜎 is E-Conc-Lab. Observe that its precondition

prevents a cycle of length 1 from occurring. Moreover, the result we are armed with prevents any

cycle of length larger than 1 from occurring. Therefore 𝜎 ′
is non-circular.

The second case can only happen if the evaluation rule used is E-Rem-OK or E-Conc-Rem. In

both cases the precondition requires that the newly created reference to not be in 𝜎’s domain nor

codomain. Therefore, by definition of non-circularity, 𝜎 ′
is non-circular.

The last case is by definition non-circular. □

Proof of Local Placement (Theorem 4). By structural induction on the typing derivations. All

cases either follow from the induction hypothesis and from the observation that every typing

judgement in the preconditions requires the expression to type on the same peer. The only exception

is the T-Remote rule. In that case it is crucial to observe that the remote expression is typed only

under the variable names of the captured expressions which are placed on the peer where the

remote execution occurs. In other words, the slice of that typing environment is identical to itself

which justifies using the induction hypothesis. □

Proof of Correct Reference Placement (Corollary 1). The first result, that P = p2 follows
immediately from the type preservation theorem (Theorem 2). The second result, that p3 = p2,i for
some 𝑖 follows from the precondition of T-Label and the type preservation theorem. □

Proof of Architectural Soundness (Theorem 5). By structural induction on the evaluation

rules done on the first evaluation then all cases either are trivial or follow directly from the

induction hypothesis. Only two cases are not direct.

Case E-Deref-OK: 𝜎1 and 𝜎2 agree on all expressions except for those at 𝜋2. We consider two

cases, the label being dereferenced is and is not on 𝜋2. It it is not then by the definition of agreeing

stores the result holds. Since the two peers are connected then the E-Deref-OK rule can be applied

to derive different expressions. However this contradicts the assumption that the term is well-typed

because T-Deref requires there to be a tie between p1 and p2 and there is none.

Cases E-Conc-Rem and E-Rem-Eval: The argument as the case of E-Deref-OK holds. With the

exception that the contradiction happens with T-Remote. □

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 297. Publication date: October 2023.

	Abstract
	1 Introduction
	2 Background
	3 Dyno Programming Abstractions
	3.1 First-class Placed Values
	3.2 Dynamically Placed Values
	3.3 Placement Inspection

	4 Dyno in Action
	4.1 Dynamically Distributed Data Structures
	4.2 Dynamically Placed Computations
	4.3 Architecture-Conformant Dynamic Placement

	5 Placement Correctness
	6 Formalization
	6.1 Syntax
	6.2 Evaluation Rules
	6.3 Typing Rules
	6.4 Type Soundness
	6.5 Properties of Dynamic Placements and Architectural Soundness

	7 Implementation
	8 Evaluation
	8.1 Analysis of Variants: Dynamic Placement in Dyno vs. Java RMI vs. Akka Typed
	8.2 Performance
	8.3 Open-Source Case Study
	8.4 Dynamic Placement in the F-Droid App Store

	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Dyno AntennaPod Implementation
	B Proofs

