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Decentralized applications (dApps) consist of smart contracts that run on blockchains and clients that model
collaborating parties. dApps are used to model �nancial and legal business functionality. Today, contracts
and clients are written as separate programs – in di�erent programming languages – communicating via
send and receive operations. This makes distributed program �ow awkward to express and reason about,
increasing the potential for mismatches in the client-contract interface, which can be exploited by malicious
clients, potentially leading to huge �nancial losses.

In this paper, we present Prisma, a language for tierless decentralized applications, where the contract and
its clients are de�ned in one unit and pairs of send and receive actions that “belong together” are encapsulated
into a single direct-style operation, which is executed di�erently by sending and receiving parties. This enables
expressing distributed program �ow via standard control �ow and renders mismatching communication
impossible. We prove formally that our compiler preserves program behavior in presence of an attacker
controlling the client code. We systematically compare Prisma with mainstream and advanced programming
models for dApps and provide empirical evidence for its expressiveness and performance.
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1 INTRODUCTION

dApps enable multiple parties sharing state to jointly execute functionality according to a prede�ned
agreement. This prede�ned agreement is called a smart contract and regulates the interaction
between the dApp’s clients. Such client–contract interactions can be logically described by state
machines [55, 56, 79, 84] specifying which party is allowed to do what and when.

dApps can operate without centralized trusted intermediaries by relying on a blockchain and its
consensus protocol. To this end, a contract is deployed to and executed on the blockchain, which
guarantees its correct execution; clients that run outside of the blockchain can interact with the
contract via transactions. A key feature of dApps is that they can directly link application logic with
transfer of monetary assets. This enables a wide range of correctness/security-sensitive business
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applications, e.g., for cryptocurrencies, crowdfunding, and public o�erings,1 and the same feature
makes them an attractive target for attackers. The attack surface is wide since contracts can be
called by any client in the network, including malicious ones that try to force the contract to deviate
from the intended behavior [36]. In recent years, there have been several large attacks exploiting
�awed program �ow control in smart contracts. Most famously, attackers managed to steal around
50M USD [23, 36] from a decentralized autonomous organization, the DAO. In two attacks on
the Parity multi-signature wallet, attackers stole cryptocurrencies worth 30M USD [12] and froze
150M USD [65].

Programming dApps. In this paper, we explore a programming model that ensures the correctness
and security of the client–contract interaction of dApps by-design. Deviations from the intended
interaction protocols due to implementation errors and/or malicious attacks are a critical threat
(besides other issues such as arithmetic or bu�er over�ows, etc.) as demonstrated e.g., by the DAO
attack [23, 36] mentioned above.
dApps are multi-party applications. For such applications, there are two options for the pro-

gramming model: a local and a global model. In a local model, parties are de�ned each in a separate
local program and their interactions are encoded via e�ectful send and receive instructions. Ap-
proaches that follow this model stem from process calculi [46] and include actor systems [2] and
approaches using session types [27], and linear logic [86]. In contrast, in a global model, there
is a single program shared by both parties and interactions are encoded via combined send-and-
receive operations with no e�ects visible to the outside world. This model is represented by
tierless [16, 22, 38, 69, 70, 80, 81, 87] and choreographic [40, 47, 59] languages. The local model
requires an explicitly speci�ed protocol to ensure that every send e�ect has a corresponding receive
operation in an interacting – separately de�ned – process. With a global model, there is no need to
separately specify such a protocol. All parties run the same program in lock-step, where a single
send-and-receive operation performs a send when executed by one party and a receive by the other
party. Due to encapsulating communication e�ects, there is no non-local information to track – the
program’s control �ow de�nes the correct interaction and a simple type system is su�cient.

Current approaches to dApp programming – industrial or research ones – follow a local model,
Contract and client are implemented in separate programs, thus safety relies on explicitly specifying
the client–contract interaction protocol. Moreover, the contract and clients are implemented in
di�erent languages, hence, developers have to master two technology stacks.

The dominating approach in industry uses Solidity [58] for the contract and JavaScript for clients.
Solidity relies on developers following best practices recommending to express the protocol as
runtime assertions integrated into the contract code [33]. Failing to correctly introduce assertions
may give parties illegal access to monetary values to the detriment of others [52, 60].
The currently dominant encoding style of the protocol as �nite state machine (FSM) uses one

contract-side function per FSM transition [18–20, 58, 75, 76]. While FSMs model a useful class
of programs that can be e�ciently veri�ed, writing programs in such style directly has several
shortcomings. First, an FSM corresponds to a control-�ow graph of basic blocks, which is low-level
and more suited as an internal compiler representation than as a front-end language for humans.
Second, with the FSM style, the contract is a passive entity whose execution is driven by clients.
This design puts the burden of enforcing the protocol on the programmers of the contract, as they
have to explicitly consider in what state which messages are valid and reject all invalid messages
from the clients. Otherwise, malicious clients would be able to force the contract to deviate from

1700 K to 2.7M contracts have been deployed per month between July 2020 and June 2021 [43] on the Ethereum blockchain –
the most popular dApps platform [24]. Some dApps manage tremendous amounts of assets, e.g., Uniswap [85] – the largest
Ethereum trading platform had a daily trading volume of 0.5 B – 1.5 B USD in June 2021.

ACM Trans. Program. Lang. Syst., Vol. 45, No. 3, Article 17. Publication date: September 2023.



Prisma: A Tierless Language for Enforcing Contract-Client Protocols in Decentralized Applications 17:3

its intended behavior by sending messages that are invalid in the current state. Third, ensuring
protocol compliance statically to guarantee safety requires advanced types, as the type of the next
action depends on the current state.
In research, some smart contract languages [9, 18–20, 25, 61, 75, 76] have been proposed to

overcome the FSM-style shortcomings. They rely on advanced type systems such as session types,
type states, and linear types. There, processes are typed by the protocol (of side-e�ects such as
sending and receiving) that they follow and non-compliant processes are rejected by the type-
checker.
The global model has not been explored for dApp programming – which is unfortunate given

the potential to get by with a standard typing discipline and to avoid intricacies and potential
mismatches of a two-language stack. Our work �lls this gap by proposing Prisma – the �rst language
that features a global programming model for Ethereum dApps. While we focus on the Ethereum
blockchain, we believe our techniques to be applicable to other smart contract platforms as well.

Prisma. Prisma enables interleaving contract and client logic within the same program and
adopts a direct style (DS) notation for encoding send-and-receive operations akin to languages with
baked-in support for asynchronous interactions, e.g., via async/await [8, 73]. Prisma leaves it to
the compiler to map down high-level declarative DS to low-level FSM style. It avoids the need for
advanced typing discipline and allows the contract to actively ask clients for input, promoting an
execution model where a dominant acting role controls the execution and diverts control to other
parties when their input is needed, which matches well the dApp setting.

Overall, Prisma relieves the developer from the responsibility of correctly managing distributed,
asynchronous program �ows and the heterogeneous technology stack. Instead, the burden is on the
compiler, which distributes the program �ow bymeans of selective continuation-passing-style (CPS)
translation and defunctionalisation, as well as inserts guards against malicious client interactions.

For this, we needed to develop a CPS translation for the code that runs on the Ethereum Virtual
Machine (EVM), since the EVM has no built-in support for concurrency primitives to suspend
execution and resume later – which could be used, otherwise, to implement asynchronous com-
munication. Given that CPS translations reify control �ow, without proper guarding, malicious
clients could force the contract to deviate from the intended �ow by passing a spoofed value to the
contract. Thus, it is imperative to prove that our distributed CPS translation ensures control-�ow
integrity of the contract, which we do on top of a formal de�nition of the compilation steps. The
formally proven secure Prisma compiler eliminates the risk of programmers implementing unsafe
interactions that can potentially be exploited.

Contributions. We make the following contributions:

(1) We introduce Prisma,2 a global language for tierless dApps with direct-style client–contract
interactions and explicit access control, implemented as an embedded DSL in Scala. Crucially,
Prisma automatically enforces the correct program �ow (Section 2).

(2) A core calculus, MiniPrisma, which formalizes both Prisma and its compiler, as well as a
proof that our compiler guarantees the preservation of control �ow in presence of an attacker
that controls the client code (Section 3).

(3) Case studies which show that Prisma can be used to implement common applications without
prohibitive performance overhead (Section 5).

(4) A comparison of Prisma with a session type and a type state smart contract programming
language and the mainstream Solidity/JavaScript programming model (Section 6).

2Prisma implementation and case studies are publicly available: https://github.com/stg-tud/prisma
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Fig. 1. TicTacToe control flow.

Table 2. Location annotations.

Annotations Description

@co on contract
@cl on clients

@co @cl independent copies
on clients and contract

@co @cross on contract, but also
accessible by client

@cl @cross (illegal combination)

1 @prisma object TicTacToeModule {

2

3 @co @cl case class UU(x: U8, y: U8)

4

5 class TicTacToe(

6 val players: Arr[Address],

7 val fundingGoal: Uint) {

8

9 // u8 is an unsigned 8-bit integer

10 @co @cross var moves: U8 = "0".u8

11 @co @cross var winner: U8 = "0".u8

12 @co @cross val board: Arr[Arr[U8]] =

13 Arr.ofDim("3".u, "3".u)

14

15 @co def performMove(x: U8, y: U8): Unit =

16 { /* ... */ }

17 @cl def updateBoard(): Unit =

18 { /* ... */ }

19 @cl def fund(): (U256, Unit) =

20 (readLine("How much?").u, ())

21 @cl def move(): (U256, UU) =

22 ("0".u, UU(readLine("x-pos?"),

23 readLine("y-pos?"))

24 @cl def payout(): (U256, Unit) = {

25 readLine("Press (enter) for payout")

26 ("0".u, ())

27 }

28 @co val init: Unit = {

29 while (balance() < FUNDING_GOAL) {

30 awaitCl(_ => true) { fund() }

31 }

32 while (moves < "9".u && winner == "0".u) {

33 val pair: UU = awaitCl(a =>

34 a == players(moves % "2".u)) { move() }

35 performMove(pair.x, pair.y)

36 }

37 awaitCl(a => true) { payout() }

38 if (winner != "0".u) {

39 players(winner - "1".u).transfer(balance())

40 } else {

41 players("0".u).transfer(balance() / "2".u)

42 players("1".u).transfer(balance()) // remainder

43 }

44 }

45 }

46 }

Fig. 3. TicTacToe dApp.

2 PRISMA IN A NUTSHELL

We present Prisma by the example of a TicTacToe game, demonstrating that client and contract are
written in a single language, where protocols are expressed by control �ow (instead of relying on
advanced typing disciplines) and enforced by the compiler.

Example. TicTacToe is a two-player game over a 3 × 3 board. Players take turns in writing their
sign into one of the free �elds until all �elds are occupied, or one player wins by owning three
�elds in any row, column, or diagonal. The main transaction of a TicTacToe dApp is Move(x,y) used
by a player to occupy �eld (x,y). A Move(x,y) is valid if it is the sender’s turn and (x,y) is empty.
Before the game, players deposit their stakes, and after the game, the stakes are paid to the winner.
Fig. 1 depicts possible control �ows with transitions labeled by client actions that trigger them.

Black arrows depict intended control �ows. The dApp starts in the funding state where both parties
deposit stakes via Fund(2). Next, parties execute Move(G,~) until one party wins or the game ends
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in a draw. Finally, any party can invoke a payout of the stakes via Payout().3 Red dashed arrows
illustrate the e�ects of a mismanaged control �ow: a malicious player could trigger a premature
payout preventing the counterpart to get �nancial gains.

Tierless dApps. Prisma is implemented as a DSL embedded into Scala, and Prisma programs are
also valid Scala programs.4 Prisma interleaves contract and client logic within the same program.
Annotations @co and @cl explicitly place declarations on the contract and on the client, respectively
(cf. Tab. 2). A declaration marked as both @co and @cl has two copies. For security, code placed in one
location cannot access de�nitions from the other — an attempt to do so yields a compile-time error.
Developers can overrule this constraint to enable clients to read contract variables or call contract
functions by combining @co with @cross. Combining @cl with @cross is not allowed – information can
only �ow from client to contract as part of a client–contract interaction protocol.
There are three kinds of classes. Located classes are placed in one location (annotated with

either @co or @cl); they cannot contain located members (annotated with either @co or @cl) and their
instances cannot cross the client–contract boundary, e.g., be passed to or returned from @cross

functions. Portable classes are annotated with both @co and @cl. Their instances can be passed to and
returned from @cross functions; they must not contain mutable �elds. Split classes have no location
annotation; their instances live partly in both locations; they cannot be passed to or returned from
@cross functions and their members must be located.

Prisma code is grouped into modules. While client declarations can use and be used from standard
(non-Prisma) Scala code, contract declarations are not accessible from Scala, and can only reference
contract code from other Prisma modules (because contract/client code lives in di�erent VMs).
For illustration, consider the TicTacToe dApp (Fig. 3). The TicTacToeModule (Line 1) – modules

are called object in Scala – contains a portable class UU (Line 3) and a split class TicTacToe (Line 5).
Variables moves, winner, board (Lines 10, 11, 13) are placed on the contract and can be read by clients
(@co @cross). The updateBoard function (Line 17) is placed on the client and updates client state (e.g.,
client’s UI). The move function (Line 15) is placed on the contract and changes the game state (move).
move is not annotated with @cross, because @cross is intended for functions that do not change contract
state and can be executed out-of-order without tampering with the client–contract interaction
protocol. While Scala only has signed integers and signed longs literals, these are uncommon in
Ethereum. Therefore, Prisma provides portable unsigned and signed integers for power-of-two
bitsizes between 23 to 28, with common arithmetic operations, e.g., "0".u8 is an unsigned 8-bit
integer of value 0 (Line 10).

