
Safe Combination of Data-Centric and
Operation-Centric Consistency

Mirko Köhler
koehler@cs.tu-darmstadt.de

TU Darmstadt
Germany

Guido Salvaneschi
guido.salvaneschi@unisg.ch

University of St. Gallen
Switzerland

Abstract
Programming distributed systems requires maintaining con-
sistency among data replicas. In recent years, various language-
level abstractions have emerged for this issue that fall into
two fundamental approaches: data-centric and operation-
centric solutions. In the former developers explicitly assign
consistency levels to data, in the latter they attach consis-
tency constraints to operations. In practice, developers may
benefit from both in the same application: data-centric con-
sistency harmonizes well with object-oriented programming,
yet one may need the flexibility to access the same data with
a different consistency level depending on the operation.
Currently, there is no solution that integrates both: it is a
conceptual challenge to unify these two models and design
a type system capable of ensuring their correct interaction.
We present ConOpY, a programming language that inte-

grates both data-centric and operation-centric consistency
into the same design. ConOpY’s type system guarantees pre-
ventis consistency violations resulting from an improper
mix of consistency models. ConOpY is implemented as a Java
extension based on annotations.

CCSConcepts: •Computingmethodologies→Distributed
programming languages.

Keywords: replication, consistency, type systems, Java
ACM Reference Format:
Mirko Köhler and Guido Salvaneschi. 2023. Safe Combination of
Data-Centric and Operation-Centric Consistency. In Companion
Proceedings of the 2023 ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH Companion ’23), October 22–27, 2023, Cascais,
Portugal. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3618305.3623610

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0384-3/23/10. . . $15.00
https://doi.org/10.1145/3618305.3623610

1 Background
In distributed applications exists a trade-off between con-
sistency and availability [5]. Emphasizing consistency sim-
plifies development due to a clearly-ordered view of events.
Yet, this necessitates extensive inter-device coordination, im-
pacting performance. To mitigate these issues, some systems
prioritize availability by working on local states, merging
them when feasible [13]. This approaches are efficient, offer
consistency guarantees such as causality or convergence,
and are referred to as weakly consistent [7]. In contrast,
systems necessitating coordination are termed strongly con-
sistent. Most software systems opt for weak consistency
to enhance efficiency, although certain functionalities still
demand strong consistency. For instance, in online stores,
payments require strong consistency while browsing uti-
lizes weak. In multiplayer online games, account data might
need strong consistency whereas the game state is managed
with weak [4]. Social networks require a mix, with strong
consistency necessary for user index updates and weak for
scalability [12].

Mixed consistency. In practice, neither strong nor weak
are enough for an entire application. Developersmust instead
mix various levels of consistency. There are two strategies.
(1) They can utilize multiple stores, each providing a distinct
data consistency level [9, 10]. Here, the consistency level is
determined upon assigning data objects to their respective
stores, and objects are always accessed using the consistency
level of the store. This limits flexibility as the same data
can’t be accessed with different consistency levels – a bank
account is typically viewed as strongly consistent, but in
some situations, reading the account balance with a weaker
consistency level suffices. (2) Developers employ data stores
that allow selection of consistency levels per operation, en-
abling access to a single data object with varying levels [2, 8].
This, however, necessitates to consider the consistency level
of all operations applied to an object, not just the object
itself. Developers must reason about the consistency of all
modifications, from all processes involved in the application.
Both options, however, are prone to errors as incorrect

mixing of consistency levels can lead to consistency violations,
e.g., when a weakly consistent value (which might temporar-
ily be inconsistent due to concurrent writes not visible to
all processes simultaneously) is written into a strongly con-
sistent object that guarantees a common global view. The

https://orcid.org/0000-0001-5497-9785
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3618305.3623610
https://doi.org/10.1145/3618305.3623610
https://doi.org/10.1145/3618305.3623610

SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal Mirko Köhler and Guido Salvaneschi

root problem is the flow of a weakly consistent value into a
strongly consistent object. At the data store level, the system
can’t assist developers in circumventing these problematic
flows as it can’t reason about the context in which objects
are used within the application.

Language approaches. Researchers have suggested ele-
vating the selection of consistency levels from data stores to
the programming language itself. In this setting, the flow of
consistency levels can be tracked, and improper mixing of
consistency levels, potentially leading to consistency viola-
tions, can be detected. Some approaches [3, 6, 9, 11] enable
developers to annotate their replicated data with a data-
centric consistency level. These approaches utilize type sys-
tems to prevent consistency violations. However, similar to
the data store level, data-centric consistency constrains ex-
pressiveness, as all operations on an object execute with the
same consistency. An alternative is to use operation-centric
consistency levels, wherein developers specify consistency
as a property of the operations accessing the data rather than
the data itself. This allows for more nuanced specification of
consistency, as different operations on an object can operate
with different consistency levels.

2 Overview
We introduce ConOpY, an object-oriented programming lan-
guage that offers integrated support for mixed consistent
replication. The novelty lies in the innovative approach to in-
corporating operation-centric consistency, thereby enabling
seamless reasoning about both data-centric and operation-
centric consistency through a unified mechanism.

At the core of ConOpY lies the concept of replicated objects,
objects that exist across multiple processes. Developers in-
teract with replicated objects through operations, which are
invoked as methods. Operations can modify and query the
replicated state. Each operation is assigned a consistency
level, which dictates how processes coordinate to execute
the operation. To represent this, we define two consistency
levels, Strong andWeak (corresponding to unavailability and
high-availability, respectively [1]). Strong operations require
coordination between processes, ensuring strong correct-
ness guarantees through sequential execution of concurrent
operations. In contrast, Weak operations can be executed
by a single process and are later coordinated, allowing for
temporarily inconsistent states between replicas, with the
eventual guarantee of consistency.

