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Abstract—The OASIS TOSCA language provides means for
specifying the deployment of microservices to cloud-platforms
in a vendor-neutral way. Designed in a independent of any
application domain, it needs to be tailored to the distributed
control systems (DCS), which for example manage the automa-
tion in chemical refineries, renewables production, and mining
applications. There is still a lack of experience reports applying
OASIS TOSCA in real-world settings, therefore the benefits and
drawbacks of using this technology are still not well understood.
In this context, we designed a simple DCS consisting of several
microservices modelled in TOSCA and implemented an accord-
ing TOSCA orchestrator. We executed a case study deploying the
microservices to an on-premise and a cloud-based Kubernetes
environment. While TOSCA provides a sophisticated object-
oriented language, we found a few specification gaps, challenges
when creating portable service templates, and challenges for
synchronizing TOSCA orchestrators with DCS engineering tools
as well as container orchestrators. The adoption of TOSCA in
the process automation domain thus requires more work on the
specification and tools and remains a mid-term goal.

Index Terms—software architecture, microservice, deployment,
OASIS TOSCA, distributed control systems, case study, model-
ing, Azure, StarlingX

I. INTRODUCTION

OASIS TOSCA (Topology and Orchestration Specification
for Cloud Applications) provides a domain-specific language
to specify applications and hardware resources independent
of a particular cloud platform [1]. Application developers
can create TOSCA templates according to this language and
process them with TOSCA orchestrators, which parse the
templates and translate the statements into deployment actions
for infrastructure-as-code tools targeting concrete cloud plat-
forms [2]. Due to its cloud-agnostic design, TOSCA templates
shall support multi-cloud deployment for applications as well
as portability of applications to new target infrastructures [3].
TOSCA orchestration shall span the entire life-cycle of ap-
plications from initial deployment over runtime adaptations to
decommissioning [1].

While TOSCA was originally designed for consumer-facing
cloud applications, the Open Process Automation Forum!

Thttps://www.opengroup.org/forum/open-process-automation-forum

of the Open Group is now considering creating a TOSCA
profile for the orchestration of distributed control systems [4]
(DCS) on premises and/or in the cloud?. Such systems con-
trol complex industrial processes, such as power production,
chemical refinery, or mining. Using TOSCA shall enable
a standard-based, vendor-neutral, and interoperable orches-
tration approach that complies with the long life-cycles of
DCS (i.e. often more than 15 years). While the TOSCA
specification has been evolved for almost 10 years and many
research projects have been carried out around TOSCA [5],
TOSCA-based orchestration is still not popular in practice [6].
TOSCA’s maturity and suitability for the process automation
domain as well as its limitations thus remain underexplored.

In a systematic literature review Bellendorf et al. [5] iden-
tified around 20 articles that applied TOSCA on concrete
systems. Li et al. [7] used an early XML version of TOSCA
to deploy the software components for an HVAC system.
Cardoso et al. [8] deployed the SugarCRM platform, an open-
source system for customer relationship management.Kostoska
et al. [9] deployed an University Management System with
TOSCA XML 1.0, commenting that the notation can become
challenging for more complex systems. TOSCA for DevOps
was shown by Wettinger et al. [10], while Sampaio [11]
demonstrated how to use TOSCA in the context of perfor-
mance testing. Shvetcova et al. [12] summarized benefits and
drawbacks when combining TOSCA with Ansible. Luzar et
al. [2] tested and compared several current TOSCA orches-
trators. None of the approaches dealt with systems from the
process automation domain.

The contribution of this paper are experiences and lessons
learned when starting to adapt TOSCA for DCS. We executed
a case study, creating a minimal TOSCA profile for DCS,
specifying a topology template for a simple DCS, implement-
ing a TOSCA orchestrator, and using the template to deploy
components to different target environments. Specifically we
created resource inventories for the open source Kubernetes

Zhttps://www.youtube.com/watch?v=xgmH95Jg0c0



platform StarlingX® and a Microsoft Azure Kubernetes Ser-
vice* environment and fed them into our TOSCA orchestrator
to learn about the specification’s, the state of tool development,
and open conceptual issues.

Our main findings include identifying a few specification
gaps and experiencing challenges when attempting to create
portable service templates. Furthermore, in the process au-
tomation domain of DCS already many tools are involved
in configuration and monitoring, which would need to be
synchronized with a TOSCA orchestrator at runtime. While
providing an object-oriented, domain specific language, in
practice the TOSCA notation is competing with less so-
phisticated text templates for specifying cloud workloads in
Kubernetes. These are portable across cloud platforms. With
the current maturity of TOSCA and its ecosystem and the
complexity of DCS systems, an adoption of TOSCA in the
process automation domain remains a mid-term goal.

This experience report is structured as follow: Section 2
provides quick overview of the TOSCA landscape, before
Section 3 introduce a simplistic TOSCA profile for DCS and
explaining the constrains in the process automation domain.
We introduce the design rationale for our TOSCA orchestrator
in Section 4, before using it in a case study for deploying
containerized DCS components to Azure and StarlingX in
Section 5. Lessons learned are summarized in Section 6,
providing pointers for addressing the open gaps.

II. TOSCA LANDSCAPE

The OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA) technical committee started its
work for interoperable cloud template descriptions in 2012.
The TOSCA technical committee is composed of more than 40
organizations and 150 individual representatives, with Cisco,
HP, Huawei, IBM, Red Hat, and SAP among them. Version 1.0
of the TOSCA specification was published in 2014 and pro-
vided XML schemas for the language definition. The TOSCA
Simple Profile in YAML was introduced with version 1.1 in
2018, and the latest version is 1.3 from 2019. Work on version
2.0 with the non-normative TOSCA simple profile stripped
out from the main grammar of the language is ongoing, but
the specification is still not final as of 2022. Additional work
is ongoing for a TOSCA NFV profile and a Function-as-a-
Service (FaaS) profile.