Encoding client–contract protocols. In Prisma, a client-contract protocol is encoded as a split
class containing dedicated awaitCl expressions for actively requesting and awaiting messages from
speci�c clients and standard control-�ow constructs. Hence, creating a new contract instance
corresponds to creating a new instance of a protocol; once created, the contract instance actively
triggers interactions with clients. The awaitCl expressions have the following syntax:

def awaitCl[T](who: Addr => Bool)(body: => (Ether, T)): T

They take two arguments. The �rst (who) is a predicate used by clients to decide whether it is
their turn and by the contract to decide whether to accept a message from a client. This is unlike
Solidity, where a function may be called by any party by default. By forcing developers to explicitly
de�ne access control, Prisma reduces the risk of human failure. The second argument (body) is the
expression to be executed by the client. The client returns a pair of values to the contract: the

3We omit handling timeouts on funding and execution for brevity.
4In Scala val/var de�nitions are used for mutable/immutable �elds and variables, def for methods, class for classes, and
object for singletons. A case class is a class whose instances are compared by structure and not by reference.
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amount of Ether and the message. The former can be accessed by the contract via the built-in
expression value, the latter is returned by awaitCl. Besides receiving funds via awaitCl, a contract can
also check its current balance (balance()), and transfer funds to an account (account.transfer(amount))).

Prisma’s programming model is speci�cally designed to accommodate blockchain use cases. In
contrast to other tierless models like client-server, we emphasise inversion of control such that the
code is written as if the contract was the active driver of the protocol, while clients are passive and
only react to requests by the contract. This enables to enforce the protocol on the contract side. For
this reason, for example, we support the awaitCl construct on the active contract side whereas there
is no corresponding construct on the passive client side.

For illustration, consider the de�nition of init on the right-hand side of Fig. 3, Line 28. It de�nes the
protocol of TicTacToe as follows. From the beginning of init, the �ow reaches awaitCl in Line 30 where
the contract waits for clients to provide funding (by calling fund). Next, the contract continues until
awaitCl in Line 33 and clients execute move (Line 21) until the game ends with a winner (winner != 0)
or a draw (moves >= 9). At this point – awaitCl in Line 37 – any party can request a payout and the
contract executes to the end. The example illustrates how direct-style awaitCl expressions and the
tierless model enable encoding multiparty protocols as standard control �ow, with protocol phases
corresponding to basic blocks between awaitCl expressions.

Compiling Prisma to Solidity. Abstractly, Prisma’s compiler takes a Prisma dApp program and
splits it into two separate programs: A Scala client program and a Solidity contract program (Fig. 4a).
In more detail, the compiler (1) places all de�nitions according to their annotations and (2) splits
contract methods that contain awaitCl expressions into a method that contains the code up to the
awaitCl and a method that contains the continuation after the awaitCl (taking the result of the awaitCl

as an argument). Once deployed, a contract is public and can be messaged by arbitrary clients –
not exclusively the ones generated by Prisma – hence, we cannot assume that clients will actually
execute the body passed to them by an awaitCl expression. To cope with malicious clients trying to
tamper with the control �ow of the contract, the compiler hardens contract code by generating
code to enforce control �ow integrity: storing the current phase before giving control to the client
and rejecting methods invoked by wrong clients or in the wrong phase.
For illustration, the code generated from Fig. 3 is schematically shown in Fig. 4b and 4c. The

methods updateBoard, fund, move, and payout are annotated @cl and thus compiled into the client program
(Fig. 4b). The variables moves, winner and board, and the method performMove are annotated @co and thus
compiled into the contract program (Fig. 4c). Further, three new methods are generated on both
the client and the contract – one for each awaitCl expression in init – corresponding to phases in
the logical protocol (Fig. 1). The Funding method of the client (Line 16) is generated from the body
of the �rst awaitCl. Similarly, the Move method (Line 18) is generated from the second awaitCl and the
Payout method (Line 20) from the third awaitCl. In the example, the generated methods are given
meaningful names by capitalizing the single method called in the body of the awaitCl expressions
form which they were generated. In the actual implementation, generated methods are simply
enumerated. The code up to the �rst awaitCl (Line 30, Fig. 3) is placed in the constructor of the
generated contract, which ends by setting the active phase to Funding. The code between the �rst
and the second awaitCl either loops back to the �rst awaitCl or continues to the second one (Line 33).
The code is placed in the Fund method that requires the phase to be Funding, and may change it to
Exec if the loop condition fails. Similarly, the method Move is generated to contain the loop between
the second and the third awaitCl (Line 37); and the method Payout contains the code from the third
awaitCl to the end of init. Only the second awaitCl contains a (non-trivial) access control predicate,
which results in an additional assertion in the body of Move (Line 46, Fig. 4a). Observe that the
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(a) Compilation scheme

1 class TTT {

2

3 // @cl annotated definitions

4 def updateBoard(): Unit =

5 { /* ... */ }

6 def fund(): (U256, Unit) =

7 (readLine("How much?").u, ())

8 def move(): (U256, UU) =

9 ("0".u, UU(readLine("x-pos?"),

10 readLine("y-pos?"))

11 def payout(): (Ether, Unit) = {

12 readLine("Press (enter) for payout")

13 ("0".u, ()) }

14

15 // body of awaitCl expressions

16 def Fund(): (Ether, Unit) =

17 fund()

18 def Move(): (Ether, UU) =

19 move()

20 def Payout(): (Ether, Unit) =

21 payout()

22

23 /* ... */

24

25

26

27

28 }

(b) Scala client

29 contract TTT {

30 State phase = T0; enum State {T0, T1, T2, T3}

31

32 // @co annotated definitions

33 int moves = 0;

34 int winner = 0;

35 int[][] board;

36 function peformMove(int x, int y) private { /*...*/ }

37

38 // continuation of awaitCl expressions

39 function Fund() public {

40 require(phase == T0);

41 /*...*/;

42 if (!(balance < FUNDING_GOAL)) phase = T1;

43 /* else phase remains T0; this models the first while loop */

44 }

45 function Move(int x, int y) public {

46 require(phase == T1 && sender == players(moves % 2));

47 /*...*/;

48 if (!(moves < 9 && winner == 0)) phase = T2;

49 /* else phase remains T2; this models the second while loop */

50 }

51 function Payout() public {

52 require(phase == T2);

53 /*...*/;

54 phase = T3;

55 }

56 }

(c) Solidity contract

Fig. 4. TicTacToe dApp a�er compilation, simplified

return types of the generated client methods are the argument types of the corresponding contract
methods.

Compilation Techniques. While CPS is a key step in our translation pipeline, the example shows
the �nal defunctionalised, trampolined code. The �nal output does not contain explicit continuations
(i.e., a function that takes another function as an argument and calls that as its continuation). Instead,
after defunctionalizing and trampolinizing the CPS translation, only one top-level function (Fund,
Move, Payout) is callable at each phase, which is ensured by the require statement at the beginning of
each function, and each function sets the next phase at the end. These functions play the role of the
continuations.
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Let us look at the correspondence between the original Prisma code (Fig. 3) and the generated
Solidity code (Fig. 4c) from a higher-level perspective: To verify that the Prisma code matches the
generated Solidity code, we proceed as follows.

First, we verify that the control �ow of Fig. 3 is accurately described by the automaton diagram
in Fig. 1. In particular, we observe that there are two loops in the automaton and there are also two
while loops in the Prisma code. Further, there are three awaitCl expressions in the code, and there
are three states in the automaton (plus a �nal state).
Second, we verify that the automaton in Fig. 3 corresponds to the program �ow of the Solidity

code in Fig. 4c. In particular, we observe that there are four states in the automaton and there are
four states in the Solidity code. Three of those have an associated function (T0 is Fund, T1 is Move,
T2 is Payout), which are the only public functions that can be invoked in that state, thanks to the
require statements. In the �nal state T3, no public function can be invoked. Furthermore, we can
see that the automaton has two loops. It is possible to go from T0 either to T1 or stay in T0. This
is represented in the Solidity code, by checking for the loop condition at the end of the function
associated to T0, and then either changing the phase to T1, or doing nothing, which means staying
in T0. Similarly, the loop in state T1 is encoded with an if at the end of the function to conditionally
move to the next phase.

These two steps should illustrate how the control �ow of the Prisma program –which is abstractly
visualized by the automaton – is implemented and enforced by the generated Solidity program.

3 COMPILATION AND ITS CORRECTNESS

We informally introduce Prisma’s compilation process and our notion of correctness before formally
specifying and proving the compiler correct.

3.1 High-level Overview of Prisma’s Secure Compilation

To implement the contract-client interaction, we CPS-translate Prisma code and execute con-
tinuations alternately between contract and client. A standard CPS translation is, however, not
su�cient because the control �ow is distributed and we need to send function calls (i.e., the current
continuation) over the network – or, more speci�cally, send the name and the arguments of the
next function to execute. For this, we defunctionalise [71] the code to turn functions calls (which
represent continuations) into data. This compilation process performs an inversion of control be-
tween the contract and the client. With Prisma’s contract–client communication in direct style, we
can write dApps as if the contract was in control of the execution; Prisma allows the contract to
request messages from clients and to process only responses that it requested.
After the compilation process, clients are in control of the execution because, in blockchains,

contracts purely respond to messages from clients. As a result, dApps may become the target of
malicious attacks. In our security model, we trust the contract to execute the code that we generate
for it, whereas we consider the client code untrusted, i.e., the client side can run arbitrary code.
Crucially, it could pass unintended continuations to the contract to force the execution to continue
in an arbitrary state. For example, in the source code of the TicTacToe game (Section 2), one needs
to go through the game loop after funding and before payout. Yet, the compiled code is separated
and distributed into small chunks. Parties execute a chunk and then wait for other parties to decide
on a move that in�uences how to proceed with the execution. For this reason, the client could
send a message at any time telling the contract to go into the payout phase. We need to guard the
contract against such attempts to make it deviate from the protocol. Conceptually, if the client was
able to force the execution to continue in an arbitrary state, the control �ow in the Prisma source
would be violated. Execution would ’jump’ from one client expression to another one skipping the
code in between, which is not possible with the semantics of the source language.
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source target

Terms Termt

Traces Tracet

Trace∗s Trace∗t

2><?8;4

4E0;B

4E0;B,1

4E0;C

4E0;C,1
2>AA42C=4BB

B42DA8C~

Fig. 5. Secure Compilation

Prisma’s compiler avoids such attacks and preserves control �ow by inserting guards on the
contract side. Guards are in places where the basic blocks of the program have been separated
and distributed onto di�erent hosts by CPS translation – to reject any improper continuations
from clients. Guarding ensures the control �ow integrity [1] of the contract in the presence of
malicious clients by excluding any behavior of the compilation target that cannot be observed from
the source. Informally, this is our notion of secure compilation, which we rigorously de�ne and
prove for Prisma’s compiler in this section. The compilation process is key in hiding the complexity
of enforcing distributed control �ow from the developer – hence, a formal proof of its correctness
is critical.
To formalize the compiler, we specify a source and a target language. Fig. 5 shows a schema of

our compilation and the proof. The compiler (Fig. 5, top) is a function that maps terms in the source
language ()4A<B ) into terms in the target language ()4A<C ). A correct compiler preserves some
properties of the code – depending on the notion of correctness. For example, typeability-preserving
and semantics-preserving compilers have been extensively studied [63]. Because types are not the
focus of this paper, we omitted them from the �gure. In the middle part of Fig. 5, we show the
evaluation of source and target to traces (4E0;B and 4E0;C , respectively) – and traditional compiler
correctness as the equivalence between traces generated from the sources ()A024B ) and from the
target ()A024C ). But compiler correctness5 in this traditional sense is not su�cient in the presence
of malicious attackers that can tamper with parts of the code. Instead, we need to prove that Prisma

is a secure abstraction, i.e., if security problems can arise on the target, they must be visible in the
Prisma source code, too, so that developers do not need to look at target code to reason about
potentially misbehaving clients. To this end, we de�ne a hypothetical attacker model on the source

code as the ability to only replace the body of a Prisma client expression and show that, with the
contract part hardened with guards, the target attacker does not gain additional power over the
hypothetical source attacker. Speci�cally, we de�ne malicious semantics 4E0;C,1 and 4E0;B,1 for the
target and the source language, respectively, and show that 4E0;C,1 (2><?8;4 4) = 2><?8;4 (4E0;B,1 4)

(security property in Fig. 5).
In the reminder of this section:

• We present the core calculus (Section 3.2) MiniPrisma∗ – a hybrid language that includes
elements of both the source (MiniPrismaB ) and the compilation target (MiniPrismaC ), while
abstracting over details of both Scala and Solidity. We de�ne a hybrid language because the
source and the target share many constructs – the hybrid language allows us to focus on
how the di�erences are compiled.

5Type and semantics preservation is not the focus of this paper; we presume them for our compiler without a formal proof.
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83 ∈ �� 8 ∈ � 9 ∈ {who, state, clfn, cofn}

(de�nition) 3 ::=@co this.8 = E ; 3 |@cl this.8 = E ; 3 | ()
(synthetic de�nition) 1 ::= @co this. 9 = E ; 1 |@cl this. 9 = E ; 1 | ()
(program) % ::= 3 ; 1;<

(constant) 2 ::= 0 | 1 | 2 | ... | true | false | () | && | + | == | < | try
| »= | trmp | Done |More

(value) E ::= 2 | E :: E | G→4

(pattern) G ::= 2 | G :: G | 83
(expression) 4 ::= 2 | 4 :: 4 | G→4 | 83 | G=4; 4 | 4 4

| this.8 | this.8 := 4 | this. 9 | this. 9 := 4

(main expression) < ::= 2 |< ::< | G→4 | 83 | G=<;< |<<

| this.8 | this.8 :=< | this. 9 | this. 9 :=<
| awaitClB (4, ()→4) | awaitClC (2, ()→4)

Fig. 6. MiniPrisma∗ syntax.

