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Type-Checking CRDT Convergence

GEORGE ZAKHOUR, PASCAL WEISENBURGER, and GUIDO SALVANESCHI,
University of St. Gallen, Switzerland

Conflict-Free Replicated Data Types (CRDTs) are a recent approach for keeping replicated data consistent
while guaranteeing the absence of conflicts among replicas. For correct operation, CRDTs rely on a merge
function that is commutative, associative and idempotent. Ensuring that such algebraic properties are satisfied
by implementations, however, is left to the programmer, resulting in a process that is complex and error-prone.
While techniques based on testing, automatic verification of a model, and mechanized or handwritten proofs
are available, we lack an approach that is able to verify such properties on concrete CRDT implementations.

In this paper, we present Propel, a programming language with a type system that captures the algebraic
properties required by a correct CRDT implementation. The Propel type system deduces such properties by
case analysis and induction: sum types guide the case analysis and algebraic properties in function types
enable induction for free. Propel’s key feature is its capacity to reason about algebraic properties (a) in terms
of rewrite rules and (b) to derive the equality or inequality of expressions from the properties. We provide
an implementation of Propel as a Scala embedding, we implement several CRDTs, verify them with Propel

and compare the verification process with four state-of-the-art verification tools. Our evaluation shows that
Propel is able to automatically deduce the properties that are relevant for common CRDT implementations
found in open-source libraries even in cases in which competitors timeout.
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1 INTRODUCTION

Distributed systems replicate data to different machines for scalability and fault tolerance. Replica-
tion, however, raises the issue of keeping data consistent among the different replicas. On one side
of the spectrum are approaches that provide strong consistency to ensure all replicas always hold
the exact same copy of the replicated state [Ellis and Gibbs 1989]. Strong consistency incurs heavy
coordination overhead and high latencies. Network partitions even make it infeasible to keep data
consistent across different partitions without blocking data access completely. On the other side of
the spectrum are systems that sacrifice strong consistency for availability and improved latency [Vo-
gels 2009]. By allowing the data on different replicas to be changed independently, however, the
state of the replicas might diverge over time and has to be reconciled to make changes eventually
become visible everywhere. In particular, reconciling diverged states requires to resolve conflicts,
i.e., when the same data was changed to different values on different replicas independently.
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Hence, to make sure that data is both available and (eventually) consistent, developers need to
design proper conflict resolution schemes, which is error-prone and hard to implement [Kleppmann
and Beresford 2017; Shapiro et al. 2011b]. Thus, recent research focuses on Conflict-Free Replicated
Data Types (CRDTs), which avoid conflicts by design and provide strong eventual consistency, i.e.,
not only will all updates be observed eventually on all replicas, but two replicas that have seen the
same set of updates will be in the same state [Shapiro et al. 2011b].

To avoid conflicts, state-based CRDTs use clever encodings to represent specific data structures,
such that the state space of the encoding forms a semilattice. A large amount of recent work presents
such encoding for various data structures [Almeida et al. 2018; Bieniusa et al. 2012; Kleppmann 2017;
Kleppmann and Beresford 2017; Nicolaescu et al. 2015; Shapiro et al. 2011a]. A semilattice ⟨(,⊔⟩ is
defined by a binary operation ⊔ on its carrier set ( that is commutative, associative and idempotent.
In the context of CRDTs, this operation is often called merge and enables that the (diverged) state
of two replicas can be joined automatically. Hence, two or more CRDTs in a different state can
always converge to the merge of their states.
Ensuring convergence is even more critical since CRDTs cannot be easily composed. Hence, to

take advantage of CRDTs, programmers have two choices: resorting to an existing CRDT for a data
structure that fits their use case (if it exists), or implementing their own CRDT. Either way, the
implementation must provide a correct merge function for the underlying semilattice.
Programmers have different ways to check these properties, like contracts, software testing or

formally verifying a model by translating to formats readable by model checkers or SMT solvers.
Research on new CRDTs typically resorts to manually proving convergence, or presents informal
arguments based on pseudo code. Such approaches do not cover the complete input space, operate
on a model instead of on the program directly, or require extensive manual work to provide proofs.
Hence, ensuring the convergence of CRDTs is ultimately left to the programmer. Whereas advanced
static type systems can provide a variety of correctness guarantees, we lack mechanisms that
consider the algebraic properties required for CRDT convergence.

We propose a technique that proves the properties relevant to CRDTs automatically and directly

on the implementation. We accomplish this by providing a type system that is able to reason about
such algebraic properties, in particular about commutativity, associativity and idempotence. Thus,
for a definition that is given the type of a commutative function, the type checker guarantees that
it is commutative. Conversely, when encountering a function that has a commutative type, the
type checker can use that fact to deduce algebraic properties of the code using the function. Thus,
the type system approach enables deriving properties of the composition of functions.
To check an algebraic property of a function, our type system constructs a property derivation

tree (a proof for the property) in addition to the usual typing derivation. To this end, our type system
contains a proof engine, tailored to these algebraic properties. The exploration of possible trees is
not complete due to the large search space. Still, our approach outperforms existing solutions that
can prove algebraic properties for CRDT convergence directly on the implementation [Claessen
et al. 2012; Sonnex et al. 2012] in terms of properties proven within a timeout. In contrast to Propel,
the other approaches lack the ability to reason about algebraic properties and the (in)equality of
expressions they induce. In summary, this paper makes the following contributions:

• We design Propel, a language with a type system tailored to ensure convergence of CRDTs.
• We implement Propel as an embedding into Scala (Section 3).
• We formally present the Propel type system that guarantees functions obey specified algebraic
properties and prove its soundness, i.e., that derived properties do hold (Section 4).
• We evaluate Propel on common CRDT implementations found in open-source projects and
show that it can to prove the relevant algebraic properties of these CRDTs automatically,
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whereas existing approaches that allow expressing such properties and verifying them directly
on the implementation lack algebraic reasoning and fail to derive them (Section 5).

2 MOTIVATING EXAMPLE

As a running example, we use a Grow-only Counter (GCounter), a common CRDT, which is a
replicated counter that can be incremented on different replicas independently from each other
without the need for synchronization: The state of the GCounter replicas might be temporarily
different until the state is merged. While a GCounter is a relatively simple CRDT, it showcases the
compositionality issues that demand a type-based solution and how verifying CRDTs requires to
reason about the interaction of the algebraic properties of the functions and relations involved.

A straightforward implementation of a GCounter’s state is a list of numbers where the index in
the list represents the replica and the value at a given index represents the current count for the
respective replica. Hence, GCounters store a list of the current count for each replica. Merging two
states zips the lists (to pairwise combine the counts that refer to the same replica) and takes the
maximum for each pair (ensuring the every increment is counted exactly once):

def mergeGCounter(x: List[Num], y: List[Num]): List[Num] = zipWith(max)(x, y)

From the definition of mergeGCounter, it is not immediately clear whether such function imple-
ments a valid merge operation. In particular, a valid merge operation needs to be commutative (and
also associative and idempotent). Whether mergeGCounter is commutative depends on whether
the arguments x and y commute for zipWith(max) (defined later in Listing 2); and whether the
arguments commute depends on which function is applied to zipWith as its first argument – here
max. In fact, x and y commute for zipWith if and only if its first argument is a commutative function
– which max is. Hence, to deduce commutativity under function composition, we need an approach
that tracks commutativity properties of functions.

Clearly, we need to apply this kind of reasoning on algebraic properties of (compositions of) func-
tions to all possible return values (i.e., for all branches a function can take). For illustration, consider
the implementation of max (Listing 1) used in the mergeGCounter example – the implementation
contains a subtle programming error that is not caught by standard type systems.

Listing 1. Faulty definition of max.

1 enum Num:
2 case Zero; case Bit0(num: Num); case Bit1(num: Num)
3

4 def max(x: Num, y: Num): Num = (x, y) match
5 case (Zero, y) => y
6 case (x, Zero) => x
7 case (Bit0(x), Bit0(y)) => Bit0(max(x, y))
8 case (Bit1(x), Bit1(y)) => Bit1(max(x, y))
9 case (Bit0(x), Bit1(y)) =>

10 if equals(max(x, y), y) then Bit0(y) else Bit0(x)
11 case (Bit1(x), Bit0(y)) =>

12 if equals(max(x, y), x) then Bit1(x) else Bit1(y)

Deriving commutativity of max requires case
analysis on the different branches. In particular,
which branch is taken depends on the equals
function (Lines 10 and 12). Thereby, commuta-
tivity of max relies on the relational properties
of equals, specifically reflexivity, symmetry
and antisymmetry (i.e., an equality relation).
Hence, tracking properties of functions and re-
lations and analyzing the branches they lead to
are at the core of our approach. The discussion
on commutativity extends analogously to the
other properties important for CRDT merge functions, i.e., associativity and idempotence.
Since checking whether functions satisfy certain properties is essential for ensuring CRDT

convergence, we argue that these properties should receive the same level of correctness guar-
antees that a static type system provides. Ideally, a type system should catch the bug in the max
implementation that makes it non-commutative. We will present a correct version in Listing 3.