TOSCA service templates consist of topology templates,
where application developers instantiate pre-defined node and
relationship types into node templates and relationship defini-
tions (Fig. 1). A node can for example be a software compo-
nent or computer host and provides a number of capabilities,
while requiring capabilities from other nodes. A node can
also have properties (e.g., number of CPU cores, configuration
parameters of software components) and expose interfaces
(e.g., for creating, updating, or deleting nodes). The operation
implementations for the interfaces are not part of the TOSCA

3https://www.starlingx.io/
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specification but can for example be Bash® scripts or Ansible®
playbooks, which interface with cloud platforms. Also new
types of relationships can be defined which, like nodes, have
properties and interfaces.

The TOSCA specification also supports workflows to in-
struct an orchestrator to execute tasks in a specific order. For
example, there could be workflows to instruct an orchestrator
to perform a backup of a database. Policies can further
instruct orchestrators to make deployment decisions within the
policy bounds. For example, a scaling policy could instruct
an orchestrator to always keep a certain number of service
instances deployed. Service templates and type definitions are
packaged into a Cloud Service Archive (CSAR), which can
also contain artifacts, such as installers, software container
images or VM images.

Developers can use different kinds of tools in the con-
text of TOSCA service templates’: TOSCA modeling tools
allow creating TOSCA service templates with a graphical
user interface, where for example nodes can be connected
using relationships and configurations can be entered before
generating a CSAR file. Examples are Cloudify, Alien4Cloud
or Eclipse Winery [13]. TOSCA processors or parsers can
parse TOSCA service templates. Examples are TOSCA-Parser,
JTOSCA, Puccini, or xOpera. TOSCA orchestrators process
the information extracted from CSAR files, make deployment
decisions e.g., based on policy definitions and workflows,
and then instruct artifact processors, such as Python scripts
or Infrastructure-as-Code tools to carry out the actual de-
ployment. Examples are OpenTOSCA [14], xOpera, ToSKer,
Ubicity, or Yorc.

Bellendorf and Mann [5] provided a survey of TOSCA
approaches and case studies reported in academic literature.
They surveyed 124 papers from 2012-2019 and categorized
them into tools, language extensions, methods for processing
TOSCA models, and TOSCA case studies. TOSCA usages
have been reported in DevOps, IoT, NFV, and testing. They
also found that security topics, such as privacy and data pro-
tection in context with TOSCA hardly have received attention

Shttps://www.gnu.org/software/bash/
Ohttps://www.ansible.com/
7https://github.com/philippemerle/tosca-implementation-landscape



in academic communities, furthermore automated deployment
optimization remains underexplored.

In the software architecture community, researchers pro-
posed a number of approaches involving TOSCA. Artac et
al. [15] introduced DICER, a model-driven approach for the
deployment of data-intensive architectures. They devised a
UML profile and according model transformation to TOSCA
and Chef, which they tested on Hadoop and WikiStats. Lipton
et al. [1] provided an overview of TOSCA and available
tooling, pointing out that TOSCA may provide more unifi-
cation and stability in a area of rapidly shifting technologies,
since it is based on a technology-neutral internationally agreed
standard. DiFrancesco et al. [16] mentioned TOSCA as part
of a systematic mapping study on architecting microservices.
They viewed TOSCA as the most promising candidate for an
industrial standard describing the architecture or microservice-
based system, but also found that none of their primary
standards on designing microservice architectures had actually
used TOSCA.

DesLauriers et al. [17] presented the MICADO engine to
generate infrastructure-as-code scripts from TOSCA models,
which was created in the EU Horizon 2020 Project COLA.
MiCADO provides container orchestration via Kubernetes and
supports worker node provisioning using Terraform and Occo-
pus. The workloads can be deployed to OpenStack, Microsoft
Azure, AWS, and Google cloud. They successfully applied
MiCADO to deploy the microservices of the DIGITbrain
system for applying machine learning in the manufacturing
industry. In 2022, Alonso et al. [18] proposed a DevSecOps
approach, where TOSCA service templates are generated after
model-checking abstractions of an execution environment.

As part of the Open Process Automation Forum (OPAF) of
the Open Group, the companies ExxonMobil and CPLANE.ai
showed a demonstration of installing DCS software via
TOSCA templates and subsequently orchestrating a system
composed of several automation controllers and servers simu-
lating a chemical process®. OPAF is now working on adapting
TOSCA for the process automation domain.

III. DISTRIBUTED CONTROL SYSTEM MODEL IN TOSCA

To derive TOSCA models for a DCS, we used as ”straw-
man” template a Simplified Distributed Control System
(sDCS), which is depicted in Fig. 2 in UML. The system
consists of three Distributed Control Nodes (DCNI1-3, i.e.,
DCS controllers) and an Advanced Computing Platform (ACP,
i.e., one server). In contrast to PLCs for a machine or robot,
DCS controllers typically control a large number of devices
in process automation. The system controls the filling level in
a distillation column, depicted in Fig. 2 as a schematic Piping
and Instrumentation Diagram (P&ID) on the left-hand side.
Each host runs a Function Block Execution engine, e.g., an
IEC 61131-3 runtime [19]. These engines cyclically execute
function blocks deployed to them, calculating output actuator

8https://cplaneai.com/wp-content/uploads/2020/09/Orchestration-of-an-
Open-Industrial-Control-System-1.pdf

signals based on current sensor data. For example, DCN3
executes a PID (proportional/integral/derivative controller) to
compute new output signals for a flow valve, based on the
inputs from a level controller and flow transmitter.