• We model the compiler (Section 3.3) as a sequence of steps that transform MiniPrisma∗
programs via several intermediate representations.
• We de�neMiniPrisma∗ semantics as a reduction relation over con�gurations consisting of
traces of evaluation events and expressions being evaluated (Section 3.4). We distinguish
between a good semantics, which evaluates the program in the usual way, and a bad semantics,
which models attackers by ignoring client instructions and producing arbitrary values that
are sent to the contract.
• We prove secure compilation by showing that the observable behavior of the programs before
and after compilation is equivalent (Section 3.5). We capture the observable program behavior
by the trace of events generated during program evaluation (as guided by the semantic
de�nition) and show trace equivalence of programs before and after compilation.

3.2 Syntax

The syntax of MiniPrisma∗ (Fig. 6), has three kinds of identi�ers 83 , 8 , 9 , from unspeci�ed sets
of distinct names. Pure identi�ers 83 are for function arguments and let bindings; mutable vari-
ables 8 are for heap variable assignment and access. In the target program, mutable variables
9 (who, state, clfn, cofn) generated by the compiler can also appear. We call compiler-generated
identi�ers synthetic. Normal identi�ers are separated from synthetic ones to distinguish compiler
generated and developer code. De�nitions 3 and de�nitions for synthetic identi�ers 1 are semicolon-
separated lists of declarations that assign values to variables and annotate either the contract or
the client location. Each program % consists of de�nitions 3 and synthetic de�nitions 1 followed by
the main contract expression<. Program % corresponds to a single Prisma split class, 3 and 1 to
methods and generated methods, and< to a constructor containing the initialisation of its class
members (such as the body of init, Fig. 3).
Constants 2 are unsigned 256 bit integer literals and built-in operators.MiniPrisma∗ supports

tuples introduced by nesting pairs (::) and eliminated by pattern matching. Tuples allow multiple
values to cross tiers in a single message. Values E are constants, value pairs, and lambdas. Patterns
G are constants, pattern pairs, and variables. Expressions 4 are constants, expression pairs, lambdas,
variables, variable accesses/assignments, bindings and function applications.
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<0 2 <1 = 2 (<0,<1)

(<0, ...,<=) = <0 :: ... ::<= :: ()

<0; <1 = () =<0; <1

assert(<0); <1 = true =<0; <1

G ← 41; <2 = G = awaitClC (() → 41); <2

if let G =<1 then 42 else 43 = try(<1, G → 42, () → 43)

Fig. 7. Syntactic sugar.

Main expressions < may further contain remote client expressions, embedding client code
into contract code and waiting for its result. The source client expression awaitClB (4, () → 4)

can be answered by any client whose address ful�lls the predicate speci�ed as �rst argument.
awaitClB corresponds to direct-style remote access via awaitCl in Prisma. We use the syntax form
awaitClC (2, () → 4) to model the execution of code 4 on the speci�ed client 2 . awaitClC has no
correspondence in the source syntax. Our compilation �rst splits the predicate from the source client
expressions into a separate access control guard. Then, it eliminates client expressions, turning the
contract into a passive entity that stops and waits for client input.

We now map the hybrid languageMiniPrisma∗ to the source and target languages,MiniPrismaB
and MiniPrismaC . MiniPrismaB has all expressions of MiniPrisma∗, except those that contain ≫=
(bind), trmp (trampoline), Done, More, awaitClC , or synthetic identi�ers 9 . MiniPrismaC has all
expressions of MiniPrisma∗ except those that contain awaitClB , awaitClC , ≫= .
≫= and awaitClC may not appear neither in source nor target programs; the former is used only

as an intermediate construction for the compiler, the latter only during evaluation to track the
current location.

Syntactic sugar. In Fig. 7, we de�ne some syntactic sugar to improve readability. We use in�x
binary operators and tuple syntax for nested pairs ending in the unit value (); we elide the let
expression head for let bindings matching (), assert(G) is a let binding matching true; we use
monadic syntax for let bindings of e�ectful expressions; if let G =< then 4 else 4 is the application
of the built-in try function.

Events and con�gurations. In Fig. 8, we de�ne left-to-right evaluation contexts � [34]; and
compilation frames � [66], such that every expression decomposes into a frame-redex pair � 4 or is
an atom 0. Events ? and @ are lists that capture the observable side-e�ects of evaluating expressions.
They are either (a) state changes wr(2, 8, E) and wr(2, 9, E), from the initial de�nitions or variable
assignment, where 8 and 9 are the variable being assigned, 2 the location, and E the assigned value,
or (b) client-to-contract communication msg(2, E), where 2 is the address of the client and E the
sent value. Con�gurations � = ? ;@; 2<, represent a particular execution state, where ? (and @) are
traces of normal (and synthetic) events produced by the evaluation, 2 is the evaluating location,
and< is the expression under evaluation.

Initialization. Initialization in Fig. 9 generates the initial program con�guration, which models
the decentralized application with a single contract and multiple clients. We model a �xed set
of clients � interacting with a contract. The initialization of a program 3 ;1;< to a con�guration
?;@; 0;< leaves the expression< untouched and generates a list of events – one write event for
each normal and synthetic de�nition. Location 0 represents the contract.

ACM Trans. Program. Lang. Syst., Vol. 45, No. 3, Article 17. Publication date: September 2023.



17:12 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

(frame) � ::= awaitClB (□, () → 4) | □ 4 | 4 □ | □ :: 4 | 4 :: □

| G = □; 4 | G = 4; □ | this.8 := □ | this. 9 := □

(atom) 0 ::= this.8 | this. 9 | 2 | 83 | G → 4

(context) � ::= □ | � ::< | E :: � | � < | E � | G = �;< | this.8 := � | this. 9 := �

(event) ? ::= wr(2, 8, E) ? | msg(2, E) ? | ()
(synthetic event) @ ::= wr(2, 9, E) @ | ()
(con�guration) � ::= ?; @; 2;<

Fig. 8. Frames, Events and configurations.

8=8C� (3 ;1;<) = 8=8C� (3 ;1); 0; <

8=8C� (3 ;1) = (FA (0, 8 , E) | ∀ (@co this.8 = E) ∈ 3)

(FA (0, 9, E) | ∀ (@co this. 9 = E) ∈ 1)

(FA (2, 8 , E) | ∀ (@cl this.8 = E) ∈ 3, 2 ∈ �)

(FA (2, 9, E) | ∀ (@cl this. 9 = E) ∈ 1, 2 ∈ �)

Fig. 9. Initialization.

3.3 Compilation

The compiler eliminates language features not supported by the compilation target one by one,
lowering the abstraction level from (1) direct style communication (DS) – which needs language
support for !-notation [10] – through the intermediate representations of (2) monadic normal form

(MNF) – which needs support for do-notation [53] – and (3) continuation-passing style (CPS) – which
needs higher-order functions – to (4) explicitly encoding �nite state machines (FSM) – for which
�rst-order functions su�ce. In the following, we provide an intuition for the compiler steps and
subsequently their formal de�nitions.

First, the compilation stepsmnf and assoc transformDS remote communication awaitClB (4, () →
4) to variable bindings (83 := 4) and nested let bindings are �attened such that a program is pre�xed
by a sequence of let expressions. Second, step guard generates access control guards around client
expressions to enforce correct execution even when clients behave maliciously. Third, step cps

transforms previously generated let bindings for remote communication (G ← 41; <2) to monadic
bindings 41 ≫= G →<2. Fourth, step defun transforms functions into data structures that can be
sent over the network and are interpreted by a function (i.e., an FSM) on the other side. Compared
to standard defunctionalization, we handle two more issues. First, we defunctionalize the built-
in higher-order operator (≫= ) by wrapping the program expression into a call to a trampoline
trmp(...) and transforming the bind operator (... ≫= G → ...) to the (More, ..., ...) data structure;
the trampoline repeatedly interprets the argument ofMore until it returns Done instead ofMore

signaling the program’s result. Second, we keep contract and client functions separate by generating
separate synthesized interpreter functions, called cofn and clfn, thereby splitting the code into the
parts speci�c to contract and client.

MNF transformation (Fig. 10). The mnf ′ function wraps the main expression< into a call to
the trampoline with the pair (Done,<) – signaling the �nal result – as argument. Then, mnf

transforms expressions recursively, binding sub-expressions to variables, resulting in a program
pre�xed by a sequence of let bindings. As recursive calls to mnf may return chains of let bindings,
we apply assoc to produce a �at chain of let bindings. Given a let binding, whose sub-expressions
are in MNF, associativity recursively �attens the expression, by moving nested let bindings to the
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mnf ′ (3 ;1;<) = 3 ;1; trmp(mnf ((Done,<)))
mnf (� 4) = assoc(830=4; mnf (� 830))

mnf (0) = 0

assoc(G0=(G1=<1; <0); <2) = assoc(G1=<1; assoc(G0=<0; <2))

assoc(<) =<

Fig. 10. Monadic normal form transformation.

guard′ (3 ;1; trmp(<)) = 3 ;1; trmp(guard (<))

guard

(
G ←B (40, () → 41);

<2

)
=

©­­­­­«

this.who := 40; this. state := 2;

G ←B (() → true, () → 41);

assert(this. state == 2 &&

this.who(this. sender));

this. state := 0; guard (<2)

ª®®®®®¬
where 2 fresh

guard (G = 40; <1) = G = 40; guard (<1)

guard (<) = <

Fig. 11. Guarding.

cps′ (3 ;1; trmp(<)) = 3 ;1; trmp(cps(<))

cps(G ←B (() → true, 40); <1) = 40 ≫= (G → cps(<1))

cps(G = 40; <1) = G = 40; cps(<1)

cps(<) = <

Fig. 12. Continuation-passing style transformation.

front, (... (... <0; <1); <2 = ... <0; (... <0; <2)), creating a single MNF expression (i.e., assoc is
composition for MNF terms).

Guarding (Fig. 11). We insert access control guards for remote communication expressions←B

to enforce (i) the execution order of contract code after running the client expression and (ii) that
the correct client invokes the contract continuation. The transformation sets the synthetic variable
state to a unique value before the client expression, and stores the predicate to designate valid
clients in the synthetic variable who. After the client expression, the generated code asserts that
the contract is in the same state, and checks that the sender ful�lls the predicate. The assertion
trivially holds in the sequential execution of the source language, but after more compilation steps
the client will be responsible for calling the correct continuation on the contract. Since client code
is untrusted, the contract needs to ensure that only the correct client can invoke only the correct
continuation.

CPS transformation (Fig. 12). The cps transformation turns the chains of let bindings produced by
mnf into CPS. The chain contains three cases of syntax forms: (1) monadic binding (G ← ...; <1),
(2) let binding (G = 40; <1), or (3) �nal expression. For (1), cps replaces the monadic binding with
an explicit call to the bind operator (... ≫= (G → 2?B (<1))). For (2) and (3), cps recurses into the
tail of the chain. This resembles do-notation desugaring (e.g., in Haskell).
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defun′ (3 ;1; 4) = defun(3 ; coclfn(1, 83, assert(false), assert(false)); 4)

where 83 fresh

defun

©­­­­­­­«

3 ; coclfn(1, 83,

41,0;C ,

42,0;C
);

(() → 41) ≫= (G → 42)

ª®®®®®®®¬
=

©­­­­­­­«

3 ; coclfn(1, 83,

if let (2 :: fv(() → 41)) = 83

then 41 else 4′
1,0;C

,

if let (2 :: G :: fv(G → 4′2)) = 83

then 4′2 else 4′
2,0;C
);

(More, 2 :: fv(() → 41), 2 :: fv(G → 4′2))

ª®®®®®®®¬
where 2 fresh

and 3 ; coclfn(1, 83, 4′
1,0;C

, 4′
2,0;C
); 4′2 =

defun(3 ; coclfn(1, 83, 41,0;C , 42,0;C ); 42)

defun
©­«
3 ; coclfn(1, 83,

41,0;C , 42,0;C );

G = 40; 41

ª®
¬

= 3 ; coclfn(1, 83, 41,0;C , 42,0;C );G = 40; defun(41)

defun
©­«
3 ; coclfn(1, 83,

41,0;C , 42,0;C );

4

ª®¬
= 3 ; coclfn(1, 83, 41,0;C , 42,0;C ); 4

coclfn(1, 83, 41,0;C , 42,0;C ) = @cl this. clfn = 83 → 41,0;C ;

@co this. cofn = 83 → 42,0;C ;1

Fig. 13. Defunctionalization.

Defunctionalization (Fig. 13). The defun function transforms the chains of let bindings and bind
operators produced by cps, which contains three cases of syntax forms: (1) a bind operator (41 ≫= 42),
or (2) a let binding (G = 41; 42), or (3) the �nal expression. For (1), 41 and 42 are replaced by data
structures that contain values for the free variables in 41 and 42 and are tagged with a fresh ID.
The body of the expression is lifted to top-level synthetic de�nitions. For this, defun modi�es the
synthetic de�nitions 1 by extracting the body 41,0;C of the synthetic clfn de�nition and the body
42,0;C of cofn, and by adding an additional conditional clause to these de�nitions. The added clause
answers to requests for a given ID with evaluating the original expression. For (2) and (3), defun
recurses into the expressions.
After defunctionalization, lambdas G → 40 are lifted and assigned a top-level identi�er 830 and

lambda applications, 830 (41), are replaced with calls to a synthesized interpreter function fn(830, 41).
The latter branches on the identi�er and executes the code that was lifted out of the original
function.