3 PROPEL

In this section, we introduce the design of Propelwith a type system that allows specifying algebraic
properties in the type of functions. While the surface of Propel is intentionally minimal – the
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only distinctive feature exposed to the developer is the ability to specify such function properties
– Propel’s core is the typing derivation proving that the properties hold. As usual, if a specified
property cannot be deduced for a given function, the program is rejected by the type system.
Section 4 presents the type system in a core calculus. Instead, the examples in this section use

an embedding of Propel into Scala, where algebraic properties of binary functions are expressed
by a type of the form P :=(A,A)=>: B. P are the properties of the function and A and B the types
of the function arguments and the result. For example, a Propel function on numbers that asserts
commutativity of its arguments has type Comm :=(Num,Num)=>: Num. The introduction form for
Propel functions in the embedding is the prop[FunctionType] construct (or prop.rec for recursive
functions). Technically, prop is a macro that invokes the Propel type checker. For example, the
following is a commutative, associative and idempotent version of the mergeGCounter function:

def mergeGCounter = prop[(Comm & Assoc & Idem) := (List[Num], List[Num]) =>: List[Num]] { zipWith(max) }

The mergeGCounter function type-checks since Propel can successfully derive the stated proper-
ties. We describe how algebraic properties of functions are derived in the following sections.

3.1 The Propel Framework for Property Deduction

This section introduces the core ideas of Propel’s type checking. For functions, Propel first deduces
the algebraic properties, e.g., f(x,y) ?

=f(y,x) for commutativity of a function f. Relations are
represented by functions that return booleans. Once a property is proved, Propel uses the fact that
it holds in all use sites of the function, e.g., f(x,y) can be rewritten to f(y,x) if f is commutative.
Table 1 shows the properties currently supported by Propel, which consist of (a) the essential

algebraic properties discussed so far to prove CRDT convergence and (b) relational properties that
are typically important to decide which branch a function takes. Relational properties enable the
type system to reason about equality (which we will discuss later under Equalities).

The column Equations to prove shows the equations that need to be proven to ensure a property
holds, e.g., f(x,y) ?

=f(y,x) for commutativity. To prove such an equation, Propel first expands the
body of the function f. Then, Propel tries to derive a sequence of rewrites of the equation that leads
to both sides being syntactically identical. Such rewriting process is a proof that the property holds
for f. If the type system fails to find such a sequence, it rejects the program.

Propel is sound but incomplete, i.e., it may not be able to derive that a property holds even though
it does but deriving a property guarantees that it holds. Since exploring all possible rewrites is
infeasible, the exploration is restricted to a fixed number of “best” terms (according to an heuristics)
after every rewrite. The concrete algorithm is in Section 3.4, whereas the formalization in Section 4
proves the soundness of our rewrites without imposing a specific algorithm to find a rewrite chain.
Propel constructs a property derivation tree (similar to typing derivation trees for standard

type checking), which mixes applications of rewrite rules and case analysis and maintains a set of
equalities that have been discovered to hold.

Rewrite rules. Our rewrite rules retain the equivalence of terms in the sense that terms evaluate
to the same value for all arguments before and after the rewrite. Rewrites operate on open terms,
where free variables symbolically represent arbitrary values of the correct type. The rules include

• the evaluation rules of the operational semantics extended to open terms,
• the algebraic rules that hold for a specific function as given in the Derived equalities and

inequalities column, (e.g., commutativity for a function f allows rewriting f(x,y) to f(y,x)

for arbitrary terms x and y) and
• the ability to rewrite a term x to a term y if x and y were discovered to be equal. Equality of
terms can be discovered by case analysis or relational properties that induce equality.
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Table 1. Propel’s algebraic properties of binary functions ◦ and relations '.

Property Equations to prove ( ?=) Derived equalities (=) and inequalities (≠)

Commutativity G ◦ ~
?
= ~ ◦ G ⊲ G ◦ ~ = ~ ◦ G

Associativity (G ◦ ~) ◦ I
?
= G ◦ (~ ◦ I ) ⊲ (G ◦ ~) ◦ I = G ◦ (~ ◦ I )

Selection G ◦ ~
?
= G or G ◦ ~

?
= ~ ⊲ G ◦ ~ = G or G ◦ ~ = ~

Idempotence G ◦ G
?
= G ⊲ G ◦ G = G

Reflexivity G'G
?
= ⊤ ⊲ G'G = ⊤

G'~ = ⊥ ⊲ G ≠ ~

Irreflexivity G'G
?
= ⊥ ⊲ G'G = ⊥

G'~ = ⊤ ⊲ G ≠ ~

Symmetry G'~ → ~'G
?
= ⊤ G'~ = ⊤ ⊲ ~'G = ⊤

G'~ = ⊥ ⊲ ~'G = ⊥

Antisymmetry G'~ → ¬~'G
?
= ⊤ for G ≠ ~ G'~ = ⊤ ⊲ ~'G = ⊥, G ≠ ~ or G = ~

Connectedness G'~ ∨ ~'G
?
= ⊤ for G ≠ ~ G'~ = ⊥ ⊲ ~'G = ⊤, G ≠ ~ or G = ~

Transitivity G'~ ∧ ~'I → G'I
?
= ⊤ G'~ = ⊤, ~'I = ⊤ ⊲ G'I = ⊤

Case analysis. We perform case analysis on pattern matches (with which also if-then-else

can be expressed). Pattern matching with more than one case results in a branch in the property
derivation tree, i.e., Propel proves that the property holds for every branch. When branching, Propel
collects equalities and inequalities that hold in every branch. For example, when pattern-matching
on a variable x with the patterns Bit0(y), Bit1(y) and Zero, we add x=Bit0(y), x≠ Bit1(y) and
x≠ Zero to the set of (in)equalities in the first branch.

Equalities. Propel keeps track of expressions that were discovered equal. While there is no
equality check built-in as a language construct, there are two ways to deduce that two expressions
are equal. First, for pattern matching, unification of patterns with the scrutinee binds variables to
expressions, hence variables and bound expressions are treated equal (as described before under
Case analysis). Second, some relational properties (namely reflexivity, irreflexivity, antisymmetry
and connectedness, cf. Table 1) dictate their elements are equal or unequal. For example, if a relation
r is reflexive and we know r(x,y)=false (in some branch), we deduce x≠y (in the same branch).

Based on both options, wemaintain a set of expressions known to be equal and a set of expressions
known to be unequal. The role of the equality sets is twofold. First, equalities define rewrite rules,
i.e., expressions that are equal can be rewritten into each other. Second, they enable reductio ad
absurdumwhen both the equality and the inequality of the same two expressions is known. Similarly,
deriving an equation which is provably false due to different data constructors is a contradiction,
i.e., Bit0(x)=Bit1(x); clearly, a branch where this equality would hold can never be taken.

3.2 Type-Based Deduction of Algebraic and Relational Properties

Table 1 provides an overview of the treatment of (in)equalities for each property supported by
Propel. The Equations to prove column provides the equation that needs to be checked to derive
that a specific property holds. An “or” means it is sufficient to derive either equation. The Derived
equalities and inequalities provides the (in)equalities we can derive and the rewrite rules we can
apply knowing that a property holds for a certain function. An “or” means both possibilities need
to be examined, i.e., this situation constitutes a branch in the property derivation tree. � ⊲ � means
that, given � is a subset of the equality set, we can derive the equalities � .

The only way to verify the properties of recursive functions requires reasoning by induction. In
our system, using an induction hypothesis at the recursive call amounts to using the rewrite rules
induced by the function’s properties. Because these are tracked in the type of the function they are
available at the recursive call. Therefore no special treatment is needed for induction and we get it
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for free under the assumption that the function terminates. Proof techniques that treat induction
implicitly are known as inductionless induction or proof by consistency [Comon 2001; Wirth 2005].
Techniques to reject potentially nonterminating recursive functions exist [Barthe et al. 2006, 2004;
Giménez 1995] which, we assume, are used on recursive functions when proving properties.

Listing 2. Definition of zipWith.

1 def zipWith[P >: (Comm & Assoc & Idem), T] =
2 prop.rec[(P := (T, T) =>: T) => (P := (List[T], List[T]) =>: List[T])]:
3 zipWith => f =>
4 case (Nil, y) => y
5 case (x, Nil) => x
6 case (x :: xs, y :: ys) => f(x, y) :: zipWith(f)(xs, ys)

Algebraic properties. As an
example, consider the defi-
nition of zipWith (Listing 2)
used in mergeGCounter. The
type parameter T denotes the
type of the elements in the
lists to zip; the type parameter P >:(Comm & Assoc & Idem) can be instantiated to any combination
of the three properties. The first argument of zipWith is a function f of type P :=(T,T)=>: T, i.e.,
a binary operation on values of type T with the algebraic properties P, the arguments x and y are
of type List[T]. Further, zipWith has the same properties P as f, i.e., by the type P :=(List[T],
List[T])=>: List[T], zipWith is commutative, associative or idempotent if f is.
Thus, we need to derive each property for zipWith under the assumption that f has the same

property. For commutativity, we set up the equation zipWith(f)(x,y) ?
=zipWith(f)(y,x), which

needs to hold for all f, x and y. A case analysis on the branches of zipWith shows that commutativity
trivially holds for x=Nil since the expressions reduce to y ?

=y and for y=Nil since the expressions
reduce to x ?