The hosts and applications in the sSDCS example have been
chosen so that they cover different typical situations. DCNs
are for example embedded devices or Industry PCs that can
optionally include direct field device connections. DCN1 does
not execute any application logic by itself, but just relays the
signals from level transmitter LT101-1 into the network for
other hosts to process. DCN2 executes the filtering logic for
two analog input signals, with one of them actually processing
the signal for LT101-1 coming from DCN1. DCN3 resembles
a smart actuator that computes the application logic for the
flow valve controller and also filters the output signal, which is
relayed to the flow valve FV101-1, which is directly connected
to this host. ACP1 is a more powerful server node and hosts
a PID function block, executing higher-level control logic for
the level controller. It also hosts services for supervision, i.e.
a Human Machine Interface service, an Alarm Management
service and a Historian service, as well as infrastructure
services, such as an OPC UA Aggregation Server, and an OPC
UA Global Discovery Server, and Engineering Tools [20]. In
practical situations there are many more DCNs and ACPs, the
nodes execute many more software services, and the network
topologies are more sophisticated. Furthermore, each host may
require operating system configuration as well as setup of
virtualization software from an orchestration system.

Based on the sDCS example, we derived a simple TOSCA
node model to explore the concepts for an DCS orches-
tration system. Fig. 3 shows a UML visualization of the
model, where each UML class resembles a TOSCA node,
properties and methods are omitted for brevity. The nodes
SoftwareComponent and Compute have been imported
from the TOSCA 1.3 simple YAML profile and thus directly
connect to TOSCA. As one important DCS software com-
ponent type, we introduce FunctionBlockEngine, which
hosts FunctionBlockApplication. There may be dif-
ferent types of such engines [21] and different vendor-specific
variants, which could inherit from this node type. Instances
of function block compositions are typically bundled into
applications, which are a unit of execution and are defined in
engineering tools. We assume that the function block instances
visible in Fig. 2 are already bundled into such applications.
Further software component types are SoftwareServices
(which subsume different supervision and engineering com-
ponents for now) and IoEngines. The latter have the TOSCA
capability of being a CommunicatedSignalProvider,
which means they can publish the latest values of specific
signals into the network.

For simplicity we modelled two types or TOSCA Compute
node types, namely DCN and ACP. Both of these types have
the capability to be DistributedControlPlatforms,
which means that these hosts support specific network profiles,
security facets, and system management profiles necessary in a
DCS. Other hardware and software capabilities are not detailed
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for now, but it is conceivable to model for example real-
time capabilities or safety mechanism into such node types.
Network devices and topologies are not yet included in the
model for simplicity, as the application deployment currently
assumes making decision only based on host capabilities, but
not on network capabilities. Existing TOSCA network models
for basic networking or network function virtualization could
be integrated here as a starting point, while specific DCS
models can be extended in the future.

Adding more detail to the model should be driven by
future deployment requirements, however unecessary com-
plexity must be avoided. In future DCS, an orchestration
system shall take as many deployment decisions as possible
and relieve system administrators and plant operators from
manually mapping control functions to complex virtualized IT
infrastructures consisting of dozens of hosts. Thus, it shall for
example be possible to choose appropriate deployment hosts
for function block applications during initial commissioning
and to dynamically adjust the deployment during operation
without affecting the underlying production [22]. Therefore,
the deployment relationships visible in Fig. 2 should only
be abstractly defined over certain Quality-of-Service require-

sensors), tracing to a UML

ments, but leave an orchestration system sufficient degrees of
freedom to choose an appropriate deployment. This can be
supported by TOSCA'’s select and substitute directives.

To explain the implementation of the TOSCA model shown
in Fig. 3, we show a YAML representation of a TOSCA
node template according to the model and the sDCS in
Fig. 4. It illustrates the additional concepts needed to make
the model operative but does not provide a fully complete
view. The newly defined DCS profile from Fig. 3 needs
to be imported (line 7), so that the newly defined types
can be used. The topology template can for example cap-
ture global parameters, such as the user credentials needed
to access the different hosts (line 11). The Appl defined
in line 14 is a FunctionBlockApplication hosted
on DCN2 and executes two Al function blocks (also see
Fig. 2). Besides the host requirement, it also requires the
presence of an ToEngine?2 having the capability of being a
CommunicatedSignalProvider for the signals required
by the Analog Input function blocks. Notice that this require-
ment does not necessarily imply a deployment of function
block engine and IO engine on the same computing host.

To deploy Appl, an orchestrator needs to refer
to the implementation of a deploy script, here an
Ansible playbook to wupload the application into a

FunctionBlockExecutionEngine, e.g., via the OPC
UA protocol. The application App1l itself is a AutomationML
file (line 41) containing a PLCopen specification of the
control logic of the two analog input function blocks in
IEC 61131-3 Structured Text. Engine2 defined in line
46, is a deployable SoftwareComponent of the type
FunctionBlockEngine. It requires a DCN host node



tosca_definitions_version: tosca_simple yaml _2_0

metadata:
name: "SimpleDCS™

imports:
- file: opasnodes.tosca
namespace uri: opas.nodes

topology_template:

inputs: [...] # =.g., user credentials

node_templates:
Appl:
type: opas.nodes.FunctionBlockApplication
requirements:
- host:
node: Engine2
relationship: con_HostedOn Appl
capability: host
- io_engine:
node: IoEngine2
relationship: con_SignalDepend_Appl
capability: communicated signal_ provider
capabilities:

interfaces:
Standard:
type: tosca.interfaces.node.lifecycle.Standard
operations:
create: [...]
inputs: [...]
implementation:
i fartifacts/appl-deplo
nsible playbook to

load app i

[...1

artifacts:
appl-artifact:

type: opas.artifacttypes.AutomationML

file: /artifacts/appl.aml

App2: [...

App3: [...