Compiling. The comp function composes the compiler steps (not including mnf ). We also de�ne
the comp′ function, which jumps over the wrapping CA<? expression and initialises the defunc-
tionalisation with an environment that contains the two functions cofn and clfn, which assert
false.

comp = defun ◦ cps ◦ guard

comp′ = defun′ ◦ cps′ ◦ guard′

3.4 Semantics

We model the semantics as a reduction relation over con�gurations ?;@; 2;< → ?′;@′; 2′;<′.
Location 2 = 0 denotes contract execution, otherwise execution of client of address 2 . We distinguish
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(Rgs) ? ;@; 0; awaitClB (E, ( ) → 4 ) →6 ? ;@; 0; awaitClC (2, ( ) → 4 ) if ? ;@; 0; E (2 ) →∗ ? ;@; 0; true
(Rbs) ? ;@; 0; awaitClB (E, ( ) → 4 ) →1 ? ;@; 0; awaitClC (2, ( ) → 4 )

(Rtm) ? ;@; 0; trmp

(
More,
E1 :: 41,
E2 :: 42

)
→ ? ;@; 0;

(
83 = awaitClC (2, this.clfn(E1 :: 41 ) ) ;
trmp(this.cofn(E2 :: 83 :: 42 ) )

)
(Rtd) ? ;@; 0; trmp(Done, E) → ? ;@; 0; E
(Rg) ? ;@; 0; awaitClC (2, ( ) → 4 ) →6 ? ;@ msg(2, E) wr(0, sender, 2 ) ; 0; E if ? ;@;2 ;4 →∗ ?′ ;@′ ;2 ; E
(Rb) ? ;@; 0; awaitClC (2, ( ) → 4 ) →1 ? ;@ msg(2, E′ ) wr(0, sender, 2 ) ; 0; E′

Fig. 14. Evaluation (1/2).

good (→6) and bad (→1 ) evaluations (Fig. 14 and 15); shared rules are in black, without subscript
(→).

Attacker model. Attackers can control an arbitrary number of clients and make them send
arbitrary messages. Hence, the bad semantics can answer a request to a client with an arbitrary
message from an arbitrary 83 . We use evaluation with bad semantics to show that our compiler
enforces access control against malicious clients.

Good evaluations of client expressions in the source language (Rgs) reduce to a client expression
with a �xed client that ful�ls the given predicate. We require that predicates evaluate purely. Hence,
? and @ do not change in the evaluation. On the other hand, bad evaluation of client expressions
in the source language (Rbs) ignores the predicate, choosing an arbitrary client. Similarly, bad
evaluation also chooses an arbitrary client for the evaluation of a trampoline in the target (Rtm),
which does not specify a predicate. The trampoline ends when it reaches Done (Rtd). Further, after
choosing a client to evaluate, the good evaluation (Rg) continues to reduce the client expression to a
value, while the bad evaluation (Rb) replaces the expression 4 with a (manipulated) arbitrary value
E ′. Both evaluations (Rg, Rb) emit the message event msg(2, E) and an assignment to the special
variable sender, when a client expressions is reduced to a value E , to record the client–contract
interaction.

Common Evaluation (Fig. 15). Expressions are reduced under the evaluation context � on the
current location (Re), assignment to variables is recorded in the trace (Rset◦), accessing a variable
is answered by the most recent assignment to it from the trace in the current location (Rget◦).
For synthetic variables, we use the synthetic store (Rget†, Rset†). Binary operators are de�ned
as unsigned 256 bit integer arithmetic; we only show the rule for addition (Rop). Further, we give
rules for conditionals (Rt, Rf), let binding (Rlet) and function application (Rlam) using pattern
matching.

Pattern matching (Fig. 16). Matching [G Z⇒E] is a partial function, matching patterns G with
values E , returning substitution of variables 83 to values. Matching is recursively de�ned over
pairs; it matches constants to constants, identi�ers to values by generating substitutions, and fails
otherwise. Substitutions [83 ↦→E], in turn, can be applied to terms 4 , written [83 ↦→E] 4 (capture-
avoiding substitution). Substitutions f compose right-to-left (ff ′)G = f (f ′G).

3.5 Secure Compilation

We prove that the observable behavior of the contract before and after compilation is equivalent.
We capture the observable behavior by execution traces and show that trace equivalence holds
even when the program is attacked, i.e., reduced by →∗

1
.

Modelling Observable Behavior. The only source of observable nondeterminism in the bad se-
mantics is the evaluation of awaitClB and awaitClC . As clients decisions on message sending are
in�uenced by the state of contract variables, tracking incoming client messages and state changes in
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(Re) ?;@; 0; � [<] → ?′;@′; 0; � [<′] if ?;@; 0;<→ ?′;@′; 0;<′

(Rget◦) ?;@; 2; this.8 → ?;@; 2; E if wr(2, 8, E) ∈ ?

(Rget†) ?;@; 2; this. 9 → ?;@; 2; E if wr(2, 9, E) ∈ @

(Rset◦) ?;@; 2; this.8 := E → ? wr(2, 8, E);@; 2; ()

(Rset†) ?;@; 2; this. 9 := E → ?;@ wr(2, 9, E); 2; ()

(Rop) ?;@; 2; E0 + E1 → ?;@; 2; E ′ if E ′ = E0 + E1

(Rt) ?;@; 2;

(
if let G = E

then 40 else 41

)
→ ?;@; 2; 4′0 if 4′0 = [G Z⇒E] 40

(Rf) ?;@; 2;

(
if let G = E

then 40 else 41

)
→ ?;@; 2; 41 otherwise

(Rapp) ?;@; 2; (G → 4) E → ?;@; 2; 4′ if 4′ = [G Z⇒E] 4

(Rlet) ?;@; 2; (G = E ; <) → ?;@; 2; <′ if <′ = [G Z⇒E] <

Fig. 15. Evaluation (2/2).

[2 Z⇒ 2] = []
[83 Z⇒ E] = [83 ↦→ E]

[(40 :: 41) Z⇒ (4′0 :: 4
′
1)] = [40 Z⇒ 4′0] · [41 Z⇒ 4′1]

Fig. 16. Pa�ern matching.

the trace su�ces to capture the observable program behavior. If the observable behavior is the same
for the source and the compiled programs, they are indistinguishable. Thus, behavior preservation
amounts to trace equality on programs before and after compilation. Further, it su�ces to model
equality for non-stuck traces. The evaluation gets stuck (program crash) on assertions that guard
against deviations from the intended program �ow. The Ethereum Virtual Machine reverts contract
calls that crash, i.e., state changes of crashed calls do not take e�ect, hence, stuck traces are not
observable.
Since bad evaluation is nondeterministic, we work with not just programs, expressions and

con�gurations, but program sets, expression sets, and con�guration sets. Let ? ;@;< ⇓ be the trace
set of the con�guration ?;@; 0;<, e.g., the set of tuples of the �nal event sequence ?′ and value
E of all reduction chains that start in ?;@; 0;< and end in ?′; 0;@′; E . Our trace set de�nition does
not include synthetic events @′ of the �nal con�guration. Synthetic events are introduced through
compilation; excluding them allows us to put source and target trace sets in relation. Further, let
the trace set of a con�guration set ) ⇓, be the union of the trace sets for each element:

?;@;< ⇓ = { (?′, E) | (?;@; 0;<) →∗1 (?
′;@′; 0; E) }

) ⇓ =

⋃
? ;@;<∈)

?;@;< ⇓

We say that two con�guration sets ) and ( are equivalent, denoted by ) ≈ ( , i� ) and ( have
the same traces sets:

() ≈ () ⇔ () ⇓ = ( ⇓)

By this de�nition, two expressions that eventually evaluate to the same value with the same trace
are related by trace equality. We use this notion of trace equality to prove that a source program
is trace-equal to its compiled version by evaluating the compiled program forward→∗

1
and the

original program backward←∗
1
until con�gurations converge.
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Secure Compilation. Theorem 1 states our correctness property, which says that observable traces
generated by the malicious evaluation of programs are preserved (≈) by compilation. The malicious
evaluation models that client code has been replaced with arbitrary code, while contract code is
unchanged. The preservation of observable traces implies the integrity of the (unchanged) contract
code. Secure compilation guarantees that developers can write safe programs in the source language
without knowledge about the compilation or the distributed execution of client/contract tiers.

Theorem 1 (Secure Compilation). For each program % over closed terms, the trace set of the
program under attack equals the trace set of the compiled program under attack:
∀% . { 8=8C� (2><?′ (<=5 ′ ((%)))) } ≈ { 8=8C� (%) }.

We �rst show that trace equality holds for the di�erent compiler steps. Some compiler steps are
de�ned as a recursive term-to-term transformation on open terms, whereas traceset equality is
de�ned by reducing terms to values, i.e., on closed terms. Since all evaluable programs are closed
terms, we show that the compiler steps preserve the traceset of an open term 4 that is closed by
substitution [G Z⇒ E]. We formulate the necessary lemmas and sketch the proofs – the detailed
proof is in Appendix C.

Lemma 1 (assoc correct). { ?;@; [G Z⇒E] 0BB>2 (<) } ≈ { ?;@; [G Z⇒E]< }

Lemma 2 (mnf correct). { ?;@; [G Z⇒E]<=5 (<) } ≈ { ?;@; [G Z⇒E]< }

Lemma 3 (mnf’ correct). { 8=8C� (<=5 ′ (3 ;1;<)) } ≈ { 8=8C� (3 ;1;<) }

Lemma 4 (comp correct). { [G Z⇒E] 8=8C� (2><? (3 ;1; trmp(<))) } ≈ { 8=8C� (3 ;1; trmp( [G Z⇒E]<)) }

Lemma 5 (comp’ correct). { [G Z⇒E] 8=8C� (2><?′ (3 ;1; trmp(<))) } ≈ { 8=8C� (3 ;1; trmp( [G Z⇒E]<)) }

Proof sketch. Lemma 1–5 hold by chain of transitive trace equality relations. We show that a
term is trace-equal to the same term after compilation, by evaluating the compiled program (→∗)
and the original program (←∗) until con�gurations converge. In the inductive case, we can remove
the current compiler step in redex position under traceset equality (≈) since traces before and after
applying the compiler step are equal by induction hypothesis.
An interesting case is the proof of comp for % = 3 ;1; awaitCl(40, () → 41). The compiler trans-

forms the remote communication awaitClB into the use of a guard and a trampoline. The compiled
program steps to the use of awaitClC , the source program to awaitClB . In the attacker relation
→1 , arbitrary clients can send arbitrary values with awaitClC , leading to additional traces com-
pared to the ones permitted in the source program where communication is modeled by awaitClB .
We observe that awaitClB generates the trace elements msg(2, E),wr(0, sender, 2) for all E and that
awaitClC generates the trace elementsmsg(2′, E),wr(0, sender, 2′) for all E, 2′, which di�er for 2′ ≠ 2 .
Compilation adds an assert expression (Fig. 11) evaluated after receiving a value from a client.

The assert gets stuck for con�gurations that produce trace elements with 2′ ≠ 2 , removing the
traces of such con�gurations from the trace set, leaving only the traces where 2′ = 2 . Hence, the
trace set before and after compilation is equal under attack.

4 IMPLEMENTATION

Prisma is embedded into Scala (the host language) with its features implemented as a source-to-
source macro expansion.6

6The implementation entails 21 Scala �les, 3 412 lines of Scala source code (non-blank, non-comment) licensed under
Apache 2.0 Open Source. The compiler phases are macros that recurse over the Scala AST: (a) the guarding phase, (b)
the “simplifying” phase (including MNF translation, CPS translation of terms, defunctionalisation), and (c) the translation
phase of (a subset) of Scala expressions and types to a custom intermediate representation based on Scala case classes. The
intermediate representation is translated to Solidity code and passed to the Solidity compiler (solc).
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The backend generating Solidity code is well separated. One could disable the compilation step
to Solidity in the compilation pipeline, e.g., to run distributed code on multiple JVMs instead. In this
case, the “contract code” would be executed by one computer (the “server”), and other computers
would run the “client code”.

The Scala runtime of Prisma contains the implementation of the serialisable datatypes, portable
between Scala and the EVM (�xed-size arrays, dynamic arrays, unsigned integers of length of
powers of two up to 256 bit). Our runtime wraps web3j [50] (for invoking transactions and interacting
with the blockchain in general), headlong [72] (for serialisation/deserialisation in the Ethereum-
speci�c serialisation format), as well as code to parse Solidity and Ethereum error messages and to
translate them to Scala error messages.

5 EVALUATION

We evaluate Prisma along two research questions:

RQ1 Does Prisma support the most common dApps scenarios?

RQ2 Do Prisma’s abstractions a�ect performance?

Case Studies and Expressiveness (RQ1). Five classes of smart contract applications have been
identi�ed [7]: Financial, Wallet, Notary, Game, and Library. To answer RQ1, we implemented at
least one case study per category in Prisma. We implemented an ERC-20 Token,7 a Crowdfunding,
and an Escrowing dApp as representatives of �nancial dApps. We cover wallets by implementing a
multi-signature wallet, a special type of wallet that provides a transaction voting mechanism by only
executing transactions, which are signed by a �xed fraction of the set of owners. We implemented
a general-purpose notary contract enabling users to store arbitrary data, e.g., document hashes
or images, together with a submission timestamp and the data owner. As games, we implemented
TicTacToe (Section 2), Rock-Paper-Scissors, Hangman and Chinese Checkers. Rock-Paper-Scissors
makes use of timed commitments [3], i.e., all parties commit to a random seed share and open it
after all commitments have been posted. The same technique can be used to generate randomness
for dApps in a secure way. To reduce expensive code deployment, developers outsource commonly
used logic to library contracts. We demonstrate library-based development in Prisma by including
a TicTacToe library to our case studies and another TicTacToe dApp which uses that library instead
of deploying the logic itself.