=x. The only interesting case is f(x,y):: zipWith(f)(xs,ys) ?
=f(y,x):: zipWith(f)(

ys,xs). Since, the types of both f and zipWith assert commutativity, we can swap the order of
the x and y and the xs and ys arguments in both calls. The last case illustrates how we can reason
about recursive definitions without explicit induction by lifting algebraic properties to the type.
Rewriting one side of the equation leads to an expression that is syntactically identical to the one
on the other side. Similar derivations can be constructed for associativity and idempotence.

Listing 3. Definition of max.

1 def max = prop.rec[(Comm & Assoc & Idem) := (Num, Num) =>: Num]: max =>
2 case (Zero, y) => y
3 case (x, Zero) => x
4 case (Bit0(x), Bit0(y)) => Bit0(max(x, y))
5 case (Bit1(x), Bit1(y)) => Bit1(max(x, y))
6 case (Bit0(x), Bit1(y)) =>

7 if equals(max(x, y), y) then Bit1(y) else Bit0(x)
8 case (Bit1(x), Bit0(y)) =>

9 if equals(max(x, y), x) then Bit1(x) else Bit0(y)

Listing 4. Definition of equals.
1 def equals =

2 prop.rec[(Refl & Sym & Antisym) := (Num, Num) =>: Boolean]: equals =>
3 case (Zero, Zero) => true
4 case (Bit0(x), Bit0(y)) => equals(x, y)
5 case (Bit1(x), Bit1(y)) => equals(x, y)
6 case _ => false

Relational properties. The
conditions onwhich functions
branch are often formulated
in terms of relations, e.g., or-
dering or equality. We revisit
the initial example of the (now
corrected and property-type-
checked version of the) max
function on numbers (List-
ing 3).We observe that the last
two branches check whether
max(x,y) equals y or x, respec-
tively. While commutativity is
straightforward, we need ad-
ditional knowledge of the equals relation to derive associativity. Being an equality relation, equals
(Listing 4) is reflexive, symmetric and antisymmetric. From these properties follows that, in Line 9
(Listing 3), max(x,y)=x in the then-branch and max(x,y)≠ x in the else-branch.

To derive associativity of max, we postulate max(Bit0(x),max(Bit1(y),Bit0(z))) ?
=max(max(

Bit0(x),Bit1(y)),Bit0(z)). The interesting case is when the left-hand side matches Line 7, and
the right-hand side matches Line 9. On the left-hand side, the if condition on equals(max(x,y),y)

requires case analysis: First, the case max(x,y)≠ y lets us rewrite the equation max(Bit0(x),Bit1(

y))=Bit1(y) to Bit0(x)=Bit1(y), which is a contradiction. Hence, we know this case cannot be
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reached; analogously for max(y,z)≠ y on the right-hand side. Second, the case max(x,y)=y on the
left-hand side of the equation and max(y,z)=y on the right-hand both reduce to Bit1(y), proving
the equation holds. The remaining cases of max are proven using the same kind of reasoning.

3.3 Deduction of Auxiliary Properties

Listing 5. Variants of Peano number addition.

1 enum Nat:
2 case Zero; case Succ(pred: Nat)
3

4 def add2p =
5 prop.rec[(Comm & Assoc) := (Nat, Nat) =>: Nat]: add2p =>
6 case (Zero, y) => y
7 case (Succ(x), y) => Succ(add2p(x, y))
8

9 def add3p =
10 prop.rec[(Comm & Assoc) := (Nat, Nat) =>: Nat]: add3p =>
11 case (Zero, y) => y
12 case (x, Zero) => x
13 case (Succ(x), Succ(y)) => Succ(Succ(add3p(x, y)))

In practice, successful property deduc-
tion often depends on additional proper-
ties specific to a certain function not cap-
tured by the set of algebraic properties
presented so far (in Table 1). Hence, Pro-
pel tries to discover such auxiliary prop-
erties. To this end, before attempting to
deduce a specified algebraic property, Pro-
pel conjectures a set of potentially useful
equations for a function and tries to prove
them. Successfully proven equations are
added to set of expressions that are known
to be equal. The required auxiliary properties can subtly depend on the way a function is defined.

For example, for addition of Peano numbers (Listing 5), deducing commutativity for add2p does
not rely on additional properties. Deducing commutativity for add3p, however, requires a statement
about how the successor constructor Succ can be moved outwards from the function’s arguments,
i.e., add3p(Succ(x),y)=Succ(add3p(x,y)) and add3p(x,Succ(y))=Succ(add3p(x,y)).

Proving a conjecture can fail because it is false or because its proof requires another conjecture
not proven yet. Hence, once a conjecture is proven, it is added to the set of known equalities and
can be used to prove other conjectures from then on. Thus, when a new conjecture is proven, Propel
retries proofs of failed conjectures until all conjectures are proven or no progress is made.

Note that conjectures, however they look like, can never impair the soundness of the prover, since
any conjecture requires a proof before being used. Therefore, the specific conjecture generation
approach is not part of Propel’s core calculus. It is, however, fundamental for being able to prove
the desired algebraic properties. Hence, we describe Propel’s techniques to discover equations next.

Case Analysis and Generalization. To derive auxiliary properties, we perform a case analysis on
the function we are examining, based on the different possible input values. To this end, for every
argument which is of an algebraic data type, we generate possible values. For Peano numbers,
for instance, possible values are Zero, Succ(Zero), Succ(Succ(Zero)), etc. We found that is often
enough to unfold every recursive type only once, i.e., generating x, Zero and Succ(x) for fresh
variables x. The case analysis for the different argument values (a) yields the expression of the
branch that the function takes for the given arguments and (b) refines the arguments further based
on the patterns matched to take the respective branch. The result of the case analysis is a set of
equations where the left-hand side is the function applied to the arguments and the right-hand side
is the expression of the branch taken for the given arguments. While the equations derived this way
are trivially provable, we apply the following two generalizations to obtain further conjectures.

First, if the right-hand side is the same as one of the arguments on the left-hand side, we replace
both by a variable. For example, add(Zero,Succ(y)) ?

=Succ(y) is generalized to add(Zero,y) ?
=y.

Second – as the left-hand side has the form 5 00 . . . 0= by construction – for all variables that
appear free in both the left- and right-hand side, we check (i) if they appear only within a single
argument 08 of 5 on the left-hand side, and (ii) if 08 has the same type as the result of 5. If this is
the case, we generate (a) left-hand sides where all arguments except 08 are generalized to variables
and (b) right-hand sides where an arbitrary subexpression 4 9 that matches the type of 5 is replaced
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Algorithm 1 Property Deduction

1: procedure Deduce(5 )
2: C← AuxiliaryEqations(5 ) ⊲ Section 3.3
3: C← C ∪ AlgebraicEqations(5 ) ⊲ Table 1
4: P← ∅

5:
6: repeat

7: P′← ∅

8: for all ? ∈ C do

9: if Verify(?, P) then

10: P′← P′ ∪ {? }

11: C← C \ P′

12: P← P ∪ P′

13: until P′ = ∅ ∨ C = ∅

14:
15: if AscribedProperties(5 ) ⊈ P then

16: return PropertyDeductionError

17: else

18: return P

Algorithm 2 Property Verification

1: procedure Verify(?, P)
2: return

∧
(?′,E′ ) ∈Cases(?,P) Eqal(?′, P, E′ )

3:
4: procedure Eqal(?, P, E)
5: R← Rewrite(?, P, E)

6: { ?′ } ← Top(R, 1)

7: (40
?
= 41 ) ← ?

8: (4′
0

?
= 4′

1
) ← ?′

9: return Contradiction(E)

10: ∨ 4′
0
= 4′

1

11: ∨ (? ≠ ?′ ∧ Verify(?′, P, E) )

12:
13: procedure Rewrite(C, P, E)
14: C† ← ToSubterms(C )

15: C‡ ← { C ′ ∈ Rewrite(C†, P, E) }

16: C‡†← { FromSubterms(C ′ ) | C ′ ∈ C‡ }

17: C‡‡←
⋃

C ′∈C‡† ApplyEqations(C ′, P, E)

18: return Top(C‡‡, # )

by the function call 5 of the left-hand side with 08 replaced by 4 9 , i.e., 5 00 . . . 4 9 . . . 0= . For example,
a generalization of add(Zero,Succ(y)) ?

=Succ(y) is add(x,Succ(y)) ?
=Succ(add(x,y)).

While the equations derived this way in principle constitute possible rewrites in two directions,
we restrict them to rewrites from the left-hand to the right-hand side since that direction is always
a simplification of the term for generalizations constructed as described above – either eliminating
a function call or moving data constructors outwards.

Distributivity. A notable algebraic property that we ignored until now is distributivity. The
distinctive feature of distributivity in contrast to the properties discussed so far is that it involves
multiple functions. To account for distributive relationships among different functions, we collect
all other functions g that are used in the body of the examined function f and that are closed over
the same type and conjecture distributive properties, e.g., g(x,f(y,z)) ?

=f(g(x,y),g(x,z)) and f(

x,g(y,z)) ?
=g(f(x,y),f(x,z)).