Enginel: [...] #
Engine2:
type: opas.nodes.FunctionBlockEngine
properties: [...]
requirements:
- host:
node: DCN2
relationship: c
interfaces:
artifacts:
appl-artifact:
type: opas.artifacttypes.DockerImage
file: /artifacts/engine.tgz
Engine3: [...] # n DCN3
Engined: [...] #

n DCN1, empty

[...] &

3,

IoEnginel: [...] # hosted on DCNI
ToEngine2:
types: opas.nodes.IoEngine
requirements:
- host:
node: DCN2
relationship: con_HostedOn_IoEngine2
interfaces: [...]

IoEngine3: [...] # hosted on DCN3
AlarmManagement :
type: opas.nodes.SoftwareService
properties: [...]
requirements:

- host:
node: ACP1
relationship: con
interfaces: [...] # &
artifacts:
appl-artifact:
type: opas.artifacttypes.HelmChart
file: /artifacts/alarm-manager.tgz
EngineeringTool: [... 1
AggregationServer:
Historian: [...] #
HumanMachineInterface
GlobalDiscoveryServer:

_AlarmManagement

k to deploy helm chart

DCN1:
type: opas.nodes.DCN
[oen]
92 directives: [ select ]
83 node_filter:
capabilities:
- host:
properties:

mem_size: {greater_or_equal:

...
19 DCN2: [...]
100 DCN3: [...]
0 ACP1:
type: opas.nodes.ACE
103 [...1

directives: [ select ]

106 relationship_templates:
con_HostedOn_App1:
108 type: tosca.rslationships.HostedOn
09 [...1

Fig. 4. Simplified Distributed Control System in TOSCA YAML based on defined types

and is, in this example, provided as a Docker image to be
executed by a container runtime. Notice that this implies
that the DCN host node has such a runtime installed, which
could be part of the orchestration, but is not detailed here for
simplicity.

IoEngine2 is of type IoEngine and so far only
treated the same as a function block execution engine.
AlarmManagement is a software service to be hosted on
an ACP. This service is provided as a Helm chart (Kubernetes
package manager), and needs to be deployed into a Kubernetes
orchestration framework hosted on one or more ACPs. The
DCNs are abstractly defined using TOSCA select directives
and node filters to allow the orchestrator to for example match
memory requirements to the host nodes in an inventory. This
allows an orchestrator to make independent deployment deci-
sions and optimize the deployment considering other factors,
such as current workload, maintenance phases, or hardware
replacements.

An orchestrator must thus support the included artifact types
and implementation types, so that the entire node template
can be processed. It can manage the nodes in scope of an
inventory that needs to be dynamically adjusted to the hosts
in the network and the status of the deployed components.
For example, in case of the nodes being part of a Kubernetes
cluster, an orchestrator can retrieve runtime information for
nodes and services via the Kubernetes API. To deploy soft-
ware, the orchestrator or its integrated artifacts need to have
sufficient authorization to install and modify software on each
of the managed host nodes. This requires careful consideration
of security properties.

IV. TOSCA ORCHESTRATOR

We searched for an appropriate TOSCA Orchestrator, con-
sidering number of different requirements: it shall be able to
process TOSCA 2.0 YAML templates including select and
substitution directives to be able to select cloud resources or
substitute vendor-specific DCS components. It shall provide
a dynamic inventory that can be populated with information
from Redfish servers discovered via SSDP. It shall support
Ansible, shell script, and other artifacts, but not be tied to a
specific deployment environment.

We checked the “official” list of known TOSCA implemen-
tations” as well as the TOSCA implementation landscape'”
maintained by Philippe Merle, which provide more than a
dozen of TOSCA orchestrators, available either commercially
or as open source. Although the TOSCA specification defines
conformance criteria for orchestrators, such as the ability to
process CSAR-files and support the entire TOSCA grammar,
it is unknown which orchestrators have been subject to com-
pliance testing. There is no list of fully compliant orchestrators
available.

We checked a few existing orchestrators to learn about their
suitability for our context. Cloudify uses its own Cloudify
Domain Specific Language, which is based on TOSCA, but
cannot process all kinds of TOSCA templates. The Open-
TOSCA runtime was bound to using XML-based CSARs as
input. xOpera claims compliance to TOSCA YAML vl.3,
but we could not find examples using select or substitute
directives. xOpera is also restricted to using Ansible artifacts.

9https://github.com/oasis-open/tosca-community-
contributions/wiki/Known-TOSCA-Implementations
10https://github.com/philippemerle/tosca-implementation-landscape



TORCH lacked appropriate documentation. The documen-
tation of Unfurl lists substitution mappings as a “not yet
implemented” feature. Yorc supports only TOSCA Simple
Profile in YAML 1.2. Ubicity seems to support TOSCA YAML
2.0 and select/substitute directives but is only available com-
mercially. Puccini supports parsing TOSCA YAML 2.0 but
is not a full orchestrator. Its companion application Turandot
supports select and substitute directives, but is restricted to
using Kubernetes resources. None of the orchestrators seems
to support some kind of inventory discovery as desired for
process automation applications, since this is not part of the
TOSCA specification and considered implementation-specific.

As no existing orchestrator seemed to fit our requirements,
we started to create a custom implementation. The TOSCA
Primer Document'! targets software developers and provides a
minimal reference architecture as a template for implementing
TOSCA orchestrators (Fig. 5).
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Fig. 5. TOSCA Orchestrator Reference Architecture

A TOSCA Modeling Tool provides a user interface to
create CSAR-files. The tool can be a simple text editor or
a graphical modeling tool, such as Eclipse Winery, Cloud-
fiy, or Aliend4cloud. A CSAR archive serves as input for
the actual TOSCA Orchestrator and is first processed
by the CSAR Processor. This includes extracting the in-
cluded files and parsing their YAML or XML contents. The
Definition Manager stores the retrieved information in
a Model Repository.