We also implemented a state channel [29, 30, 57] for TicTacToe in Prisma, which is an example
for the class of scalability solutions that have emerged more recently. State channels enable parties
to move parts of their dApp to a non-blockchain consensus system, falling-back to the blockchain
in case of disputes, thereby making the dApps more e�cient where possible.

Our case studies are between 1 K and 7.5 K bytes which is a representative size: Smart contracts
are not built for large-scale applications since the gas model limits the maximal computation
and storage volumes and causes huge fees for complex applications. The median (average, lower
quantile, upper quantile) of the bytecode size of distinct contracts deployed at the time of writing
is at 4 K (5.5 K, 1.5 K, 7.5 K) [44]. We further elaborate on the case studies including a comparison of
the lines of code in Prisma compared to the equivalent lines in Solidity and Javascript in Appendix
A. Our case studies demonstrate that Prisma supports most common dApps scenarios.

Performance of PrismaDApps (RQ2). Performance on the Ethereum blockchain is usuallymeasured
in terms of an Ethereum-speci�cmetric called gas. Each instruction of the EthereumVirtual Machine
(EVM) consumes gas which needs to be paid for by the users in form of transaction fees credited to

7A study investigating all blocks mined until Sep 15, 2018 [62], found that 72.9 % of the high-activity contracts are token
contracts compliant to ERC-20 or ERC-721, with an accumulated market capitalization of 12.7 B USD.
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Fig. 17. The cost of abstraction. Gas overhead of contracts wri�en with Prisma vs. Solidity.

(The right plot displays minima, averages, maxima.)

the miner. We refer to the Ethereum yellow paper [91] for an overview of the gas consumption of
the di�erent EVM instructions. To answer RQ2, we implement our case studies in both Prisma and
in Solidity/JavaScript and compare their gas consumption. Unlike prior work, we do not model a
custom gas structure, but consider the real EVM gas costs [90].

Experimental setup.We execute each case study on di�erent inputs to achieve di�erent execution
patterns that cover all contract functions. Each contract invocation that includes parameters with
various sizes (e.g., dynamic length arrays) is executed with a range of realistic inputs, e.g., for
Hangman, we consider several words (2 to 40 characters) and di�erent order of guesses, covering
games in which the guesser wins and those in which they lose. Prisma and Solidity/JavaScript
implementations are executed on the same inputs.

We perform the measurements on a local setup. As the execution in the Ethereum VM is determin-
istic, a single measurement su�ces. We set up the local Ethereum blockchain with Ganache (Core
v2.13.2) on the latest supported hard fork (Muir Glacier). All contracts are compiled to EVM byte
code with solc (v0.8.1, optimized on 20 runs). We di�erentiate contract deployment and contract
interaction. Deployment means uploading the contract to the blockchain and initializing its state,
which occurs just once per application instance. A single instance typically involves several contract
interactions, i.e., transactions calling public contract functions.
Results. Fig. 17 shows the average gas consumption of contract deployment (Fig. 17a) and

interaction (Fig. 17c) as well as the relative overhead of Prisma vs. Solidity/JS of deployment
(Fig. 17b) and interaction (Fig. 17d). As the gas consumption of contract invocations depends
heavily on the executed function, the contract state, and the inputs, we provide the maximal,
minimal and averaged overhead. The results show that the average gas consumption of Prisma

is close to the one of Solidity/JS. Our compiler achieves a deployment overhead of maximally 6 %
(TicTacToe) or 86 K gas (TicTacToe Channel). The interaction overhead is below 10% for all case
studies which at most amounts to 3.55 K gas.8

Prisma’s deployment overhead is mainly due to the automated �ow control. To guarantee correct
execution, Prisma manages a state variable for dApps with more than one state. The storage
reserved for and the code deployed to maintain the state variable cause a constant cost of around

8equals 0.59 USD based on gas price and exchange course of April 15, 2021
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Table 18. Related work.

Language Encoding Perspective Protocol

Solidity FSM Local Assertions
Obsidian FSM Local Type states
Nomos MNF Local Session types

Prisma DS Global Control �ow

45K gas. In Solidity, developers manually check whether �ow control is needed and, if so, may
derive the state from existing contract variables to avoid a state variable if possible.
The Token, Notary, Wallet and Library case studies do not require �ow control: each function

can be called by any client at any time. Hence, their overhead is small. Escrow, Hangman and
Rock-Paper-Scissors require a state variable, also in Solidity – which partially compensates the
overhead of Prisma’s automated �ow control. Crowdfunding, Chinese Checkers, TicTacToe (Library
and Channel) do not require an explicit state variable in Solidity, as the state can be derived from the
contract variables, e.g., the number of moves. Thus, these case studies have the largest deployment
overhead.

While the average relative interaction overhead is constantly below 10%, some contract invoca-
tions are far above, e.g., in Crowdfunding, TicTacToe Channel, and Rock-Paper-Scissors. Yet, case
studies with such spikes also involve interactions that are executed within the same dApp instance
with a negative overhead and amortize the costs of more costly transactions. These deviations are
also mainly due to automated �ow control. In EVM, setting a zero variable to some non-zero value
costs more gas (20 K gas) than changing its value (5 K gas) [90], and setting the value to zero saves
gas. Occupying and releasing storage via the state variable can cost or save gas in a di�erent way
than in traditional dApps without an explicit state variable, leading to di�erent (and even negative)
overhead in di�erent transactions.
Besides the gas-overhead, we also consider the time-overhead of Prisma. In Ethereum, the

estimated con�rmation time for transactions is 3-5 minutes (assuming no congestion), which makes
the number of on-chain interactions dominate the total execution time. As Prisma preserves the
number of on-chain interactions, we assess the time-overhead of Prisma, if any, to be negligible.

Note that per se it is not possible to achieve a better gas consumption in Prisma than in Solidity
– every contract compiled from Prisma can be implemented in Solidity. Given the abstractions we
o�er beyond the traditional development approach, and the sensibility of smart contracts to small
changes in instructions, we conclude that our abstractions come with acceptable overhead. We are
con�dent that further engineering e�ort can eliminate the observed overhead.
Threats to validity. The main threat is that the manually written code may be optimized better

or worse than the code generated by the compiler. We mitigate this threat by applying all gas
optimizations, our compiler performs automatically, to the Solidity implementations. An external
threat is that changes in the gas pricing of Ethereum may a�ect our evaluation. For reproducibility,
we state the Ethereum version (hard fork), we used in the paper.

6 DISCUSSION AND RELATED WORK

6.1 Smart Contract Languages for Enforcing Protocols

We compare Prisma to Solidity, Obsidian [18–20], and Nomos [25, 26]. We highlight these languages
as those also address the correctness of the client–contract interactions. Tab. 18 overviews the
features of the surveyed languages for (a) the perspective of de�ning interacting parties, (b) the used
encoding of the interaction e�ects, and (c) the method used to check the contract-client interaction
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1 asset contract TTT {

2 state Funding{}; state Executing{}; state Finished{}; state Closed{}

3 transaction Fund(TTT@Funding>>(Funding|Executing) this, int c) {

4 /*...*/; if (/* enough funds? */) -> Executing else -> Funding }

5 transaction Move(TTT@Executing>>(Executing|Finished) this, int x, int y) {

6 /*...*/; if (/* game over? */) -> Finished else -> Executing }

7 transaction Payout(TTT@Finished>>Closed this) {

8 /*...*/; -> Closed } }

Fig. 19. Obsidian.

1 type Funding = int -> +{ notenough: Funding, enough: Executing }

2 type Executing = int -> int -> +{ notdone: Executing, done: Finished }

3 type Finished = int -> 1

4 proc contract funding : . |{*}- ($s : Funding) = {

5 a = recv $s; /* ... */

6 if /* enough funds? */ then $s.notenough; $s <- funding

7 else $s.enough; $s <- executing }

8 proc contract executing : . |{*}- ($s : Executing) = {

9 x = recv $s; y = recv $s; /* ... */

10 if /* game over? */ then $s.notdone; $s <- executing

11 else $s.done; z = recv $s; close $s }

Fig. 20. Nomos.

NomosR

Ψ; Γ, (~:�) ⊢ % :: (2 : �)

Ψ; Γ ⊢ (~←recv 2; %) :: (2 : � ⊸ �)

NomosS

Ψ; Γ ⊢ % :: (2 : �)

Ψ; Γ, (F :�) ⊢ (send 2 F ; %) :: (2 : � ⊗ �)

Obsidian

(transaction ) <(C .(B»B′) G){...}) ∈ membersC0

Δ, 4:C .B ⊢ 40 .<(4) : ) ⊣ Δ, 4:C .B′

Fig. 21. Excerpts of simplified Nomos and Obsidian typing rules.

protocol. Fig. 4c, 19, and 20 show code snippets in these languages, each encoding the TicTacToe
state machine from Fig. 1. All three languages focus solely on the contract and do not state how
clients are developed, hence only contract code is shown.
All three approaches take a local perspective on interacting parties: Contract and clients are

de�ned separately, and their interaction is encoded by explicit send and receive side e�ects. In
Solidity and Obsidian, receive corresponds to arguments and send to return values of methods
de�ned in the contract classes. In Nomos, send and receive are expressed as procedures operating
over a channel – given a channel c, sending and receiving is represented by explicit statements
(x = recv c; ... and send c x; ...).

The approaches di�er in the encoding style of communication e�ects. Solidity and Obsidian
adopt an FSM-style encoding: Contract �elds encode states, methods encode transitions. The contract
in Fig. 4c represents FSM states via the phase �eld with initial state Funding (Line 30). The Fund, Move
and Payout methods are transitions, e.g., Payout transitions the contract into the �nal state Closed

(Line 51). The FSM-style encoding results in an implicitly-everywhere concurrent programming
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model, which is complex to reason about and un�tting for dApps because the execution model
of blockchains is inherently sequential – all method invocations are brought into a world-wide
total order. Nomos adopts the monadic normal form (MNF) via do-notation to order e�ects. While
the implementation of TicTacToe in FSM style requires three methods(Fund, Move, Payout – one per
transition), we only need two methods in MNF-style (funding, executing – one per state with multiple
entry points), and a single method in DS-style (init). For instance, the sequence of states and
transitions �G42DC8=6 ">E4 (G,~)

−−−−−−→ �8=8Bℎ43 %0~>DC ( )
−−−−−−→ �;>B43 in Nomos can be written sequentially

in do-notation by inlining the last function which only has a single entry point. Still, do-notation
can be cumbersome (e.g., funding and executing in Nomos are separate methods that cannot be
inlined since they have multiple entry points and model loops).
All three languages require an explicit protocol for governing the send–receive interactions,

to ensure that every send e�ect has a corresponding receive e�ect in an interacting – separately
de�ned – party. In Solidity, developers express the protocol via run-time assertions to guard against
invoking the methods in an incorrect order (e.g., require(phase==Finished) in Fig. 4c, Line 40). Unlike
Solidity, which does not support statically checking protocol compliance, Nomos and Obsidian
employ behavioral typing for static checks. Deployed contracts may interact with third-party, po-
tentially manipulated clients. Compile-time checking alone cannot provide security guarantees. Yet,
complementing run-time enforcement with static checks helps detecting cases that are guaranteed
to fail at run time ahead of time.

Obsidian. Obsidian employs typestates to increase safety of contract–client communication.
Contracts de�ne a number of typestates; A method call can change the typestate of an object, and
calling a method on a receiver that is in the wrong typestate results in a typing error. Each method
in Fig. 19 is annotated with the state in which it can be called, e.g., Payout requires state Finished,
and transitions to Closed (Line 7).

Nomos. Nomos employs session types. The session types Funding, Executing, Finished in Fig. 20
encode the protocol. Receiving a message is represented by a function type, e.g., in the Funding

state, we receive an integer int -> ... (Line 1). We respond by either repeating the funding (Funding),
or continuing to the next state of the protocol (Executing). This is represented by internal choice
+{ ... } that takes multiple possible responses giving each of them a unique label (notenough and
enough). Type 1 indicates the end of a protocol (Line 3). The contract processes funding (Line 4) and
executing (Line 8) implement the protocol. The recv operation (Line 5) takes a session-typed channel
of form T -> U, returns a value of type T and changes the type of the channel to U. A session type for
internal choice (+{ ... }), requires the program to select one of the o�ered labels (e.g., $s.notenough
in Line 6 and $s.enough in Line 7), e.g., in the left and right branch of a conditional statement.

Type systems. We show excerpts of simpli�ed typing rules for Nomos and Obsidian (Fig. 21).
Nomos rules have the form Ψ; Γ ⊢ % :: (2:�). A process % o�ers a channel 2 of type � with values in
context Ψ and channels in Γ. We can see that variables change their type to model the linearity of
session types in the NomosS (and NomosR) rule: Sending (and receiving) changes the type of the
channel 2 from�⊸� to � (and�⊗� to �). Obsidian rules have the form Δ ⊢ 4:C ⊣ Δ′. An expression
4 has type C in context Δ and changes Δ to Δ

′. We can see that variables change their type on
method invocation (Obsidian): A method< in class C0 with arguments 48 of type C8 , returning ),
changes the type state of the arguments from B8 to B′8 . For Prisma, instead, a standard judgement
Γ ⊢ 4 : ) su�ces for communication. Variables do not change their type. awaitCl(?){1} has type )
in context Γ if ? is a predicate of �33A and 1 is a pair of �Cℎ4A and ) :
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Prisma

Γ ⊢ ? : �33A → �>>; Γ ⊢ 1 : �Cℎ4A ×)

Γ ⊢ awaitCl(?){ 1 } : )

Prisma. As shown in Tab. 18, Prisma occupies an unexplored point in the design space: global
instead of local perspective on interacting parties, direct style (DS) instead of FSM or MNF encoding
of e�ects, and control �ow instead of extra protocol for governing interactions.