3.4 Property Deduction, Algorithmically

Our type system internally distinguishes between equalitites E of the form 40 = 41 (or inequalities
40 ≠ 41) and properties P, which are quantified equalities, e.g., ∀G,~. addG ~ = add~ G . Additional
equalitites can arise during case analysis while properties do not.
To deduce the properties of a function 5 (Algorithm 1), we first construct a set of conjectured

properties C that contains generalized cases, distributivity properties (Line 2) and the algebraic
equations which fit the type of 5 (Line 3). Thus, we also examine algebraic properties that are
not ascribed as part of the type of 5 since they might be useful to prove other properties, e.g.,
commutativity is often needed to prove associativity. Proven properties are removed from the set
of conjectures C (Line 11) and added to the set of properties P (Line 12), which is used to prove
other properties (Line 9). We attempt proofs iteratively until no more properties can be proven
(Lines 6 to 13). Finally, we check that the derived properties P conform to the explicitly ascribed
properties (Line 15). A successful deduction may yield a superset of the ascribed properties, i.e.,
the algorithm may infer additional properties of the functions and add them to the function’s type.
Note that the core calculus formalizes type-checking, not inference.
To check whether a property ? of form 40

?
= 41 holds (Algorithm 2), we perform a case analysis

(Line 2) on both sides of the equality of ? and on the expressions in E. We then check whether 40
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equals 41 for all cases. We leave out the definition of Cases for brevity. The function returns a set of
(?, E) pairs where ? is the equation to prove for every case and E the set of equalities that hold in
the respective case. Equalities are derived from variable bindings in pattern matches and algebraic
laws (as defined in Table 1). To check equality, we rewrite ? based on the equalities E and the
properties P (Line 5). Since various sequences of rewrite rule applications exists, Rewrite returns a
set of equations. We compare the “top” equation according to an arbitration order on terms (Line 6).
The equality check succeeds if there is a contradiction in the equality set, i.e., the respective branch
can never be taken (Line 9), both sides of the equality are syntactically equal (Line 10), or applying
the rewrite rules produced a new 4′

0

?
= 4′

1
and 4′

0
equals 4′

1
(Line 11). Rewriting a term recursively

applies the rewrite rules to all elements in the list of subterms (Line 15). This yields a list of sets
of rewritten terms for every subterm, which we sequentialize into a set of lists to reassemble the
rewritten subterms (Line 16). The ApplyEqations function (definition is left out) recursively
applies all matching rewrite rules in P and E to the reassembled term (Line 17). Since a complete
exploration of the space of all terms equal under the rewrite rules explodes combinatorially, we
only retain a fixed number of terms for each subterm (Line 18).

Naturally, it is desirable to discover a sequence of rewrites that proves the given equation. As a
trade-off between performance and exploring relevant rewrites, we traverse the complete syntax
tree of the equation bottom-up but only retain a set of bounded size for rewrite results for every
subtree. The heuristic for which trees to keep uses a metric that favors “simpler” trees, e.g., it favors
data constructors over variables over applications over abstractions the closer they are to the tree’s
root. Further, ApplyEqations bounds to what extend rewrites can grow trees in the number of
nodes. While our heuristics is relatively simple, it proved effective for the use case of checking
algebraic properties of CRDTs. Propel’s core, however, is not the exploration strategy but the ability
to reason about algebraic properties and the (in)equalities and inequalities derived from them.

4 FORMALIZATION

This section presents Propel’s core calculus: the syntax (Section 4.1); the reduction semantics
(Section 4.2); the type system (Section 4.3) – including the proof rules for property annotations
on functions (Section 4.4); and the main soundness theorem (Section 4.5) stating that :hen an
expression is given a function type annotated with a property then the property holds. Finally, we
show how our type system lifts (in)equalities defined by the user to the meta level (Section 4.6).

4.1 Syntax

Propel’s syntax extends the simply-typed lambda calculus with pattern matching, a fixed point
operator, and property annotations on functions.

Definition 1 (Syntax).

Constructors K Data types X Types T ::= X | T1
p
−−→ T2 Values v ::= _px :T .e | K v

Expressions e ::= x | e1 e2 | _px :T .e | K e | case e {Ki xi ⇒ ei} | fix e

Simple expressions t ::= x | K t

Properties p ::= comm | assoc | idem | sel | refl | irefl | sym | antisym | trans | conn

An expression is either a variable, an application, an abstraction annotated with a set of properties,
a construction using a constructor K, a destruction expression that associates to some constructors
and fresh variables an expression, and a fixed point operator that allows for recursion. Simple
expressions only consist of constructors and variables. A type is either a data type X or a function
annotated with some properties. (Recursive) data types are provided through the set X with their
constructors in K. We do not represent recursive types as fixed points. This approach aligns with
most real-world languages where data types are defined via dedicated constructs, e.g. class, struct,
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or enum etc. Algorithmically, before type-checking, we collect all data types and constructors into X
and K. The function properties that the syntax supports are: commutativity (comm), associativity
(assoc), selectivity (sel) and idempotence (idem). Moreover, we represent each relation ' ⊆ T1 × T2
through its characteristic function T1 → T2 → 2 where 2 is the boolean type with its constructors
⊤ and ⊥. We track these relational properties: reflexivity (refl), irreflexivity (irefl), symmetry
(symmetry), antisymmetry (antisym), transitivity (trans), and connectedness (conn).

The notation B is for a list of zero or more items of a syntactic class B . Sometimes we introduce
an index 8 under the line B8 . When it is not clear from context where this index is bound, we use
the notation B8 . We use B8,? (8 ) to restrict the list to the indexes satisfying ? (8).

4.2 Reduction

The operational semantics adopts an evaluation context � and rules of shape e1 → e2. We denote
the capture-avoiding substitution of a variable x for expression e2 in expression e1 with e1 [e2/G].

Definition 2 (Evaluation Context). � ::= [] | � e | v � | K v � e | fix � | case � {Ki xi ⇒ ei}

Definition 3 (Evaluation Rules).

(E-App) (_px :T .e1) v→ e1 [v/G] (E-Case) case Kj vj {Ki xi ⇒ ei} → ej [vj/xj]

(E-Fix) fix _px :T .e → e [fix _px :T .e/x]
(E-Context)

e → e′

� [e] → � [e′]

The evaluation context and rules define the standard call-by-value reduction semantics.

4.3 Type Checking

We first define the context used in our typing rules.

Definition 4 (Typing Contexts).

Variable Context Γ ::= x : T Rule Context R ::= r

Data Type Context K ::= KX Rule r ::= ∀x : T . e1 = e2

Constructor Context KX ::= K : T → X Typing Context Γ ::= R;K; Γ

The data type context K maps each data type X to a non-empty constructor context KX which
maps constructors to a type T → X. When the list of arguments T to a constructor is empty then it is
mapped to the type X. To eliminate ambiguities among the data type constructed by each constructor,
we assume that, for any two data types X1 ≠ X2, constructors are distinct: domKX1

∩ domKX2
= ∅.

As function properties are handled at the type level, we require an additional context to track
them. We further track any auxiliary properties (i.e., lemmas) that we derive as well. Syntactically
these lemmas are quantified equalities, which we call rules. Rules are stored in the context R.

Thus, the typing rules carry three contexts: the rule context R, the data type context K, and the
variable context Γ, which we combine into a single context Γ. We further write Γ, r for R, r and
Γ, x : T for Γ, x : T to extend the rule context or variable context, respectively.
We present the typing rules next.

Definition 5 (Typing Rules).

(T-Var)
x : T ∈ Γ

Γ ⊢ x : T
(T-Cons)

K : T → X ∈ KX Γ ⊢ e : T

Γ ⊢ K e : X
(T-App)

Γ ⊢ e1 : T1
p
−−→ T2

Γ ⊢ e2 : T1
′ T1

′ ≤ T1

Γ ⊢ e1 e2 : T2
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(T-Abs)

r = pT1 [_?x :T1 .e]
∀8 .Γ, r1 . . . r8−1; ·; · ⊩ r8

Γ, r, x : T1 ⊢ e : T2

Γ ⊢ _?x :T1 .e : T2
(T-Fix)

Γ ⊢ e : (T1
p
−−→ T2) → T1

p
−−→ T2

Γ ⊢ fix e : T
p
−−→ T

(T-Lemma)

r ∈ ;4<<0(_?x :T1 .e)
Γ; ·; · ⊩ r Γ, r ⊢ fix _?x :T1 .e : T2

Γ ⊢ fix _?x :T1 .e : T2
(T-Case)

Γ ⊢ e : X

KX = Ki : T1,i → X Γ, xi : T1,i ⊢ ei : T2

Γ ⊢ case e {Ki xi ⇒ ei} : T2

T-Var, T-Cons, T-App, and T-Fix are standard. T-Case ensures the type of the scrutinee expression
is a data type. It checks that all the constructors in the data type’s constructor context have a
handler, and that every handler has the same type under the same typing context extended with
each handler’s bound variables. T-App uses the subtyping relation in Definition 6 that allows
passing a function with more properties than expected to one that expects less.

T-Abs (1) translates each property into a rule as defined in Definition 7, (2) proves each translated
rule using the Φ ⊩ r relation (Section 4.4) such that each rule is allowed to use previously proved
rules, and (3) proceeds to type the body of the function in the usual manner. To enable inductive
reasoning, we assume the property holds when checking the function’s body: during the proof
of said property, the type system can use it at recursive calls when arguments get smaller. Using
the property at recursive calls is equivalent to using the induction hypothesis. We assume the
implementation checks that recursive calls happen on structurally smaller inputs which is ensured
by termination checking as mentioned in Section 3.2.