The Artifact Manager extracts artifacts, such as VM
or Docker images, application installers, or executables out
of the CSAR archive and stores them in one or multi-
ple Artifact Stores. Once this is done, the Deploy
Manager carries out the deployment of the nodes and ar-
tifacts in the target environment using the included TOSCA
implementations. This can for example include triggering a
cloud provisioning tool to create virtual machines, installing
virtualization software like a container runtime, and installing
software services on the target nodes.

An optional Model Interpreter may be used to trans-
form a declarative TOSCA template into an imperative one

Uhttp://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html

before handing it over to the Deploy Manager. The latter
can optionally make use of a Process Engine to process
workflow definitions in the TOSCA template. The Instance
Manager creates an instance of the cloud application, which
it manages through the Instance Database.

With the reference architecture as template, we created
our own TOSCA orchestrator implementation in .NET/C# as
depicted in Fig. 6. As TOSCA modeling tool, we used Eclipse
Winery for graphical modeling as well as Notepad++ and
Visual Studio Code for textual refinement. We also specified an
Inventory file for the orchestrator to work with. It contains
a list of host nodes and can be connected to a separate file
containing user credentials to connect to these nodes.
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Eclipse Winery

Redfish Explorer
\ .

<<Python component>>
Flask Web Server
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Fig. 6. DCS TOSCA Orchestrator Architecture (Prototype)

The Redfish Explorer can generate the Inventory
file. This is for example useful in situations where a DCS is
already installed on premises or in a cloud hosting environment
and shall co-host the application components specified in the
CSAR. DMTF Redfish'? is a system management standard
used in process automation.

Redfish servers provide a RESTful interface and system
management models covering for example CPU architecture,
memory, storage, endpoints etc. An orchestrator can poten-
tially use the information retrieved from a Redfish server to
inform autonomous deployment decisions. For example, the
Redfish model could contain information on the IoDevices
directly connected to a DCN, and thus the orchestrator could
decide to deploy specific control applications to the DCN
to lower communication latency between controller and IO.
Similar to UPnP servers, Redfish servers support discovery
via the SSDP protocol.

In our implementation, a user can initiate the Redfish
discovery process in a given subnet via a Web User
Interface hosted in a Flask Web Server. The WebUI
also displays the results of the TOSCA template parsing pro-

Zhttps://www.dmtf.org/standards/redfish



cess and provides users the ability to modify initial deployment
decisions manually.

Inside the TOSCA Orchestrator, the TOSCA YAML
Parser processes CSAR archives and parses the included
TOSCA YAML 2.0 files, supporting constructs, such as
TOSCA ’select’” and ’substitute’ directives. The orchestrator
finds concrete instances for abstract node definitions marked
with directives. Select directives are preferably resolved using
concrete nodes from the host inventory. It resolves substitute
directives by searching for any additionally provided topolo-
gies in the Model Repository that are marked as being a
valid substitute for this specific abstract type. Within both, it
applies any filters defined specification.

The orchestrator also supports operation calls, e.g., to create,
configure, or delete nodes. These are automatically called
depending on the lifecycle stage and according to the spec-
ification. The orchestrator forwards any expected inputs to the
artifacts of the operations and consumes their outputs to store
them as attributes in nodes.

The parser does not yet support TOSCA workflows, groups
and policies, since these were not yet used in the guiding sDCS
scenario but are expected to become important in the future
to allow the orchestrator to make more independent decisions.
The Definition Manager creates a TOSCA model from
the information gathered by the parser, which can then be
traversed to carry out deployment actions.

Our orchestrator does not feature an Artifact Handler
to store artifacts supplied in CSARs into repositories. It can
pass Helm charts included in a CSAR to deploy Kubernetes
workloads to Ansible playbooks but does not directly interact
with repositories. For simplification, we assume that the de-
ployment artifacts referenced in the CSARs are already stored
in pre-configured artifact repositories, e.g., Docker repositories
for Docker images.

The user can trigger the deployment process via the WebUI
that delegates to the Deploy Manager. This component can
deal with Helm, Bash, Docker, Ansible, and File artifacts,
which is sufficient to process the referenced artifacts in the
TOSCA sDCS template in Fig. 4. User credentials for the
artifact repositories and host nodes can be supplied by config-
uration files or interactively queried from the user executing
the orchestration. The TOSCA specification does not provide
a standard way of handling user credentials for host nodes and
considers it implementation-specific.

The orchestrator also includes an Engineering Tool
Client that can query existing DCS Engineering Tools to
distribute their configurations onto the previously installed
application components. In the case of a DCS, these are
for example control applications containing function block
assemblies for the use case at hand to be fed into Function
Block Execution Engines. Another example are operator pro-
cess graphics for HMI components.

V. CASE STUDY

We executed a first case study to determine the feasibility
and challenges when using the Simple TOSCA Model for

DCS and our custom implemented TOSCA orchestrator to
deploy the sample sDCS to two different target environments.
We chose as first target environment an Azure AKS Cluster
in a public cloud to emulate the use case of performing
simulation-based DCS testing in the cloud without physical
IO connections. In this case the signals coming from the 10
devices need to be simulated. As second target environment,
we chose a local on-premise K8s cluster based on the open
source StarlingX K8s distribution. Each environment included
one K8s master node and four worker nodes to reflect the four
nodes (3x DCN + 1x ACP) required by the sDCS application.
Notice that our simplified sDCS application relies on stat-
ically defined assignments of applications and function block
engines to particular DCNs. The DCN templates contain
a TOSCA select directive (Fig. 4, line 92), to allow the
orchestrator to select a concrete node from a given inventory.
Other than this selection, the orchestrator cannot yet make
any additional deployment decisions for the sDCS application,
since it lacks policy definitions and for example does not
include a dynamic selection of DCNs for given function block
execution engines. Fig. 7 shows the selection schematically.