Prisma takes a global perspective on interacting parties. The parties execute the same program,
where pairs of send and receive actions that “belong together” are encapsulated into a single direct-
style operation, which is executed di�erently by sending and receiving parties. Hence, dApps are
modeled as sequences and loops of send-receive-instructions shared by interacting parties. Due to
the global direct style perspective, it is syntactically impossible to de�ne parties with mismatching
send and receive pairs. Hence, a standard System-F-like type system su�ces. The interaction
protocol follows directly from the sequential control �ow of interaction points in the program –
the compiler can automatically generate access and control guards with correctness guarantees.
Semantically, Prisma features a by-default-sequential programming model, intentionally making
the sequential execution of methods explicit, including interaction e�ects.
The global direct-style model also leads to improved design of dApps: No programmatic state

management on the contract and no so-called callback hell [31] on the client. The direct style is
also superior to Nomos’ MNF style. The tierless model avoids boilerplate: Client code can directly
access public contract variables, unlike JavaScript code, which has to access them via a function
call that requires either an await expression or a callback.9 Additionally, the developer has to
implement getters for public variables with complex data types such as arrays.10 We provide some
code measurements (lines of code and number of cross-tier control-�ow calls) of our Prisma and
Solidity/JS dApp case studies in Appendix B.
Finally, using one language for both the contract and the clients naturally enables static type

safety of values that cross the contract–client boundary: an honest, non-compromized client cannot
provide inconsistent input, e.g., with wrong number of parameters or falsely encoded types.11 In a
setting with di�erent language stacks, it is not possible to statically detect type mismatches in the
client–contract interaction; e.g., Solidity has a type bytes for byte arrays, which does not exist in
JavaScript (commonly used to implement clients of a Solidity contract). Client developers need to
encode byte arrays using hexadecimal string representations starting with “0x”, otherwise they
cannot be interpreted by the contract.

6.2 Other Related Work

Smart contract languages. Harz and Knottenbelt [45] survey smart contract languages, Hu et
al. [48] survey smart contract tools and systems, Wöhrer and Zdun [89] give an overview of
design patterns in smart contracts. Brünjes and Gabbay [13] distinguish between imperative and
functional smart contract programming. Imperative contracts are based on the account model;
the most prominent language is Solidity [32]. Functional ones [14, 77, 78] are based on EUTxO
(Extended Unspent Transaction Output) model [39]. State channels [15, 29, 30, 57] optimistically
optimize contracts for the functional model. Prisma does not yet support compilation to state
channels but we plan to treat them as another kind of tier.

9Obsidian and Nomos do not provide any client design, so we can only compare to Solidity/JavaScript.
10For simple data types the getter is generated automatically.
11Recall that in dApps checking cross-tier type-safety is not a security feature but a design-time safety feature (due to the
open-world assumption of the execution model of public ledgers).
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Smart contracts as state machines. Scilla [79] is an automata-based compiler for contracts.
FSolidM [55] enables creating contracts via a graphical interface. VeriSolid [56] generates con-
tracts from graphical models enriched with predicates based on computational tree logic. EFSM
tools [84] generate contracts from state machines and linear temporal logic. Prisma avoids a separate
speci�cation but infers transactions and their order from the control �ow of a multitier dApp.

Analysis tools. Durieux et al. [28] and Ferreira et al. [35] empirically validate languages and
tools and relate design patterns to security vulnerabilities, extending the survey by Di Angelo and
Salzer [4]. Our work is complementary, targeting the correctness of the distributed program �ow.
For vulnerabilities not related to program �ow (e.g., front-running, or bad randomness), developers
(using Solidity/JavaScript or Prisma) can use the surveyed analysis tools.

Multitier languages. Multitier programming was pioneered by Hop [80, 81]. Modeling a persistent
session in client–server applications with continuations was mentioned by Queinnec [69] and
elaborated in Links [22, 38]. Eliom [70] supports bidirectional client–server communication for web
applications. ScalaLoci [87] generalizes the multitier model to generic distributed architectures. Our
work specializes it to the dApp domain and its speci�c properties. Giallorenzo et al. [41] establish
interesting connections between multitier (subjective) and choreographic (objective) languages
– two variants of the global model. Prisma adopts the subjective view, which naturally �ts the
dApp domain, where a dominant role (contract) controls the execution and diverts control to other
parties (clients) to collect their input.

Mashic [51] is a compiler for amashup between two JavaScript programs: the untrusted embedded
(iframe) gadget(s) and the trustworthy hosting integrator program, which communicate viamessages.
The authors prove that the compiler guarantees integrity and con�dentiality. More speci�cally,
the gadget(s) cannot learn more than what the integrator sends and, analogously, the gadget’s
in�uence is limited to the integrators interface. In Mashic, the two programs are separate and the
compiler checks that they communicate only via speci�ed messages. In contrast, in Prisma, client
and contract code are mixed. Thus, in addition to checking that only the speci�ed messages are
used, we can also check the interaction protocol – expressed by the structure of the control �ow of
the program – and ensure that it is followed by the target program after compilation.
Swift’s [17] secure automatic partitioning approach uses information �ow policies to derive

placements. Based on the policies, a constraint solver with integer programming heuristically picks
a placement such that network tra�c is minimal and information �ow integrity is preserved. In
contrast, placements in Prisma are explicit to the developer. Further, in blockchain programming,
every single instruction generated by the compiler potentially incurs high costs. Therefore, we
demonstrated that our compiler generates inexpensive programs, whereas Swift does not consider
the program’s execution cost.

E�ectful programs and meta-programming. MNF and CSP are widely discussed as intermediate
compiler forms [6, 21, 37, 49, 54]. F# computation expressions [64] support control-�ow operators
in monadic expressions. OCaml supports a monadic and applicative let [88]: more �exible than
do-notation but still restricted to MNF. Idris’ !-notation [10] inspired the GHC proposal for monadic
inline binding [68]. Scala supports e�ectful programs through coroutines [67], async/await [73],
monadic inline binding [11], Dsl.scala [92] and a (deprecated) compiler plugin for CPS transla-
tion [74]. The dotty-cps-async macro [82] supports async/await and similar e�ects for the Dotty
compiler.
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7 CONCLUSION

We proposed Prisma, the �rst global language for dApps that features direct style communication.
Compared to the state of the art, Prisma (a) enables the implementation of contract and client logic
within the same development unit, rendering intricacies of the heterogeneous technology stack
obsolete and avoiding boilerplate code, (b) provides support for explicitly encoding the intended
program �ow and (c) reduces the risk of human failures by enforcing the intended program �ow
and forcing developers to specify access control.
Unlike previous work that targeted challenges in the development of dApps with advanced

typing disciplines e.g., session types, our model does not exhibit visible side e�ects and gets away
with a standard System-F-style type system. We describe the design and the main features of Prisma

informally, de�ne its formal semantics, formalize the compilation process and prove it correct. We
demonstrate Prisma’s applicability via case studies and performance benchmarks.

We plan to generate state channels – to optimistically cost-optimize dApps – similar to how we
generate state machines from high-level logic. Further, we believe that our technique for deriving
the communication protocol from direct-style control �ow generalizes beyond the domain of smart
contracts and we will explore its further applicability.
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A CASE STUDIES

This section describes the implemented case studies in detail. Bartoletti and Pompianu [7] identify
�ve classes of smart contract applications: Financial, Notary, Game, Wallet, and Library. Our case
studies include at least one application per category (Table 22). In addition, we consider scalability
solutions.
Financial. These apps include digital tokens, crowdfunding, escrowing, advertisement, insur-

ances and sometimes Ponzi schemes. A study investigating all blocks mined until September 15th,
2018 [62], found that 72.9 % of the high-activity contracts are token contracts compliant to ERC-20
or ERC-721, which have an accumulated market capitalization of US $ 12.7 billion. We have imple-
mented a fungible Prisma token of the ERC-20 standard. Further, we implemented crowdfunding
and escrowing case studies. These case studies demonstrate how to send and receive coins with
Prisma, which is the basic functionality of �nancial applications. Other �nancial use cases can be
implemented in Prisma with similar techniques.
Notary. These contracts use the blockchain to store data immutably and persistently, e.g., to

certify their ownership. We implemented a general-purpose notary contract enabling users to store
arbitrary data, e.g., document hashes or images, together with a submission timestamp and the
data owner. This case study demonstrates that Notaries are expressible with Prisma.
Games. We implemented TicTacToe (Section 2), Rock-Paper-Scissors, Hangman and Chinese

Checkers. Hangman evolves through multiple phases and hence bene�ts from the explicit control
�ow de�nition in Prismamore than the other game case studies. The game Chinese Checkers is more
complex than the others, in regard to the number of parties, the game logic and the number of rounds,
and hence, represents larger applications. Rock-Paper-Scissors illustrates how randomness for
dApps is securely generated. Every Ethereum transaction, including the executions of contracts, is
deterministic – all participants can validate the generation of new blocks. Hence, secure randomness
is negotiated among parties: in this case, by making use of timed commitments [3], i.e., all parties
commit to a random seed share and open it after all commitments have been posted. The contract
uses the sum of all seed shares as randomness. If one party aborts prior to opening its commitment,
it is penalized. In Rock-Paper-Scissors both parties commit to their choice – their random share –
and open it afterwards. Other games of chance, e.g., gambling contracts, use the same technique.
Wallet. A wallet contract manages digital assets, i.e., cryptocurrencies and tokens, and o�ers

additional features such as shared ownership or daily transaction limits. At August 30, 2019, 3.9 M
of 17.9 M (21 %) deployed smart contracts have been di�erent types of wallet contracts [5]. Multi-
signature wallets are a special type of wallet that provides a transaction voting mechanism by only
executing transactions, which are signed by a �xed fraction of the set of owners. Wallets transfer
money and call other contracts in their users stead depending on run-time input, demonstrating calls
among contracts in Prisma. Further, a multi-signature wallet uses built-in features of the Ethereum
VM for signature validation, i.e., data encoding, hash calculation, and signature veri�cation, showing
that these features are supported in Prisma.
Libraries. As the cost of deploying a contract increases with the amount of code in Ethereum,

developers try to avoid code repetitions. Contract inheritance does not help: child contracts simply
copy the attributes and functions from the parent. Yet, one can outsource commonly used logic to
library contracts that are deployed once and called by other contracts. For example, the TicTacToe
dApp and the TicTacToe channel in our case studies share some logic, e.g., to check the win
condition. To demonstrate libraries in Prisma, we include a TicTacToe library to our case studies
and another on-chain executed TicTacToe dApp which uses such library instead of deploying the
logic itself. Libraries use a call instruction similar to wallets, although the call target is typically
known at deployment and can be hard-coded.
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Fig. 22. Categories and Cross-tier calls.

Category Case study Cross-tier calls Prisma LoC Solidity + JavaScript LoC

Financial Token 4 79 48 + 50

Crowdfunding 11 59 27 + 63

Escrow 9 63 33 + 56

Wallet Multi-signature wallet 3 76 41 + 52

Notary General-purpose notary 3 32 16 + 36

Game Rock Paper Scissors 12 79 41 + 77

TicTacToe 5 61 31 + 52

Hangman 15 119 86 + 83

Chinese Checkers 4 167 141 + 47

Library TicTacToe library – 167 141 + –

TicTacToe using library 5 53 29 + 52

Scalability TicTacToe channel 9 177 56 + 177

0 20 40 60 80 100 120 140 160 180 200 220 240

TTT Channel

Token

Crowdfunding

Escrow

Notary

Hangman

TicTacToe

Rock-Paper-Scissors

Chinese Checkers

Wallet

TTT Library

TTT via Library

Solidity

JavaScript

Prisma

Fig. 23. LOC in Solidity/JavaScript and Prisma.

Scalability solutions. State channels [29, 30, 57] are scalability solutions, which enable a �xed
group of parties to move their dApp to a non-blockchain consensus protocol: the execution falls-
back to the blockchain in case of disputes. Similar to multi-signature wallets, state channels use
built-in signature validation. We implemented a state channel for TicTacToe12 to demonstrate that
Prisma supports state channels.
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B EMPIRICAL EVALUATION OF DESIGN QUALITY

In Section 6, we argued that with Prisma, (a) we provide communication safety with a standard
system-F-like type-system, (b) the program �ow can be de�ned explicitly and is enforced automati-
cally, (c) dApp developers need to master a single technology that covers both tiers, (d) cross-tier
type-safety can be checked at compile-time, and (e) the code is simpler and less verbose due to
reduced boilerplate code for communication and less control �ow jumps. The claims (a), (c), and
(d) are a direct consequence of Prisma’s design and do not require further evidence. Claim (c) has
been formally proven in Section 3. It remains to investigate claim (e), i.e., in which extent Prisma

reduces the amount of code and error-prone control-�ow jumps.
To this end, we implemented all case studies with equivalent functionality in Prisma and in

Solidity/JavaScript. The JavaScript client logic is in direct style using async/await – the Solidity
contract needs to be implemented as a �nite-state-machine. We keep the client logic of our case
studies (in both, the Prisma and the Solidity implementation) as basic as possible, not to compare
the client logic in Scala and in JavaScript but rather focus on the dApp semantics. A complex
client logic would shadow the interaction with the contract logic – limited in size due to the gas
semantics.
We start with comparing LOCs in the case studies (Figure 23). The results in Figure 23 show

that case studies written in Prisma require only 55 – 89 % LOC compared to those implemented in
Solidity/JavaScript. One exception is the standalone library, which has no client code and hence
does not directly pro�t from the tierless design.