Finally, T-Lemma uses the helper function ;4<<0 that we leave undefined. As long as ;4<<0 is
decidable the soundness of Propel remains. We assume it computes a set of well-typed rules repre-
senting conjectures that must be proven before type-checking continues. Propel’s implementation
employs the lemma generation strategy of Section 3.3. The calculus, however, does not impose a
specific strategy. Thus T-Lemma picks a rule, proves it, and type-checks the fixed point with the
additional rule added to the context. Formally, T-Lemma represents the cut rule in formal logic.

Definition 6 (Subtyping Relation).

(ST-Data type)
X ≤ X

(ST-Function)
p1 ⊇ p2 T11 ≥ T21 T12 ≤ T22

T11
p1−−−→ T12 ≤ T21

p2−−−→ T22

Definition 7 (Translation From Properties to Rules).
commT [e] = ∀x :T, y :T . e x y = e y x symT [e] = ∀x :T, y :T . e x y = e y x

assocT [e] = ∀x :T, y :T, z :T . e x (e y z) = e (e x y) z reflT [e] = ∀x :T . e x x = ⊤

idemT [e] = ∀x :T . e x x = x ireflT [e] = ∀x :T . e x x = ⊥

selT [e] = ∀x :T, y :T, eq :T
refl,sym,antisym
−−−−−−−−−−−−−−→ T → T . case eq (e x y) x {⊤ ⇒ ⊤,⊥ ⇒ eq (e x y) y} = ⊤

antisymT [e] = ∀x :T, y :T, z :T . case e x y {⊥ ⇒ z,⊤ ⇒ x} = case e y x {⊥ ⇒ z,⊤ ⇒ y}

transT [e] = ∀x :T, y :T, z :T . case e x y {⊥ ⇒ ⊤,⊤ ⇒ case e y z {⊥ ⇒ ⊤,⊤ ⇒ e x z}} = ⊤

connT [e] = ∀x :T, y :T, z :T . case e x y {⊤ ⇒ z,⊥ ⇒ case e y x {⊤ ⇒ z,⊥ ⇒ x}}
= case e x y {⊤ ⇒ z,⊥ ⇒ case e y x {⊤ ⇒ z,⊥ ⇒ y}}

4.4 Property Checking

This section presents the proof rules used by T-Abs and T-Lemma.

Definition 8 (Proof Contexts).

Known Equalities E+ ::= e1 = e2 Proof Context Φ ::= R;K ; Γ E+; E−

Known Inequalities E− ::= e1 ≠ e2 Equality Context E ::= [] = e2 | e1 = []
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The proof system tracks equalities in E+ and inequalities in E− which are used to reduce
the goal to syntactic equality or to derive a contradiction. Overall, the proof rules have the form
R;K ; Γ; E+; E− ⊩ r, shortened toΦ ⊩ r. To append rules, variable bindings, equalities, or inequalities
we do it directly on Φ which is syntactically unambiguous. To avoid duplicating rules for left-hand-
sides and right-hand-sides of equalities we introduce the equality context E.

Proof rules. The proof rules codify the relationship between the proof context and the goal. They
do not attempt to manipulate particular rules or (in)equalities.

Definition 9 (Proof Rules).

(P-Refl)
Φ ⊩ e = e

(P-Derive)
Φ ⊲ Φ

′
Φ
′
⊩ r

Φ ⊩ r
(P-Contra−)

e ≠ e ∈ Φ

Φ ⊩ r

(P-Contra±)

e1 = e2 ∈ Φ

e1 ≠ e2 ∈ Φ

Φ ⊩ r
(P-Contra+)

K1 e1 = K2 e2
K1 ≠ K2

Φ ⊩ r
(P-Contra⟲)

x = K t
∃i.x ∈ ti

Φ ⊩ r

(P-Intro)
Φ, x :T ⊩ e1 = e2

Φ ⊩ ∀x :T . e1 = e2
(P-Abs)

Γ ⊢ e : T Φ, x :T, x = e ⊩ E[x]

Φ ⊩ E[e]

(P-Eq)

x = e ∈ Φ

Φ[e/x] ⊩ r[e/x]

Φ ⊩ r
(P-Case)

Φ, xij :Tij, e = Ki xi, e ≠ Kj xj
9, 9≠8
⊩ r

8

Γ ⊢ e :X KX = Ki :Ti → X

Φ ⊩ r

P-Refl states that two syntactically equal expressions are provably equal. P-Derive states that a
rule is provable if it’s provable under newly derived (in)equalities (Definition 10).

P-Contra− and P-Contra± conclude the proof using the principle of contradiction. Constructors
construct non-overlapping values, thus P-Contra+ is another form for contradiction. Finally P-
Contra⟲ encodes that circular reasoning on simple terms is yet another contradiction.
P-Intro proves a quantification by introducing for each quantified variable a fresh one and

proving the equality. P-Abs lifts one side of the goal into the equality context by assigning it to
a fresh variable and proving the goal using that variable. P-Eq replaces in the goal and contexts
every occurrence of a variable with an expression known to equate it.
P-Case implements case-analysis. If an expression is a data type, then for each constructor it

proves the goal assuming that the expression is equal to said constructor and unequal to all others.

Derivation rules. The derivation rules encode the manipulation of known rules and (in)equalities.

Definition 10 (Derivation Rules).

(D-Eq)
x = e ∈ Φ

Φ ⊲ Φ[e/x]
(D-Abs)

Γ ⊢ e : T

Φ ⊲ Φ[x/e], x :T, x = e
(D-Fun)

_px :T .e1 = e2 ∈ Φ

Φ ⊲ Φ, z :T, e1 [z/x] = e2 z

(D-Cons−)

K1 ≠ K2
e1 = K1e11 ∈ Φ

e2 = K2e22 ∈ Φ

Φ ⊲ Φ, e1 ≠ e2
(D-Arg−)

e e1 e2 e3 ≠ e e1 e2
′ e3 ∈ Φ

Φ ⊲ Φ, e2 ≠ e2
′

(D-NewR)
x :T1

p
−−→ T2 ∈ Φ

Φ ⊲ Φ, pT1 [G]

(D-Cons+)
Ke1 = Ke2 ∈ Φ

Φ ⊲ Φ, e1 = e2
(D-Rule)

∀x :T . e1 = e2 ∈ Φ

Γ ⊢ Gf : T x′ = x \ dom(f)

Φ ⊲ Φ, x :T, (e1 = e2)f

(D-App)
E[(_px :T .e1) e2] ∈ Φ

Φ ⊲ Φ,E[e1 [e2/G]]
(D-Case)

E[case Ki ei′ {Kj G 9 ⇒ ej}] ∈ Φ

Φ ⊲ Φ,E[ei [ei′/xi]]

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 162. Publication date: June 2023.



Type-Checking CRDT Convergence 162:13

D-Eq replaces all occurrences of a variable with an expression equal to it anywhere in the
context. D-Abs replaces all occurrences of an expression by a fresh variable and records that the
fresh variable is equal to that expression. D-Fun is functional extensionality: a function is equal to
another if it is equal at every input. D-Cons− states that two expressions are unequal if they are
constructions using different constructors. D-Arg− states that if a function application produces
different results for all but one equal inputs, then the arguments at that one position are unequal.
This rule is valid because every evaluation rule in the calculus is deterministic and functions are
pure. D-NewR states that the properties of a function can be used. D-Cons+ expresses that the
arguments of equal constructions are equal if they use the same constructor. This rule is valid
because constructors are injective. D-App derives performs V-reductions anywhere in the context.
D-Case reduces a case expression whose scrutinee is a known constructor to the applicable cases.

D-Rule makes use of the rules derived from function annotations and conjectured by the ;4<<0

helper function. It states that if f is a substitution of variables that substitutes some quantified
variables for expressions of the same type, then we can derive a new equality, which is the rule’s
equality specialized to f and the remaining quantified variables not in f ’s domain introduced fresh.

4.5 Soundness

Our calculus enjoys type safety in terms of progress and preservation:

Theorem 1 (Progress). If ·;K ; · ⊢ e : T then e is a value or there exists e′ such that e → e′.

Theorem 2 (Preservation). If ·;K ; · ⊢ e : T and e → e′ then ·;K ; · ⊢ e′ : T.

We further prove the soundness property that, if an expression is given a function type anno-
tated with a property then the property truly holds. For example, if an expression e computes a
commutative function then e x y = e y x for every x, y.

To that end, we first define equality. The first option that presents itself is syntactic equality which
we symbolize with =. Sadly it is too weak. For example, it does not allow us to express idempotence
of the logical or function, a simple equality that wewish to prove:∀x :2.case x {⊤ ⇒ ⊤,⊥ ⇒ x} = x.
Clearly, both terms are not syntactically equal. Yet, they do normalize to the same expression.
Hence, a more suitable definition of equality is syntactic equality up to normal forms. Definition 11
presents a definition that conveys our intuition for equality at a type T, which we symbolize with ≡T .
It states that two expressions computing a data type are equal under the following conditions. First,
they must both normalize to values which are syntactically constructions. Second, the constructors
at the normal form must be the same. And third, the arguments passed to the constructors must be
pair-wise equal under our definition of equality. If the two expressions compute a function, then
they are equal if they normalize and produce equal outputs given arbitrary equal inputs.