Inventory1: Local Cluster Service Template

Appl:
FunctionBlockApplication

Inventory2: Public Cloud

DCN1: DCN
local

DCN1: DCN
public cloud

HostedOn

DCN2: DCN
local

DCN2: DCN

+”| public cloud
Engine2: ’/
FunctionBlockEngine ’
Q DCN3: DCN

P public cloud

DCN3: DCN AN
local \ HostedOn

ACP1: ACP
local

ACP1: ACP
public cloud

Q
/

Fig. 7. Choosing a target environment using the TOSCA ’select’ directive
and different inventories.

We assume for our case study that the human orchestration
user makes the decision for a target environment manually, by
providing the orchestrator a specific inventory file via the user
interface before parsing and processing the TOSCA template.
The TOSCA ’select’ directive triggers a standard mechanism
as specified in the TOSCA 2.0 specification but is however not
supported by all orchestrators. Implementing the mechanism
in a way that the main TOSCA template remains environment
independent required several subjective decisions, since the
TOSCA specification itself provides no guidance in how to
obtain the inventories.

In case of the public cloud deployment, we assumed that
a Kubernetes cluster needed to be created from scratch to
emulate the usage scenario of ad-hoc software testing in a
cluster before the actual automation equipment was installed
on premises. For our case study, we chose the Microsoft Azure
Kubernetes Service and used an Ansible playbook together
with the Azure.Azcollection module for Ansible to bootstrap
the cluster. Fig. 8 shows the public cloud inventory for Azure-
AKS, which embeds the Ansible playbook ’aks-create.yaml’.
To be able to execute the playbook, an Azure client ID, tenant
ID, secret, and subscription ID are required. The playbook



Public Cloud Inventory

tosca_definitions_version: tosca_simple yaml 2 0
metadata:
name: Azure-AKS-Inventory
topology_template:
node_templates:
DCN1:

type: opa

metadata:
displayName: azure-worker-1
kernelName: linux

operatingSystemName: linux
interfaces:

Standard:
type: tc interfaces.node.lifecycle.Standard
operati
create:
description: The standard create operation
inputs:

AZURE_CLIENT_ID: [...]
AZURE_TENANT: [...]
AZURE_SECRET: [...]
AZURE_SUBSCRIPTION ID: [...]
outputs:
AZURENODEIP: [...]
CLUSTER_API_KEY: [...]
CLUSTER_API_ADDRESS: [...]
implementation:
primary: /aks
artifacts:
azurenode:
type: opas.artifacttypes.Ansible
file: /aks-create.yaml

create.yaml

DCN2: [...]

DCN3: [...]

ACP1:
type: opas.nodes.ACP
[...]

On-premises Cluster Inventory

tosca_definitions_version: tosca
metadata:
name: StarlingX-Inventory
topology_template:
node_templates:
DCN1:
type: opas.nodes.DCN
metadata:
displayName: worker-1
kernelName: Linux
operatingSystemName: CentOS
attributes:
public_address:
redfish_address: http://192
cluster_api_key: | get_in
cluster api_address: |
DCN2:
type: opas.nodes.DCN
metadata:
displayName: worker-Z
kernelName: Linux
operatingSystemName: CentOS
attributes:
public_address:
redfish_address: http://192.168.1.2:8(

simple_yaml_2 0

Linux

0/redfish/vl
I KEY )
API_ADDRESS |}

jet_input: K8S

Linux

0/redfish/vl
cluster_api_key: ( get_input: K
cluster_api_address: { get
DCN3:
type: opas.nodes.DCN
[v0n]
ACP1:
type: opas.nodes.AC
[...]

Fig. 8. Public cloud inventory vs. on-premises cluster inventory to be fed
into a TOSCA orchestrator (excerpts)

(not shown in detail here for brevity) first checks if a K8s
Master node is already deployed and instantiates a new Master
node otherwise. Afterwards, it adds a new worker node and
returns its IP address, so that the orchestrator can later pass
it to other deployment tools. As TOSCA processes each DCN
individually, this procedure needs to be repeated for each
DCN.

In case of the on-premise cluster deployment, we assumed
that a Kubernetes cluster already existed to emulate the usage
scenario that DCS applications shall be deployed into an

already bootstrapped cluster after initial field commissioning.
For our case study, we chose a local StarlingX Kubernetes
cluster with in-band Redfish servers on each node as the
target environment. While the nodes could be also retrieved
via the K8s API, we use Redfish here, since it is not tied
to Kubernetes, and we envision scenarios where K8s is not
available. Thus, the inventory was created by the Redfish
Explorer, which used the SSDP protocol to determine
the available nodes and their capabilities. The information is
statically stored into the inventory file, which thus already
contains specific IP addresses when invoking the orchestrator.
There are no additional Ansible playbooks needed in this case,
however the orchestrator needs to access the K8s API and API
key to be able to deploy workloads into the cluster. Additional
information from the Redfish servers (e.g., the host’s CPU and
memory, as well as connected 10 devices) could be passed to
the orchestrator here to be able to make more sophisticated
deployment decisions in the future.

Given the inventories and additional security keys, the
TOSCA orchestrator could process the entire TOSCA template
for the sDCS application (Fig. 4) and deploy the specified
applications to the respective nodes. This involved triggering
additional Ansible playbooks to start Docker containers, install
Helm charts, and upload applications in AutomationML syntax
into the function block engines. Table I shows the overall mea-
sured deployment times for the two target environments. The
public cloud deployment takes much longer, since the entire
K8s cluster is bootstrapped before deploying the applications,
whereas for the on-premise deployment the K8s cluster was
already set up.