Second, we consider occurrences of explicit cross-tier control-�ow calls in the Solidity/JavaScript
dApps (cf. Table 22), which complicate control �ow, compared to Prisma, where cross-tier access is
seamless. In the client implementations, 6 – 18 % of all lines trigger a contract interaction passing
the control �ow to the contract and waiting for the control �ow to return. From the contract
code in �nite-state-machine style, it is not directly apparent at which position the program �ow
continues, once passed back from clients to contract, i.e., which function is called by the clients
next. Direct-style code, on the other hand, ensures that the control �ow of the contract always
continues in the line that passed the control �ow to the client by invoking an awaitCl expression.

12A general solution is a much larger engineering e�ort and subject of industrial projects [42, 83]
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2><?′ (3 ;1; trmp(<)) = 3 ; coclfn(1, 83, assert(false), assert(false)); trmp(2><? (<))

where 83 fresh

2><?
©­­­«

3 ; coclfn(1, 83,

41,0;C ,

42,0;C );

C<? ←B (() → 41); 42

ª®®®
¬

=

©­­­­­­­­­­­­­«

3 ; coclfn(1, 83,

if let (2 :: fv(() → 41)) = 83 then 41 else 4′
1,0;C

,

if let (2 :: G :: fv(G → 4′2)) = 83 then

assert(this. state == 2 && this.who(this. sender));

this. state := 0; 4′2
else

4′
2,0;C
);

this.who := 40; this. state := 2;

(More, 2 :: fv(() → 41), 2 :: fv(G → 4′2))

ª®®®®®®®®®®®®®
¬

where 2 fresh

and 3 ; coclfn(1, 83, 4′
1,0;C

, 4′
2,0;C
); 4′2 =

defun(3 ; coclfn(1, 83, 41,0;C , 42,0;C ); 42)

2><?

(
3 ; coclfn(1, 83, 41,0;C , 42,0;C );

G = 40; 41

)
=

(
3 ; coclfn(1, 83, 41,0;C , 42,0;C );

G = 40; defun(41)

)

2><?

(
3 ; coclfn(1, 83, 41,0;C , 42,0;C );

4

)
=

(
3 ; coclfn(1, 83, 41,0;C , 42,0;C );

4

)

coclfn(1, 83, 41,0;C , 42,0;C ) = (@cl this. clfn = 83 → 41,0;C ); (@co this. cofn = 83 → 42,0;C );1

Fig. 24. comp′ and comp.

fv(<0 ::<1) = fv(<0) ∪ fv(<1)

fv(G →<) = fv(<) \ fv(G)

fv(83) = {83}

fv(<0 <1) = fv(<0) ∪ fv(<1)

fv(awaitCl∗ ((<0, () →<1) = fv(<0) ∪ fv(<1)

fv(let G =<0;<1) = fv(<0) ∪ fv(<1) \ fv(G)

fv(this.8 :=<0) = fv(<0)

fv(this. 9 :=<0) = fv(<0)

fv(this.8) = {}

fv(this. 9) = {}

fv(2) = {}

Fig. 25. Free variables.

C PROOFS

We provide the de�nition of comp′ and comp in Figure 24, the de�nition for the free variables for a
given term fv in Figure 25 and the detailed proofs for the theorem and the lemmas on the following
pages.
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Theorem 1 (Secure Compilation). For all programs % over closed terms, the trace set of
evaluating the program under attack equals the trace set of evaluating the compiled program under
attack, i.e.,

∀% . { 8=8C� (2><?′ (<=5 ′ ((%)))) } ≈ ... ≈ { 8=8C� (%) }

Proof.
8=8C� (2><?′ (<=5 ′ (%)))

Lemma 3
≈ 8=8C� (<=5 ′ (%))

Lemma 5
≈ 8=8C� (%)

□

Extensions. For simplicity, our de�nition of initialization uses a �xed set of clients. Yet, the
malicious semantics does not actually depend on the �xed set of clients, but instead models an
attacker that is in control of all clients with the capability of sending messages from any client, not
bound to the �xed set. Hence, it is straightforward to extend the proofs to the setting of a dynamic
set of clients, e.g., clients joining and leaving at run time.

Further, our trace equality relation de�nes that all programs in the relation eventually reduce to
values, �ltering out programs that loop or get stuck. Below, we outline an approach to prove trace
equality for looping or stuck programs by showing that such programs loop with the same in�nite
trace or get stuck at the same trace, respectively. To this end, we track the number of steps done
via a step-indexed trace equality relation:

?;@; 4 ⇓= = { (?′, E) | (?;@; 4) →= (?′;@′; E) } ) ⇓= =

⋃
? ;@;4∈)

?;@; 4 ⇓=

With this de�nition, we can no longer use just equality of traces as the left and right program
may take a di�erent number of steps to produce the same events. Instead, we move from an equality
relation to a relation stating non-disagreement, which says that – independently of how long we
run either statement – the traces will never be in disagreement:

() ≈= () ⇔ () ⇓= #set ( ⇓
=)

where #set is de�ned on trace sets as

) #set( ⇔ (∀C∈) . ∃B∈(. C #trace B) ∧ (∀B∈(. ∃C∈) . C #trace B)

and #trace on event traces as

(4E, ()) #trace (4E, C08;2) = CAD4

(4E, C08;1) #trace (4E, ()) = CAD4

(4E1, C08;1) #trace (4E2, C08;2) = 5 0;B4

(4E, C08;1) #trace (4E, C08;2) = C08;1 #trace C08;2

.
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Lemma 1 (assoc preserves traces). 0BB>2 is de�ned as a recursive term-to-term transformation
on open terms, whereas traceset equality is de�ned by reducing terms to values, i.e., on closed
terms. Since all valid programs are closed terms, we show that 0BB>2 preserves the traceset of an
open term 4 that is closed by substitution [G Z⇒ E].
For all terms 4 , traces ? , traces @, values E , patterns G ,

{ ?;@; [G Z⇒E] 0BB>2 (4) } ≈ ... ≈ { ?;@; [G Z⇒E] 4 }

Proof. By induction over term structure.

Case. 4 = (let G1 = (let G0 = 40; 41); 42).
We know G0 ∉ fv(42) since 42 is not in the scope of the G0 binding, and that all identi�ers are

distinct, which can always be achieved by U-renaming.

G0 ∉ fv(42)

According to ≈, we only consider terms that reduce to a value. Therefore, let q be the judgement
that the term 40 closed by [G Z⇒E] with trace ? evaluates to a value E0 producing trace ?0.

q ≡ (?;@; [G Z⇒E]40→
∗ ? ?0;@; E0)

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until con�gurations
converge. The induction hypothesis (IH) allows the removal of 0BB>2 in redex position under traceset
equality (≈). {

?;@; [G Z⇒E] 0BB>2 (4)
}

def. 4
=

{
?;@; [G Z⇒E] 0BB>2 (let G1 = (let G0 = 40; 41); 42)

}
def. 0BB>2

=
{
?;@; [G Z⇒E] 0BB>2 (let G0 = 40; 0BB>2 (let G1 = 41; 42))

}
��
≈

{
?;@; [G Z⇒E] let G0 = 40; 0BB>2 (let G1 = 41; 42)

}
def. Z⇒
=

{
?;@; let G0 = [G Z⇒E] 40; [G Z⇒E] 0BB>2 (let G1 = 41; 42)

}
q

→∗
{
? ?0;@; let G0 = E0; [G Z⇒E] 0BB>2 (let G1 = 41; 42) | ∀ E0 ?0, q

}
Rlet
→

{
? ?0;@; [G0 Z⇒E0, G Z⇒E] 0BB>2 (let G1 = 41; 42) | ∀ E0 ?0, q

}
��
≈

{
? ?0;@; [G0 Z⇒E0, G Z⇒E] let G1 = 41; 42 | ∀ E0 ?0, q

}
def. Z⇒; G0 ∉ fv (42 )

=
{
? ?0;@; let G1 = [G0 Z⇒E0, G Z⇒E]41; [G Z⇒E]42 | ∀ E0 ?0, q

}
Rlet
←

{
? ?0;@; let G1 = (let G0 = E0; [G Z⇒E]41); [G Z⇒E]42 | ∀ E0 ?0, q

}
q

←∗
{
?;@; let G1 = (let G0 = [G Z⇒E]40; [G Z⇒E]41); [G Z⇒E]42

}
def. Z⇒
=

{
?;@; [G Z⇒E] let G1 = (let G0 = 40; 41); 42

}
def. 4
=

{
?;@; [G Z⇒E] 4

}

Case. 4 ≠ (let G1 = (let G0 = 40; 41); 42).
If 4 is not of nested let form, we simply apply the de�nition of 0BB>2 .

ACM Trans. Program. Lang. Syst., Vol. 45, No. 3, Article 17. Publication date: September 2023.



17:36 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and Mira Mezini

{
?;@; [G Z⇒E] 0BB>2 (4)

}
def. 0BB>2

=
{
?;@; [G Z⇒E] 4

}

□
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Lemma 2 (mnf preserves traces). <=5 is de�ned as a recursive term-to-term transformation
on open terms, whereas traceset equality is de�ned by reducing terms to values, i.e., on closed
terms. Since all valid programs are closed terms, we show that<=5 preserves the traceset of an
open term 4 that is closed by substitution [G Z⇒ E].
For all terms 4 , traces ? , traces @, values E , patterns G ,

{ ?;@; [G Z⇒E] <=5 (4) } ≈ ... ≈ { ?;@; [G Z⇒E] 4 }

Proof. By induction over term structure.

Case. 4 = 40 41.
According to ≈, we only consider terms that reduce to a value. Therefore, let q0 be the judgement

that the term 40 closed by [G Z⇒E] with trace ? evaluates to a value E0 producing trace ?0. Let q1 be
the judgement that the term 41 closed by [G Z⇒E] with trace ? ?0 evaluates to a value E1 producing
trace ? ?0 ?1.

q0 ≡ (?;@; [G Z⇒E] 40→
∗ ? ?0;@; E0)

q1 ≡ (? ?0;@; [G Z⇒E] 41→
∗ ? ?0 ?1;@; E1)

Let 830 be the fresh identi�er<=5 produces.

830 fresh

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until con�gurations
converge. The induction hypothesis (IH) allows the removal of<=5 in redex position under traceset
equality (≈). {

?;@; [G Z⇒E] <=5 (4)
}

def. 4
=

{
?;@; [G Z⇒E] <=5 (40 41)

}
def.<=5

=
{
?;@; [G Z⇒E] 0BB>2 (let 830 =<=5 (40); 0BB>2 (let 831 =<=5 (41); 830 831))

}
Lemma 1
≈

{
?;@; [G Z⇒E] let 830 =<=5 (40); 0BB>2 (let 831 =<=5 (41); 830 831)

}
def. Z⇒
=

{
?;@; let 830 = [G Z⇒E] <=5 (40); [G Z⇒E] 0BB>2 (let 831 =<=5 (41); 830 831)

}
��
≈

{
?;@; let 830 = [G Z⇒E] 40; [G Z⇒E] 0BB>2 (let 831 =<=5 (41); 830 831))

}
q0

→∗
{
? ?0;@; let 830 = E0; [G Z⇒E] 0BB>2 (let 831 =<=5 (41); 830 831) | ∀ E0 ?0, if q0

}
Rlet
→

{
? ?0;@; [830 ↦→E0, G Z⇒E] 0BB>2 (let 831 =<=5 (41); 830 831) | ∀ E0 ?0, if q0

}
Lemma 1
≈

{
? ?0;@; [830 ↦→E0, G Z⇒E] let 831 =<=5 (41); 830 831 | ∀ E0 ?0, if q0

}
def. Z⇒
=

{
? ?0;@; let 831 = [830 ↦→E0, G Z⇒E] <=5 (41); E0 831 | ∀ E0 ?0, if q0

}
��
=

{
? ?0;@; let 831 = [830 ↦→E0, G Z⇒E] 41; E0 831 | ∀ E0 ?0, if q0

}
830 fresh

=
{
? ?0;@; let 831 = [G Z⇒E] 41; E0 831 | ∀ E0 ?0, if q0

}
q1

→∗
{
? ?0 ?1;@; let 831 = E1; E0 831 | ∀ E0 E1 ?0 ?1, if q0, q1

}
Rlet
→

{
? ?0 ?1;@; E0 E1 | ∀ E0 E1 ?0 ?1, if q0, q1

}
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q1

←∗
{
? ?0;@; E0 [G Z⇒E] 41 | ∀ E0 ?0, if q0

}
q0

←∗
{
?;@; ( [G Z⇒E] 40) [G Z⇒E] 41

}
def. Z⇒
=

{
?;@; [G Z⇒E] 40 41

}
def. 4
=

{
?;@; [G Z⇒E] 4

}

Case. 4 = let 830 = 40; 41.
According to ≈, we only consider terms that reduce to a value. Therefore, let q be the judgement

that the term 40 closed by [G Z⇒E] with trace ? evaluates to a value E0 producing trace ?0.

q0 ≡ (?;@; [G Z⇒E] 40→
∗ ? ?0;@; E0)

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until con�gurations
converge. The induction hypothesis (IH) allows the removal of<=5 in redex position under traceset
equality (≈). {

?;@; [G Z⇒E] <=5 (4)
}

def. 4
=

{
?;@; [G Z⇒E] <=5 (let 830 = E0; 41)

}
def.<=5

=
{
?;@; [G Z⇒E] 0BB>2 (let 830 =<=5 (40); <=5 (41))

}
Lemma 1
≈

{
?;@; [G Z⇒E] let 830 =<=5 (40); <=5 (41)

}
def. Z⇒
=

{
?;@; let 830 = [G Z⇒E] <=5 (40); [G Z⇒E] <=5 (41)

}
��
≈

{
?;@; let 830 = [G Z⇒E] 40; [G Z⇒E] <=5 (41)

}
q0

→∗
{
? ?0;@; let 830 = E0; [G Z⇒E] <=5 (41) | ∀ E0 ?0, if q0

}
Rlet
→

{
? ?0;@; [830 ↦→E0, G Z⇒E] <=5 (41) | ∀ E0 ?0, if q0

}
��
≈

{
? ?0;@; [830 ↦→E0, G Z⇒E] 41 | ∀ E0 ?0, if q0

}
Rlet
←

{
? ?0;@; [G Z⇒E] let 830 = E0; 41 | ∀ E0 ?0, if q0

}
q0

←∗
{
?;@; [G Z⇒E] let 830 = 40; 41

}
def. 4
=

{
?;@; [G Z⇒E] 4

}

Case. The other cases of 4 are proved analogously.
□
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Lemma 3 (mnf’ preserves trace). <=5 ′ is de�ned on programs. To evaluate a program, it is
initialized with a set of clients �.<=5 ′ preserves the traceset of (closed) programs % for any set of
clients �.
For all % ,

{ 8=8C� (<=5 ′ (%)) } ≈ ... ≈ { 8=8C� (%) }

Proof. By induction over term structure.