Definition 11. Given a data type context K and two expressions e1, e2

• e1 ≡X e2 if and only if ·;K ; · ⊢ e1 : X, ·;K ; · ⊢ e2 : X, e1 →∗ Kv1 , e2 →∗ Kv2 ,KX (K) = T → X,
and v1 ≡T v2, and

• let T = T1
p
−−→ T2 then e1 ≡T e2 if and only if ·;K ; · ⊢ e1 : T1

p
−−→ T2, ·;K ; · ⊢ e2 : T1

p
−−→ T2,

and assuming e1 →
∗ _px : T1.e11 and e2 →

∗ _px : T1.e22 then for any e3, e4, T1
′ such that

e3 ≡T1′ e4 and T1
′ ≤ T1 then e11 [e3/G] ≡T2 e22 [e4/G].

We may leave out the type annotation from ≡T when it is clear from the context.

To show that Definition 11 matches our intuition of equality up to normal forms, we prove a
fortiori that ≡ is preserved across→ and that ≡ is an equivalence relation.

Lemma 1. Assume e1 → e1
′ then e1 ≡T e2 if and only if e1

′ ≡T e2.

Lemma 2. ≡T is an equivalence relation at well-typed expressions.
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Definition 12 defines a well-typed substitution f ⊨ Γ when every variable in Γ is mapped to an
expression of the same type under the empty context. Definition 13 defines equivalent substitutions
underΓ to be the ones that map every variable to equal expressions. Next, in Lemma 3, we prove that
expressions equivalent under the same substitution are equivalent under equivalent substitutions.

Definition 12. Let Γ and f be given. f ⊨ Γ when ·;K ; · ⊢ f (x) : T for every x :T ∈ Γ.

Definition 13. Let Γ, f1 ⊨ Γ, and f2 ⊨ Γ be given. f1 ≡ f2 when xf1 ≡T xf2 for every x :T ∈ Γ.

Lemma 3. Let Γ ⊢ e1 :T and Γ ⊢ e2 :T and f1 ≡ f2. If e1f1 ≡ e2f1 then e1f1 ≡ e2f2.

Armed with this library of lemmas we define a valid proof context to be one where the equalities
and inequalities assuming the equalities in the rules hold where every equality is reinterpreted
under the definition of equality in Definition 11.

Definition 14. A proof context Φ is valid when a substitution f ⊨ Γ, dubbed the witness, exists such
that E+≡f and E−≡f are true under the assumption that R≡f .
We define E+≡, E

−
≡ , and R≡ as the interpretation of E+, E− and R, respectively, as follows:

• if E+ = e1 = e2 then E
+
≡ = e1 ≡ e2,

• if E− = e1 ≠ e2 then E
−
≡ = e1 . e2,

• if r = ∀x :T .e1 = e2 then r≡ = _x :T.e1 = _x :T .e2,
• if R = r then R≡ = r≡, where the overline denotes conjunction.

We prove the following soundness theorems about the validity of the proof context. We prove
that (a) a proof context derived from a valid one is itself valid, (b) every rule that is proved in a
valid context holds, and (c) if a function can be typed then its properties hold. Finally, we prove the
main soundness theorem (Theorem 6): Annotated properties hold on any expression.

Theorem 3. If Φ is valid and Φ ⊲ Φ
′, then Φ

′ is valid.

Theorem 4. If Φ is valid and f is its witness and Φ ⊩ r, then (rf)≡.

Theorem 5. If Γ ⊢ _px :T.e and f ⊨ Γ and R≡f , then pT1 [_px :T.ef]≡.

Theorem 6. If ·;K ; · ⊢ e : T1
p
−−→ T2 and e normalizes, then pT1 [e]≡.

4.6 Equality Li�ing

In this section we show that equality can be embedded in the language. Given the definition of
a reflexive, symmetric, and antisymmetric relation, the proof system is able to lift that definition
to the meta level as an equality, since equality is the unique relation with these properties, where
the system is able to reason about equalities. This result justifies the choice of quantifying over a
reflexive, symmetric, and antisymmetric function in the selection property in Definition 7.

Proposition 1. Given a proof context Φ with eq :T
refl,sym,antisym
−−−−−−−−−−−−−→ T → T ∈ Φ and eq a b = ⊥ ∈ Φ

there exists a sequence of derivation Φ ⊲
=

Φ
′ such that a ≠ b ∈ Φ

′.

Proposition 2. Given a proof context Φ with eq :T
refl,sym,antisym
−−−−−−−−−−−−−→ T → T ∈ Φ and eq a b = ⊤ ∈ Φ

there exists a sequence of derivation Φ ⊲
=

Φ
′ such that a = b ∈ Φ

′.

5 EVALUATION

To show the applicability of Propel to verifying CRDT convergence, we implemented a library of
20 CRDTs [Shapiro et al. 2011a] based on well-known designs from open source projects [Baquero
2014; Heinrichs 2017; Meiklejohn 2016; Rusu 2016; Sypytkowski 2018], from which we took the
design specifications for our implementations. Our library also include variants of the same CRDT
using either lists or maps of Peano numbers or bit vectors. We checked a total of 91 properties on
the CRDTs and helper functions. The different variants are based on the following CRDTs:
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• The GCounter (grow-only counter) is a counter that can only be incremented, not decremented.
Internally, it is an array of numbers. The number at an index 8 in the array of replica 9 represents
replica 9 ’s knowledge of 8’s current count.
• The PNCounter (positive-negative counter) is a counter that can be incremented and decre-
mented. Internally, it is an array of pair of GCounters. The first GCounter of every pair counts
the number of increments and the second GCounter counts the number of decrements.
• The BCounter (bounded counter) allows each replica only a fixed number of increments.
Internally, it is an array of pairs with a GCounter and a matrix whose rows and columns
represent the number of increments received from and sent to each replica, respectively.
• The LWWReg (last-write-wins register) contains a single value and a timestamp. The value is
only updated when the update’s timestamp is younger than the register’s current one.
• AGSet (grow-only set) represents a set that only supports additions but not removals. Internally,
it is a function from the type of elements to booleans, i.e., the set’s characteristic function.
• An ORSet (observed-remove set) allows adding and removing values in any order. Internally,
it is a pair of maps from the element of the set to a version vector. The domains in the pair are
a set of added elements and a set of removed elements. A version vector is a GCounter that
counts, per replica, the number of additions or removals of that element. Version vectors can
be sorted lexicographically and provide an alternative to timestamps.
• A 2PSet (two-phase set) allows adding and removing values. But, once removed, values cannot
be added again. Like PNCounter’s relationship to GCounter, internally a 2PSet is a pair of GSets.

Using our approach to type-check the Propel versions revealed that the original open-source
implementations for LWWReg are not fully commutative. Precisely, when the two timestamps in
an LWWReg are equal, a commutative, associative, and idempotent tie-breaking function must be
applied to the value. The original specification of a LWWReg [Johnson and Thomas 1975] uses the
maximum data value when the timestamps are equal. We found that the implementations do not
handle that edge case and assume the timestamps are always distinct. While this assumption is
likely to hold in the vast majority of cases, it can potentially violate consistency.

5.1 Verification of Algebraic Properties

To evaluate Propel’s ability to prove properties of common CRDTs, we compare it against four
state-of-the-art competitors. We focus on systems that are similar to Propel in the sense that
they (a) allow expressing the algebraic properties of interest and (b) verify them directly on an
implementation (or at least on a source-code-like representation).
We compare against four alternatives. Two are automated inductive theorem provers: Hip-

Spec [Claessen et al. 2012] uses theory exploration for its lemma generation (a bottom-up approach
that builds a library of lemmas before attempting any proof); Zeno [Sonnex et al. 2012] uses lemma

discovery by generalization (synthesizing and proving lemmas on demand). Both parse Haskell
code and attempt to prove the properties defined in it. We further compare against two SMT
solvers capable of reasoning by induction: cvc5 [Barbosa et al. 2022] and Vampire [Hajdú et al.
2020]. To make the results between automated theorem provers and SMT solvers comparable, we
reimplemented the used data types inductively – hence the SMT solvers cannot take advantage
of some of their theories, e.g., for numbers, bit vectors, and sets, but still use some theories, e.g.,
for data types. This approach is in line with common benchmarks for theorem provers, such as
TIP [Claessen et al. 2015], to set up a meaningful comparison between different provers. As the
provers require a specific import format (like SMTLIB2 or Haskell), we could not run them directly
on the available open-source implementations. We strove for implementations that are as similar
as possible in Haskell (for HipSpec and Zeno), in SMTLIB2 (for cvc5 and Vampire) and in Propel.
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Table 2. Verification of CRDT properties.