Public cloud On-premises
Deployment Time | Deployment Time
Test Run 1 632 sec 68 sec
Test Run 2 635 sec 75 sec
Test Run 3 641 sec 70 sec
Test Run 4 627 sec 76 sec
Test Run 5 594 sec 72 sec
TABLE I

DEPLOYMENT TIMES FOR THE SDCS APPLICATION

The main TOSCA template required no changes for the
two different target environments, as we were able to move
all platform dependencies and technology specifics into the
inventories and Ansible playbooks. Thus, the template should
be reusable for other deployment targets as well. The Ansible
playbooks are hardly reusable in other contexts indepen-
dent from the orchstrator, since they are specially structured
for the TOSCA processing (e.g., each K8s worker node is
set up individually). Our TOSCA orchestrator can notify a
DCS engineering tool of changes to the deployment via its
Engineering Tool Client. This is however not cov-
ered by the TOSCA specification and thus a proprietary exten-
sion. Other TOSCA orchestrators would leave DCS engineer-
ing tools unsynchronized, which can introduce conflicts when
altering the DCS configuration (e.g., assigning an application
to another node) via the engineering tools.



VI. LESSONS LEARNED

We summarize several learnings, experiences, and observa-
tions from our TOSCA modeling, orchestrator implementation
and case study in the following. We report on these experi-
ences to aid in accelerating TOSCA’s specification and tooling
maturity to become more widespread in practice.

Gaps in TOSCA specification: While implementing the
TOSCA orchestrator, we found that the TOSCA specifica-
tion lacks guidance on how certain features are supposed
to be implemented, which may hurt compatibility between
orchestrators. For example, TOSCA allows to specify input
and output parameters for operations, but concrete artifact
processors may provide different options of handling such
parameters. Bash scripts can for example receive parameters
by passing them on invocation, by reading them from a
file, or by retrieving them from previously set environment
variables. The TOSCA specification mentions the preferred
use of environment variables for parameter passing, but this
is not normative and may be problematic if passwords are
involved. For other kinds of artifacts, there is no preferred
method of passing parameters in the specification.

Notification handling is similarly underspecified as param-
eter handling. Furthermore, the TOSCA grammar does not
allow node filters to use functions to pass node at-
tributes from additional input files. Resource inventories
are only briefly mentioned in the specification, but their
usage remains unclear and the implementation is left to the
orchestrator developer, which may make TOSCA templates
non-portable. We decided to implement the inventories for
our sDCS application as TOSCA topology templates, but
other types of implementations are conceivable. In general,
it is left open how TOSCA select and substitution
directives shall be resolved if multiple matches are detected.
Thus, different orchestration implementations could end up
with different results given the same inputs.

Artifact handlers tied to orchestrator implementations:
The consequence of omitting standardized parameter passing
is that artifact processors are essentially tied to a particular
TOSCA orchestrator implementation as both have to have
a compatible mechanism. Because the artifact handlers are
embedded into TOSCA templates, these templates need to be
edited to work with other TOSCA orchestrators.

But with TOSCA templates tied to a specific orchestrator
implementation, the benefits of using a standard notation are
reduced, and the template user is tied to a specific tool vendor-
This is especially crucial in the industrial automation domain,
where systems may need to be maintained for decades and
possibly have longer life-cycles than specific IT tools. OASIS
UML models had a similiar tool exchange problems initially
prompting the development of XMI [23].

TOSCA orchestrators not fully standard-compliant:
While the specification includes conformance criteria for
TOSCA processors and orchestrators, we did not find a com-
plete set of reusable test cases for orchestrator developers to
perform conformance checks. When screening the tool land-

scape for TOSCA orchestrators, we noticed that many of them
for example do not yet support substitution mappings, which
were only (re-)introduced in the TOSCA specification in 2019,
after previous incomplete attempts. Many TOSCA examples
found in open source repositories only use simple TOSCA
concepts, but do not utilize all provided possibilities. This
again may make TOSCA templates unprocessable if they use
certain constructs that a TOSCA orchestrator does not support.
This issue may be resolved once the specification stabilizes,
and the TOSCA orchestrator implementations evolve and are
TOSCA-compliance tested.

Challenge of creating service templates for different
target environments: While in theory TOSCA decouples
the topology model from technology and implementation
specifics, in current practice most TOSCA orchestrators seem
to be tied to specific artifacts (e.g., only Python scripts) and
technologies (e.g., only Kubernetes resources) and cannot be
broadly used in other situations. The most popular commercial
orchestrator Cloudify even defined its own domain-specific
language inspired by TOSCA, which may render the service
templates unprocessable by TOSCA parsers.

Furthermore, creating service templates applicable for dif-
ferent cloud platforms (e.g., Microsoft Azure, Amazon AWS)
requires dealing with environment-specific properties. In our
simple example, we were able to contain the environment-
specific properties in the used inventories, since we aimed
at rather generic container and K8s application workloads.
More sophisticated real-world templates that allow to switch
the deployment from one cloud provider to another provider
and do not only include containers and helm charts however
likely would likely make use of such properties. Best practice
recommendation from the TOSCA specification is to create
abstract TOSCA nodes and to use substitution mappings to
replace these with concrete ones specific for a selected target
environment. Unfortunately, substitution mappings are not yet
supported by most orchestrators.

Challenge of synchronizing with DCS engineering tools:
In the domain of distributed control systems, the deployment
of function block applications to DCNs is classically done
through vendor-specific, proprietary engineering tools [4]. For
example, a control logic editor enables an automation engineer
to instantiate function blocks, such as a PID block, from a li-
brary and assemble them to implement a control function [21].
Such a tool is also used to assign the resulting function block
application to configured DCN nodes. These tools then provide
an upload function to the DCNs to deploy the applications.