Case. % = (3 ;1; 40).
Initializing the de�nitions 3 ;1 with � produces the trace ? and the state @.

8=8C� (3 ;1) = ?;@

According to ≈, we only consider terms that reduce to a value. Therefore, let q be the judgement
that the term 40 closed by [G Z⇒E] in trace ? produces a value E0 and trace ?0.

q ≡ (?;@; 40→
∗ ? ?0;@; E0)

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until con�gurations
converge, using Lemma 2. {

8=8C� (<=5 ′ (%))
}

def. %
=

{
8=8C� (<=5 ′ (3 ;1; 40))

}
def.<=5 ′

=
{
8=8C� (3 ;1; trmp(<=5 4 (Done(40))))

}
def. 8=8C�

=
{
?;@; trmp(<=5 4 (Done(40)))

}
Lemma 2
≈

{
?;@; trmp(Done(40))

}
q

→∗
{
? ?0;@; trmp(Done(E0)) | ∀ E0 ?0, if q

}
Rdone
→

{
? ?0;@; E0 | ∀ E0 ?0, if q

}
q

←∗
{
?;@; 40

}
def. 8=8C�

=
{
8=8C� (3 ;1; 40)

}
def. %
=

{
8=8C� (%)

}

□
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Lemma 4 (comp preserves traces). 2><? is de�ned on programs. To evaluate a program, it is
initialized with a set of clients �. 2><? preserves the traceset of (closed) programs % for any set of
clients �.
For all de�nitions 1, de�nitions 3 , terms 4 , values E , patterns G ,

{ [G Z⇒E] 8=8C� (2><? (3 ;1; trmp(4))) } ≈ ... ≈ { 8=8C� (3 ;1; trmp( [G Z⇒E] 4)) }

Proof. By induction over term structure.

Case. 4 = let G = awaitClB ((40, () →41)); 42.
2><? expects the de�nitions 1 to be of form:

1 =
©­
«

@cl this.clfn = 83 → 41,0;C ;

@co this.cofn = 83 → 42,0;C ;

1A4BC

ª®
¬

2><? is de�ned recursively and applied to the term 42. Intuitively, 2><? transforms 42 to 4′2 and
1 to 1′ by moving the part of 42 that comes after the awaitClB call into the cofn de�nition inside 1.
The recursive call is given as follows:

(3 ;1′; trmp(4′2)) = 2><? (3 ;1; trmp(42))

1′ =
©­­«

@cl this.clfn = 83 → 4′
1,0;C

;

@co this.cofn = 83 → 4′
2,0;C

;

1A4BC

ª®®¬
After the recursive call, 2><? moves the transformed 4′2 into the cofn de�nition, resulting in 4′

and 1′′ with 4′′
1,0;C

and 4′′
2,0;C

.

q ≡
(
{ 3 ;1′′; trmp(4′)

}
=

{
2><? (3 ;1; trmp(4)) }

)

1′′ =
©­­
«

@cl this.clfn = 83 → 4′′
1,0;C

;

@co this.cofn = 83 → 4′′
2,0;C

;

1A4BC

ª®®
¬

4′′
1,0;C

=
©­
«

if let (2 :: fv(() →41)) = 83

then 41
else 4′

2,0;C

ª®
¬

4′′
2,0;C

=

©­­­
«

if let (2 :: G :: fv(G →4′
2
)) = 83

then assert(this.state == 2 && this.sender == this.who);

this.state := 0; 4′
2

else 4′
2,0;C

ª®®®
¬

Let ?;@ be the trace and state produced by initializing 3 ;1 with �, and ?;@′ for initializing 3 ;1′,
and ?;@′′ for initializing 3 ;1′′.

8=8C� (3 ;1) = ?;@

8=8C� (3 ;1
′) = ?;@′

8=8C� (3 ;1
′′) = ?;@′′

According to ≈, we only consider terms that reduce to a value. Therefore, let q0 be the judgement
that the term 40 closed by [G Z⇒E] in trace ? produces a value E0 and trace ?1.

q0 (@q ) = (?;@q ; [G Z⇒E] 40→ ? ?1;@q ; E0)

We de�ne q1 based on q :
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q

={
3 ;1′′; trmp(4′)

}
=

{
2><? (3 ;1; trmp(4))

}
→ 64=4A0;8I4 [G Z⇒E] 8=8C� (...){

[G Z⇒E] 8=8C� (3 ;1
′′; trmp(4′))

}
=

{
[G Z⇒E] 8=8C� (2><? (3 ;1; trmp(4)))

}
→ (= → ≈){

[G Z⇒E] 8=8C� (3 ;1
′′; trmp(4′))

}
≈

{
[G Z⇒E] 8=8C� (2><? (3 ;1; trmp(4)))

}
→ ��{

[G Z⇒E] 8=8C� (3 ;1
′′; trmp(4′))

}
≈

{
8=8C� (3 ;1; trmp( [G Z⇒E] 4))

}
→ def. 8=8C�{

?;@′′; trmp( [G Z⇒E] 4′)
}
≈

{
?;@; trmp( [G Z⇒E] 4)

}
≡

q1

The lemma holds by the following chain of transitive relations.We evaluate the compiled program
from top to bottom (→∗) and the original program from bottom to top (←∗) until con�gurations
converge. {

[G Z⇒E] 8=8C� (2><? (3 ;1; trmp(4)))
}

def. 4
=

{
[G Z⇒E] 8=8C� (2><? (3 ;1; trmp(let G3 = awaitClB ((40, () →41))); 42))

}
def. 2><?

=



[G Z⇒E] 8=8C� (3 ;1

′′; trmp(

this.who := 40; this.state := 2;

More(2 :: fv(() →41), 2 :: fv(G →4′
2
))))




def. 8=8C�
=




?;@′′; [G Z⇒E] trmp(

this.who := 40; this.state := 2;

More(2 :: fv(() →41), 2 :: fv(G →4′
2
))




def. Z⇒
=




?;@′′; trmp(

this.who := [G Z⇒E] 40; this.state := 2;

More(2 :: [G Z⇒E] fv(() →41), 2 :: [G Z⇒E] fv(G →4′
2
)))




q0 (@
′′ )

→∗




? ?1; @
′′; trmp(

this.who := E0; this.state := 2;

More(2 :: [G Z⇒E] fv(() →41), 2 :: [G Z⇒E] fv(G →4′
2
)))

| ∀ E0 ?1, if q0




Rset†, Rset†
→




? ?1; @
′′ [who↦→E0, state↦→2];

trmp(More(2 :: [G Z⇒E] fv(() →41)), 2 :: [G Z⇒E] fv(G →4′
2
))

| ∀ E0 ?1, if q0




Rmore
→




? ?1; @
′′ [who↦→E0, state↦→2];

C<? ←C this.clfn(2 :: [G Z⇒E] fv(() →41));

trmp(this.cofn(2 :: C<? :: [G Z⇒E] fv(G →4′
2
)))

| ∀ E0 ?1, if q0




Rbt
→




? ?1 msg(E ′
0
, E ′

2
) wr(0, sender, E ′

0
); @′′ [who↦→E0, state↦→2];

let C<? = E ′
2
; trmp(this.cofn(2 :: C<? :: [G Z⇒E] fv(G →4′

2
)))

| ∀ E0 ?1 E
′
0
E ′
2
, if q0



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20B4 E′
0
= E0

=




? ?1 msg(E ′
0
, E ′

2
) wr(0, sender, E ′

0
); @′′ [who↦→E0, state↦→2];

let C<? = E ′
2
; trmp(this.cofn(2 :: C<? :: [G Z⇒E] fv(G →4′

2
)))

| ∀ E0 ?1 E
′
0
E ′
2
, if E ′

0
≠ E0, q0

? ?1 msg(E ′
0
, E ′

2
) wr(0, sender, E ′

0
); @′′ [who↦→E0, state↦→2];

let C<? = E ′
2
; trmp(this.cofn(2 :: C<? :: [G Z⇒E] fv(G →4′

2
)))

| ∀ E0 ?1 E
′
0
E ′
2
, if E ′

0
= E0, q0




Rlet, Rget, Rapp, Rt,
Rget, Rop, Rget,
Rget, Rop, Rop

→∗




? ?1 msg(E ′
0
, E ′

2
) wr(0, sender, E ′

0
); @′′ [who↦→E0, state↦→2];

trmp(assert(false); this.state := 0; [G Z⇒E ′
2
, G Z⇒E] 4′

2
))

| ∀ E0 ?1 E
′
0
E ′
2
, if E ′

0
≠ E0, q0

? ?1 msg(E ′
0
, E ′

2
) wr(0, sender, E ′

0
); @′′ [who↦→E0, state↦→2];

trmp(assert(true); this.state := 0; [G Z⇒E ′
2
, G Z⇒E] 4′

2
)

| ∀ E0 ?1 E
′
0
E ′
2
, if E ′

0
= E0, q0




def. ≈
≈




? ?1 msg(E ′
0
, E ′

2
) wr(0, sender, E ′

0
); @′′ [who↦→E0, state↦→2];

trmp(assert(true); this.state := 0; [G Z⇒E ′
2
, G Z⇒E] 4′

2
)

| ∀ E0 ?1 E
′
0
E ′
2
, if E ′

0
= E0, q0




Rlet, Rset
→




? ?1 msg(E ′
0
, E ′

2
) wr(0, sender, E ′

0
); @′′ [who↦→E0, state↦→0];

trmp( [G Z⇒E ′
2
, G Z⇒E] 4′

2
)

| ∀ E0 ?1 E
′
0
E ′
2
, if E ′

0
= E0, q0




E′
0
= E0
=




? ?1 msg(E0, E
′
2
) wr(0, sender, E0); @

′′ [who↦→E0, state↦→0];

trmp( [G Z⇒E ′
2
, G Z⇒E] 4′

2
)

| ∀ E0 ?1 E
′
2
, if q0




q1
≈




? ?1 msg(E0, E
′
2
) wr(0, sender, E0); @;

trmp( [G Z⇒E ′
2
, G Z⇒E] 42)

| ∀ E0 ?1 E
′
2
, if q0




Rlet, Rbs
←

{
? ?1; @; trmp(let G = awaitClB (E0, () →[G Z⇒E] 41); [G Z⇒E] 42)

| ∀ E0 ?1, if q0

}
q0 (@)

←∗
{
?;@; trmp(let G = awaitClB ( [G Z⇒E] 40, () →[G Z⇒E] 41); [G Z⇒E] 42)

}
def. Z⇒
=

{
?;@; trmp( [G Z⇒E] let G = awaitClB (40, () →41); 42)

}
def. 4
=

{
?;@; trmp( [G Z⇒E] 4)

}
def. 8=8C�

=
{
8=8C� (1;3 ; trmp( [G Z⇒E] 4))

}

Case. 4 = G0.
Let ?;@ be the trace and state produced by initializing 3 ;1 with �.

8=8C� (3 ;1) = ?;@

The traceset equality holds by de�nition of 2><? and 8=8C�.{
[G Z⇒E] 8=8C� (2><? (3 ;1; trmp(4)))

}
def. 4
=

{
[G Z⇒E] 8=8C� (2><? (3 ;1; trmp(G0)))

}
def. 2><?

=
{
[G Z⇒E] 8=8C� (3 ;1; 2><? (trmp(G0)))

}
def. 8=8C�

=
{
?;@; [G Z⇒E] trmp(G0)

}
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def. Z⇒
=

{
?;@; trmp( [G Z⇒E] G0)

}
def. 4
=

{
?;@; trmp( [G Z⇒E] 4)

}
def. 8=8C�

=
{
8=8C� (3 ;1; trmp( [G Z⇒E] 4))

}

□
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Lemma 5 (comp’ preserves traces). 2><?′ is de�ned on programs. To evaluate a program, it is
initialized with a set of clients �. 2><?′ preserves the traceset of (closed) programs % for any set of
clients �.
For all de�nitions 1, de�nitions 3 , terms 40,

{ 8=8C� (2><?′ (3 ;1; trmp(40))) } ≈ ... ≈ { 8=8C� (3 ;1
′; trmp(40)) }

Proof. By induction over term structure.

Case. % = (3 ;1; 40).
Intuitively, 2><?′ prepends the de�nitions 1 with initial de�nitions for clfn and cofn that only

contain assert(false), such that 2><? can be applied.

1′ =
©­
«

@cl this.clfn = 83 → assert(false);

@co this.cofn = 83 → assert(false);

1

ª®
¬

The lemma holds by de�nition of 2><?′, and Lemma 4.{
8=8C� (2><?′ (3 ;1; trmp(40)))

}
def. 2><?′

=
{
8=8C� (2><? (3 ;1′; trmp(40))

}
Lemma 4
≈

{
8=8C� (3 ;1

′; trmp(40))
}

□
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