CRDT Properties Proven By Prover
Order: commutativity, associativity, idempotence

Time in seconds, timeout ¨ or fail ✗

HipSpec Zeno cvc5 Vampire Propel

GCounter (Peano numbers) 2 2 2 0 0 0 ¨ ¨ 11 ¨ ¨ 0 1 1 1
GCounter (bit vectors) ¨ ¨ ¨ ¨ ¨ 0 ¨ ¨ ¨ ¨ ¨ 4 5 5 5
BCounter (Peano numbers) 3 9 3 0 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 2 2 2
BCounter (bit vectors) ¨ ¨ ¨ ¨ ¨ 0 ¨ ✗ ¨ ¨ ¨ ¨ 6 6 6
PNCounter (Peano numbers) 2 2 2 0 0 0 ¨ ¨ ¨ ¨ ¨ 9 1 1 1
PNCounter (bit vectors) ¨ ¨ ¨ ¨ ¨ 0 ¨ ¨ ¨ ¨ ¨ ¨ 5 5 5
LWW (Peano numbers) 46 1 13 ✗ ✗ 0 ¨ ¨ ¨ ¨ ¨ 8 1 1 1
LWW (bit vectors) ¨ ¨ ¨ ✗ ¨ 0 ¨ ¨ ✗ ¨ ¨ ¨ 4 ✗ 4
GSet 2 2 2 ✗ ✗ ✗ 0 0 0
ORSet ¨ ¨ ¨ ✗ ✗ ✗ 1 1 1
2PSet 2 2 2 ✗ ✗ ✗ 0 0 0

We executed a new instance
of the prover for every file on
a Intel Core i7-1185G7, 3GHz,
32GiB setup. We set a timeout
of one minute for every proof.
A timeout is needed for two rea-
sons. First, HipSpec’s strategy
of theory exploration amounts
to producing every expression
up to some depth and prove
it before attempting the main
property’s proof, which leads
to HipSpec taking up to hours
to prove some properties. For example, the proofs for LWWReg took up to five hours. Second, SMT
solvers may diverge while finding a counterexample. We aim for a verification that takes less than
a minute. All provers are in native binaries, hence the measurements do not include VM startup.

CRDTs. Table 2 shows the results for different provers. A ✗ indicates that the prover finished
before the process was terminated but could not prove the property. A ¨ indicates that the prover
timed out. Otherwise, we report the verification time in seconds. The SMT solvers we used are not
able to reason about higher-order functions. Therefore, we were unable to verify GSet, ORSet, and
2PSet, where sets are represented by functions. Hence, we leave their entries blank in the table.

CRDT helper functions and TIP benchmarks. In addition to the detailed results in Table 2, our
evaluations includes further variants of CRDTs and helper functions. We plot the results for all
properties in Figure 1. Successfully proven properties are green, proofs that timed-out are yellow,
and failed proofs are red. Further, we applied Propel to the subset of the TIP 2015 benchmarks for
inductive theorem provers [Claessen et al. 2015] that check algebraic properties (Figure 2).

Evaluation results. Our results show that existing approaches to directly verify the code fall
short on proving the algebraic properties essential for CRDT convergence. Propel was able to
automatically derive the desired properties for all CRDTs but one. The reason for that case is that
our exploration of possible property derivation trees failed to find the tree that proves the property.
This specific derivation tree could be discovered by a more sophisticated exploration algorithm.
Yet, we leave tuning the algorithm to future work. Propel’s core contribution that sets it apart from
the other approaches lies in its ability to reason about algebraic properties and both the equalities
and inequalities that follow from them. The TIP benchmarks mainly cover operations (such as
addition, multiplication, min/max) and ordering relations on natural numbers, bit vectors and
integers. Propel is able to prove one property (commutativity for addition on integers) more than
the closest competitor HipSpec and far more than the other provers. The results indicate that our
approach substantially improves over the other approaches and is suitable as a type system for
algebraic correctness needed for CRDTs.

Table 3. Variants of Peano number addition.

Function Properties Proven By Prover
Order: commutativity, associativity
Time in seconds, timeout ¨ or fail ✗

HipSpec Zeno cvc5 Vampire Propel

add2p 2 2 1 1 0 0 0 0 0 0
add3p 4428 1 ✗ 0 ¨ ¨ ¨ 0 0

Case example: Variants of a simple function. To give
an intuition of how sensitive the different approaches
are with respect to a concrete implementation, we com-
pare the simple addition of two Peano numbers in two
variants (presented before in Listing 5): destruction
over the first argument and destruction over both ar-
guments. The results are in Table 3. The add2p variant
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Fig. 1. Properties of CRDTs and helper functions.
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Fig. 2. Properties from TIP benchmarks.

is easier for the provers than add3p because the latter requires to derive the additional property
that the successor constructor Succ can be moved outwards from one of the arguments of add3p.

6 DISCUSSION

Listing 6. A strange maximum.
1 def max =
2 prop.rec[(Comm & Assoc & Idem) := (Nat, Nat) =>: Nat]: max =>
3 case (Zero, Zero) => pred(max(Succ(x), Succ(y)))
4 case (x, Zero) => x
5 case (x, Succ(Zero)) => x
6 case (Zero, y) => y
7 case (Succ(Zero), y) => y
8 case (Succ(x), Succ(y)) => Succ(max(x,y))

Limitations. We cannot prove the
properties of every merge function.
As our evaluation shows, we were
unable to prove associativity of the
LWW register’s merge function on
bit vectors. This is because our heuris-
tics failed to apply a rewrite rule that
would have completed the proof. Generally, the heuristics tends to prune the set of expressions
Propel explores early, speeding up the proofs but leaving potentially critical rewrites unexplored.
We found this trade-off works well in practice. Yet, allowing the exploration of more rewrite chains
or improving the (relatively simple) heuristics (Section 3.4) could make this proof discoverable.

Further, we found that very complex CRDTs like Automerge [Kleppmann 2017] (a JSON CRDT)
are challenging to prove. None of the tools in our evaluation is able to prove them automatically.
A foundational part of these complex CRDTs is often a variant of a Replicated Growable Array

(RGA) [Shapiro et al. 2011a]. In its simplest form, an RGA is a list of elements, each tagged with its
time of addition. Propel is unable to prove commutativity of the RGA merge as it does not generate
the crucial conjecture rgaMerge(xs,v :: ys) ?

=rgaMerge(v :: xs,ys), stating we can move the head
from one list to the other. Similar lemmas would be required for merge sort, for instance.
It is also possible to construct a merge function whose typing judgment does not have a type

derivation in our formal model. Consider a variation of max over the Peano numbers (Listing 6)
where pred is the predecessor function. The rules of the type system cannot deduce that the branch
on Line 3 computes Zero since it is impossible to apply the induction hypothesis rewrite at the
recursive call because the arguments are not decreasing.

Listing 7. TIP’s bit vector multiplication.

1 enum Num:
2 case One; case ZeroAnd(num: Num); case OneAnd(num: Num)
3

4 def plus = prop.rec[Comm := (Num,Num) =>: Num]: /* ... */
5

6 def times = prop.rec[Comm := (Num,Num) =>: Num]: times =>
7 case (One, y) => y
8 case (ZeroAnd(x), y) => ZeroAnd(times(x, y))
9 case (OneAnd(x), y) => plus(ZeroAnd(times(x, y)),y)

Counter-Example Discovery. When en-
countering a pattern match, Propel per-
forms case analysis and proves each branch
under the assumptions that the pattern
matches the scrutinee expression. Further,
it keeps track of these assumptions in the
equality set. Hence, when a proof fails be-
cause the theorem is false, we can leverage
the record of cases not only to report the
case in which the proof failed but also to describe the class of inputs that makes the property false
based on the patterns that led to the case.
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For example, for the multiplication of bit vectors from the TIP benchmarks (Listing 7), Propel can
disprove idempotence. Attempting to prove times(x,x) ?

=x, Propel performs case analysis. The first
case to fail is when x is a ZeroAnd. Rewriting ZeroAnd(times(x,ZeroAnd(x))) ?

=ZeroAnd(x) using
times’s commutativity, reducing the times application and applying the induction hypothesis yields
ZeroAnd(ZeroAnd(x)) ?

=ZeroAnd(x). Eliminating common constructors produces the contradiction.
Thus, the pattern ZeroAnd(x) describes a class of counterexamples which we can specialize to the
smallest counterexample ZeroAnd(One). Crucially, the equality set for the examined branch does
not contain any equalities that may potentially constitute a contradiction.

Hence, in some situations, our approach is able to discover counterexamples as a byproduct of a
proof attempt. Yet, we do not implement a dedicated search for counterexamples.

7 RELATED WORK

Correctness of CRDTs. Zeller et al. [2014] define a framework to verify CRDTs using Isabelle/HOL
[Nipkow et al. 2002] based on a model defined by the data type and the merge, update, and
query functions. The framework by Nagar and Jagannathan [2019] verifies the correctness of a
model using Z3 under different consistency schemes which allows some CRDTs to be proven
consistent under specified network conditions when they might not be under weaker conditions.
Similarly, Boogie [Nair et al. 2020] uses an SMT solver to verify a CRDT specification resembling
an implementation with manually-added invariants and assertions throughout. The previous
approaches do not verify implementations, like we do, but only models.