ConOpY offers two fashions to define consistency: con-
sistency for entire replicated objects (data-centric) or con-
sistency for individual methods (operation-centric). These
choices of consistency are enforced through the type system,
enabling static reasoning about consistency. For the data-
centric approach, developers annotate classes with specific
consistency levels, resulting in replicated objects instanti-
ated with the designated consistency level. All operations

performed on these objects inherit the chosen consistency,
ensuring a consistent treatment of the object’s state. In the
operation-centric approach, consistency is specified at the
granularity of methods. Developers attach consistency an-
notations to method declarations, and ConOpY automatically
infers the required consistency levels from these method
specifications. Importantly, ConOpY facilitates the seamless
interoperability of these two approaches, allowing develop-
ers to combine them within the same application as needed.

To ensure the correct mixing of data-centric and operation-
centric consistency levels and prevent consistency violations,
ConOpY is equipped with a consistency type system that
verifies the correctness of specified consistency levels with
respect to each other, specifically ensuring that Strong data
does not depend on Weak(er) data.
We intend to evaluate ConOpY on both a local setup and

the EC2 Cloud, aiming to demonstrate that it enables the
correct integration of data-centric and operation-centric con-
sistency. Additionally, we seek to showcase ConOpY’s ability
to introduce concurrent execution when feasible, all while
relieving developers from the burden of reasoning about
consistency correctness.

Acknowledgments
This work has been supported by the Swiss National Science
Foundation and the LOEWE centre emergenCITY.

References
[1] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M.

Hellerstein, and Ion Stoica. 2013. Highly Available Transactions:
Virtues and Limitations. PVLDB.

[2] Apache Cassandra. 2022. Apache Cassandra Documentation. https:
//cassandra.apache.org

[3] Kevin De Porre, Florian Myter, Christophe Scholliers, and Elisa Gon-
zalez Boix. 2020. CScript: A distributed programming language for
building mixed-consistency applications. J. Parallel and Distrib. Com-
put. 144 (2020), 109–123. https://doi.org/10.1016/j.jpdc.2020.05.010

[4] Ziqiang Diao. 2013. Consistency Models for Cloud-based Online
Games: the Storage System’s Perspective. In Grundlagen von Daten-
banken.

[5] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-Tolerant Web Services.
SIGACT News 33, 2 (jun 2002), 51–59. https://doi.org/10.1145/564585.
564601

[6] Mirko Köhler, Nafise Eskandani, Pascal Weisenburger, Alessandro
Margara, and Guido Salvaneschi. 2020. Rethinking Safe Consistency
in Distributed Object-Oriented Programming. Proc. ACM Program.
Lang. 4, OOPSLA, Article 188 (nov 2020), 30 pages. https://doi.org/10.
1145/3428256

[7] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. 2011. Don’t Settle for Eventual: Scalable Causal Consistency
for Wide-Area Storage with COPS. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (Cascais, Portugal)
(SOSP ’11). Association for Computing Machinery, New York, NY, USA,
401–416. https://doi.org/10.1145/2043556.2043593

[8] Microsoft. 2022. Consistency levels in Azure Cosmos DB. https://docs.
microsoft.com/en-us/azure/cosmos-db/consistency-levels

https://cassandra.apache.org
https://cassandra.apache.org
https://doi.org/10.1016/j.jpdc.2020.05.010
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3428256
https://doi.org/10.1145/3428256
https://doi.org/10.1145/2043556.2043593
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

Safe Combination of Data-Centric and Operation-Centric Consistency SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal

[9] Matthew Milano and Andrew C. Myers. 2018. MixT: A Language for
Mixing Consistency in Geodistributed Transactions. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association
for Computing Machinery, New York, NY, USA, 226–241. https://doi.
org/10.1145/3192366.3192375

[10] MySQL. 2022. MySQL 8.0: Configuring Transaction Consistency Guar-
antees. https://dev.mysql.com/doc/refman/8.0/en/group-replication-
configuring-consistency-guarantees.html

[11] Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2018.
A CAPable Distributed Programming Model. In Proceedings of the 2018
ACM SIGPLAN International Symposium on New Ideas, New Paradigms,

and Reflections on Programming and Software (Boston, MA, USA) (On-
ward! 2018). Association for Computing Machinery, New York, NY,
USA, 88–98. https://doi.org/10.1145/3276954.3276957

[12] Xiao Shi, Scott Pruett, Kevin Anthony James Doherty, Jinyu Han,
Dmitri Petrov, Jim Carrig, John Hugg, and Nathan Grasso Bronson.
2020. FlightTracker: Consistency across Read-Optimized Online Stores
at Facebook. In OSDI.

[13] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2023.
Type-Checking CRDT Convergence. Proc. ACM Program. Lang. 7,
PLDI, Article 162 (jun 2023), 24 pages. https://doi.org/10.1145/3591276

Received 2023-08-15; accepted 2023-08-30

https://doi.org/10.1145/3192366.3192375
https://doi.org/10.1145/3192366.3192375
https://dev.mysql.com/doc/refman/8.0/en/group-replication-configuring-consistency-guarantees.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-configuring-consistency-guarantees.html
https://doi.org/10.1145/3276954.3276957
https://doi.org/10.1145/3591276

	Abstract
	1 Background
	2 Overview
	Acknowledgments
	References