This functionality obviously overlaps with the intention
for a TOSCA orchestrator, which classically also assigns
applications to nodes. To avoid conflicting specifications and
inconsistencies, a TOSCA orchestrator could work with a
TOSCA template generated from information retrieved from
the aforementioned engineering tools. Other forms of gener-
ation have been enabled by the recently evolving standards
for smart P&IDs [24]. However, the orchestrator may make
optimized deployment decisions based on dynamic inventory
discovery or other policies, which then changes the configura-



tion originally specified in the control logic engineering tool.
If an automation engineer then wants to use the engineering
tools after an orchestrator has made independent decisions,
they may have an outdated configuration.

Removing the control application assignment to nodes from
the engineering tools and exclusively having it in an TOSCA
orchestrator may be possible. However, in this case the au-
tomation engineer may perceive a lack of control over the
system and reject an independently acting orchestration tool.
For example, in case of errors, troubleshooting may be com-
plicated if the engineering tools lack deployment information.

Challenge of synchronizing with container orchestra-
tors: Besides the engineering tools, the TOSCA orchestrator
may also need to synchronize with a container orchestra-
tion framework, such as Kubernetes. The latter may alter
the deployment independent from the TOSCA orchestrator,
e.g. draining nodes for maintenance or dynamically adjusting
workloads for more balanced resource usage. Users may prefer
to use popular K8s tools instead of a TOSCA orchestrator to
alter the deployment. Such changes would need to be also
reflected in the TOSCA orchestrator, so that future dynamic
deployment decisions inside the orchestrator remain informed.

Continuously synchronizing multiple systems (i.e., engi-
neering tools, TOSCA orchestrator, container orchestration) is
inherently complex and error-prone. There may be conflicting
changes coming from different sources. Each of the men-
tioned systems has different kinds of users (e.g., automation
engineers, IT administrators, cloud providers) with different
expertise and different perspectives on the system. Thus, it is
unlikely that such systems can be merged into a single one,
instead, a careful and continuous synchronization is needed.

TOSCA is also designed to make concrete deployment
decisions, for example selecting appropriate nodes for deploy-
ment from an inventory. It is difficult to delegate concrete
deployment decisions to a container orchestration system, as
TOSCA does not foresee deploying a service to a group of host
nodes and leaving the concrete node selection to a separate
system. The TOSCA specification is still rather host node
oriented, being designed when [aaS was more popular and
container orchestration was not yet available.

Overshadowed by other deployment automation tech-
nologies: The OASIS TOSCA technical committee started its
work in 2012 and has evolved the standard already for over
10 years. Although TOSCA includes a flexible object-oriented
model independent from specific artifact technologies or cloud
vendors, it has not gained wide-spread adoption in the IT
industry [5], [6]. A literature review [5] collected more than a
dozen of case studies applying TOSCA, but most of them were
carried out in academic contexts. Wurster et al. [6] found in
2020 through a Google search that other deployment automa-
tion technologies, such as Puppet, Chef, Ansible, Kubernetes,
and Terraform were by far more popular than Cloudify,
which is the most popular TOSCA-based orchestrator. These
technologies have slightly different assumptions and functions
than TOSCA but are used in practice for similar purposes [6].

For example, Ansible is a popular infrastructure-as-code

tool and configuration manager and is provided with several
cloud-specific modules. For TOSCA the implementation of
artifact processors is rather orchestrator-specific and there is no
commercially relevant repository or marketplace with ready-
made solutions. Similar to TOSCA, Ansible can be used
to specify and bootstrap an IT infrastructure, furthermore it
can interface with Kubernetes for application deployment and
container handling. Since Kubernetes text templates are cloud-
agnostic, and Kubernetes has gained vast popularity, it could
even be argued that Kubernetes is the de-facto standard for
portable cloud application deployment that TOSCA intended
to be. TOSCA is more general though and not tied to container
technologies. Furthermore, the same as Kubernetes templates,
Ansible playbooks do not feature object-oriented models as
in TOSCA, but also provide a declarative specification for
configuration management.

Of course, all these deployment automation technologies
could be used in combination, as in our case study. However,
maintaining TOSCA models, Ansible playbooks, and Kuber-
netes templates is complex and potentially error-prone.

From the longevity perspective of distributed control sys-
tems, it could be argued that Ansible and Kubernetes are
transient and vendor-specific technologies that may be hard to
support over a 30-year life-span of an industrial plant, whereas
TOSCA is a more long-living industry-agreed standard. How-
ever, both Ansible and Kubernetes use no proprietary binary
notations to express configurations and application deploy-
ments, but simple textual notations. Therefore, it is comparably
easy to write converters to migrate such specifications to future
deployment automation tools, once the original ones become
obsolete.

VII. CONCLUSIONS

We learned that TOSCA is a sophisticated specification that
may need more maturation and fully compliant tool support to
become more widely used. It was feasible to map our abstract
sDCS scenario to TOSCA templates, given a simple TOSCA
profile for DCS. We implemented a prototypical TOSCA
orchestrator, which prompted several design decisions due to
specification gaps. Specifically in the DCS application context,
synchronizing a TOSCA orchestrator with other configuration
and orchestration software is challenging, though not infeasi-
ble.

As part of future work, more DCS-specific concepts need to
be encoded in a domain-specific TOSCA profile, for example
properties of 10 and network devices or deployment policies.
It needs to be assessed how far the efforts for specifying
TOSCA files can be reduced by partially generating them from
other typical engineering artifacts. The roles of future DCS
engineering systems and orchestrators need to be clarified. To
be able to compose TOSCA models from different vendors as
envisioned by the Open Process Automation Forum, it would
be important to have open repositories curated by the Open
Group. To facilitate the technology transfer into practice user-
friendly modeling tools and orchestrator Uls are necessary.
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