Instead of verifying the CRDT (model), other researchers have investigated CRDTs correctness
by construction. Weidner et al. [2020] tackle the composability CRDTs. They apply the semi-direct
product of groups in abstract algebra on CRDTs so that the semi-direct product of two CRDTs
becomes a correct CRDT by construction. Katara [Laddad et al. 2022] is a tool to synthesize a
correct CRDT given a sequential implementation of the datatype. By specifying orderings on its
operations, the developer is able to control conflict resolution. The synthesis of a CRDT from a
datatype with conflicts must choose a conflict resolution scheme. This choice cannot be customized
without jeopardizing correctness guarantees. Moreover they are limited to a special language or
require the user to provide orderings on the operations.

Inductive Theorem Provers. An approach to use algebraic data types for constructing the induction
hypothesis was proposed in Zeno [Sonnex et al. 2011, 2012], which parses Haskell to prove specified
properties. When a proof is stuck, Zeno conjectures and tries to proves lemmas. For conjecturing
lemmas, Zeno follows the generalization technique commonly found in Boyer-Moore inductive
theorem provers [Boyer et al. 1995]. Generalization transforms an equality with a repeated subex-
pression into an equality with the subexpression replaced by a variable. The transformed equality
is posited as a conjecture which Zeno proves on the side. To avoid over-generalization and quickly
filter out false lemmas, Zeno searches for counterexamples before attempting a proof.

HipSpec [Claessen et al. 2012], built on QuickSpec [Claessen et al. 2010] and Hipster [Valbuena
and Johansson 2015], is another inductive theorem prover for Haskell. Unlike Zeno, HipSpec does
not use generalization to conjecture lemmas during a proof. Instead, it compiles a library of proven
lemmas that may be useful for proofs. To this end, HipSpec generates all possible Haskell expressions
that state equalities up to some depth. These generated equalities are postulated and checked before
any proof is attempted by passing them through two filtering steps: (1) QuickCheck [Claessen and
Hughes 2000] to find counterexamples and (2) the Z3 SMT solver [de Moura and Bjørner 2008] to
prove equalities. The remaining expressions are fed into HipSpec’s internal automatic inductive
theorem prover. HipSpec has been used to prove that common implementations of certain type
classes satisfy the type class’ laws [Arvidsson et al. 2019].
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TheSy [Singher and Itzhaky 2021] uses equality-graphs (or Program Expression Graphs) to com-
pactly represent equalities. The technique enables efficient selection of a canonical representative
of an equivalent class of programs. Like HipSpec, TheSy enumerates potential lemmas that may be
helpful for a proof. The equality-graph allows TheSy to improve the enumeration of lemmas by
filtering out (and effectively removing the need to re-attempt proofs for) equivalent programs.

MATHsAiD [McCasland et al. 2017] is another tool in the style of HipSpec which assists mathe-
maticians in exploring theories. Yang et al. [2019] present a theorem prover that uses techniques
from program synthesis to guide its lemma generation.
Propel’s lemma generation is closest to HipSpec’s and TheSy’s as it enumerates upfront a list

of lemmas that may be useful. While both HipSpec and Propel scan the environment for symbols
for lemma exploration, Propel restricts itself to each function’s local context and relevant data
constructors. Propel might miss some potentially useful lemmas involving two distantly-related
functions but completes proofs faster and – for the properties in which we are interested – more
effectively than HipSpec as our evaluation shows. Further, while HipSpec posits lemmas before
any proof attempt, Propel interleaves this process with each function, so lemmas about future
functions are never conjectured before the proofs for the current function are complete. We believe
a combination of TheSy’s equality-graph representation and Propel’s strategy to conjecture lemmas
for proving algebraic properties has the potential to lead to further improvements.

Proof by Consistency. Inductive theorem provers labeled under inductionless induction [Comon
2001] or proof by consistency [Wirth 2005] treat induction implicitly. This treatment has been
revived in the cyclic proof theory [Brotherston 2005; Sprenger and Dam 2003], e.g., in the generic
automated theorem prover Cyclist [Brotherston et al. 2012]. An extension to GHC, CycleQ [Jones
et al. 2022], contains a theorem prover to help in equational reasoning. Reynolds and Kuncak
[2015] added support for induction to the CVC4 [Barrett et al. 2011] SMT solver by skolemizing the
inductive hypothesis. The SMT solver finds a model that satisfies the negation of the induction
hypothesis and fails if the theorem is true. All these systems treat properties as assertions and do
not track them at the type level, unlike Propel. Tracking properties in the types allows higher-order
functions to enforce properties about their inputs that are checked at the call site.

Refinement Types and LiquidHaskell. Refinement types [Rushby et al. 1998; Xi and Pfenning
1998] as implemented in LiquidHaskell (LH) [Vazou et al. 2014] allow programmers to attach
propositions to data types to refine the domain of the type. These systems are the closest to our
approach in that they also capture additional properties at the type level. Whereas LH offloads
the checking of the refinement predicates attached to types to an SMT solver, LiquidHaskell with
Refinement Reflection (LH+RR) [Vazou et al. 2017] enables programmers to prove propositions by
constructing proof objects that witness that the propositions hold – either manually or by invoking
the Proof by Logical Evaluation (PLE) proof-search algorithm (which can automate certain proofs
but requires developers to provide the structure of the induction by specifying the arguments
to the recursive call). A major limitation of LH and LH+RR is that no quantifiers are allowed in
refinements, prohibiting refinement types such as the one expressing that zipWith is commutative
if it is given a commutative function, i.e., the type { f:a→ a→ b | forall(x:a,y:a),f a b = f b a }

→ { g:[a]→[a]→[b]| forall(x:[a],y:[a]),g x y = g y x } for zipWith is not valid in LH. Propel
allows expressing this type as shown in Listing 2.

Away to represent, a commutative function in LH+RR is by pairing the function definitionwith its
proof of commutativity. Such proof values must be passed manually, incurring significant overhead,
even if PLE derives the proof automatically – which is rare for the CRDTs in our evaluation.

Correct Algebraic Properties. Servois [Bansal et al. 2018] generates conditions, by iteratively
refining a starting condition, under which two functions commute. Thus two functions commute
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if their commutativity condition is always true. All these approaches study the commutativity
between functions rather than the commutativity of a binary function’s arguments, thus they are
more suited for applications to parallel programming [Pottenger 1998]. Aleen and Clark [2009]
build a static analysis technique that probabilistically determines whether an imperative function
commutes with itself based on how it modifies a random memory layout. Instead of verifying that
a function is commutative, Gélineau [2010] design a Haskell library where commutative functions
are so by construction. A commutative function is a computation wrapped in a monad that imposes
an ordering on the values applied to it. Hence the computation cannot observe their original order.
However, it is not clear how to define associative functions by construction. Liu et al. [2020] extend
LiquidHaskell [Vazou et al. 2014] and Refinement Reflection [Vazou et al. 2017] to attach laws to type
class definitions – expressed as members of the type class that instances must implement. Propel is
different than type class refinements (TCR) in two ways: First, Propel restricts itself to predefined
algebraic properties which gives rise to higher level of automation. Second, making a function an
instance of type class (e.g., Commutativity) requires expressing the function as data type. Hence, to
assert algebraic properties of functions in TCR, functions must be defunctionalized [Reynolds 1972],
higher-order functions become type functions parametrized by the defunctionalization identifiers,
and functions’ closures must be handled manually. No such transformation is needed in Propel

thanks to expressing algebraic properties directly in a function’s type.

Expressive Type Systems. Dependent type systems such as Coq’s calculus of constructions [Co-
quand and Huet 1986] or Agda’s type system [Bove et al. 2009] can encode functional properties by
lifting a proof term to the type level. These proof terms must be manually constructed by the user.
Type systems that track properties through type annotations have been explored in multiple

domains. For example, information flow type systems [Heintze and Riecke 1998; Sabelfeld and
Myers 2003] trace the flow of private information through a program. Cortier et al. [2017] the
authors present a type system that guarantees privacy properties of protocols.

8 CONCLUSION

CRDTs ensure that replicated data in a distributed system eventually converge to the same state for
each replica. To guarantee this behavior, the operations on the CRDT must obey certain algebraic
properties (i.e., commutativity, associativity, idempotence). As a result, developers need to make sure
that their implementation adheres to such properties, but there is no machine-checked mechanism
to confirm that this is the case. Hence, developers usually rely on approaches such as testing, model
checking, and theorem proving, which do not cover the complete input space, operate on a model
instead of on the program directly, or require manual developer intervention to provide proofs.

In this paper, we proposed Propel, a programming language with a type system that enforces the
algebraic properties required by CRDTs. Propel proves such properties automatically and directly
on the implementation. In Propel, developers specify that a function obeys a certain property (e.g.,
commutativity) in the type, and the type system certifies that this is the case. We evaluated Propel

on a number of CRDT implementations and showed that our approach outperforms existing tools,
which aim to check similar properties on source code, in terms of the number of properties proven
in a reasonable amount of time.
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ARTIFACT AVAILABILITY

The artifact is available on Zenodo [Zakhour et al. 2023]. It includes the implementation of Propel
as discussed in Section 4 with the induction rules. The implementation provides our Scala DSL
that can be imported and used in Scala code, and a standalone verifier that checks the properties
of functions implemented in a LISP dialect which is also described in the artifact. Moreover, all
the benchmarks provided in Section 5 have dedicated scripts which can be executed to verify our
reported results. The included README file provides a guide on how to interpret the output of the
benchmark results.
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