
Extensible Testing for Infrastructure as Code
David Spielmann

david.spielmann@unisg.ch
University of St. Gallen

Switzerland

Daniel Sokolowski
daniel.sokolowski@unisg.ch

University of St. Gallen
Switzerland

Guido Salvaneschi
guido.salvaneschi@unisg.ch

University of St. Gallen
Switzerland

Abstract
Developers automate deployments with Programming Lan-
guages Infrastructure as Code (PL-IaC) by implementing IaC
programs in popular languages like TypeScript and Python.
Yet, systematic testing—well established for high-velocity
software development—is rarely applied to IaC programs
because IaC testing techniques are either slow or require
extensive development effort. To solve this dilemma, we de-
velop ProTI, a novel IaC unit testing approach, and implement
it for Pulumi TypeScript. Our preliminary experiments with
simple type-based test case generators and oracles show that
ProTI can find bugs reliably in a short time, often without
writing any additional testing code. ProTI’s extensible plugin
architecture allows combining, adopting, and experimenting
with new approaches, opening the discussion about novel
generators and oracles for efficient IaC testing.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging; Software functional prop-
erties; Orchestration languages; • Computer systems orga-
nization → Cloud computing.

Keywords: Infrastructure as Code, DevOps, Testing, Fuzzing
ACM Reference Format:
David Spielmann, Daniel Sokolowski, and Guido Salvaneschi. 2023.
Extensible Testing for Infrastructure as Code. InCompanion Proceed-
ings of the 2023 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity
(SPLASH Companion ’23), October 22–27, 2023, Cascais, Portugal.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3618305.
3623607

1 Today IaC Testing is Slow or Effortful
Infrastructure as Code (IaC) [13] automates the complex
management of resources and deployments for cloud ap-
plications. Beyond simplifying the orchestration, IaC intro-
duces consistency and reproducibility into the deployment
process [8, 10, 11, 15]. Today, Programming Languages IaC

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0384-3/23/10.
https://doi.org/10.1145/3618305.3623607

// Create AWS S3 bucket
new aws.s3.Bucket('b', {

website: { /∗ ... ∗/ }

});

/∗ ... ∗/

IaC Program under Test ProTI ProTI Plugins

validate target
configurations

  test   input
(observed config.)

Oracles

GeneratorTest Runner

Resource Mock

runs

mocks

Resource Definition

Figure 1. High-level architecture of IaC testing with ProTI.

(PL-IaC) enables developers to tackle the complexity by im-
plementing IaC programs in high-level programming lan-
guages like Python and TypeScript. The established PL-IaC
solutions are Pulumi [14] and the Cloud Development Kits
(CDKs) of AWS [1] and Terraform [9].

IaC programs describe the desired target state of the de-
ployment as an append-only graph of immutable resource
configurations and the dependencies between them. For in-
stance, the Pulumi TypeScript program in Figure 1 defines
an AWS S3 bucket object by instantiation of an object of
the resource’s type and passing the resource’s configuration
to the constructor. Based on such a target state, the PL-IaC
solution sends the target configuration of each resource to its
deployment engine, which creates or updates the resources
and returns the resources’ observed configuration post de-
ployment. The observed configuration is then accessible on
the resources’ object in the rest of the IaC program.

Using PL-IaC introduces the benefits of programming lan-
guages to IaC, but their challenges, too. Like traditional soft-
ware, IaC programs are susceptible to bugs, which could
prevent deployment, break functionality, or introduce secu-
rity issues. Testing is a central technique to ensure program
reliability. However, developers rarely test IaC programs
systematically—as we found studying PL-IaC programs on
GitHub. This stems from the practical infeasibility of current
PL-IaC testing techniques. Integration testing is slow and
resource-intensive, leading to increased costs and waiting
times. Unit testing bypasses these issues at the expense of
high manual development effort because each resource defi-
nition has to be mocked with logic to validate configurations
and to generate artificial observed configurations, simulating
the complex behavior of the cloud. In summary, developing
reliable PL-IaC programs at high velocity is a challenge be-
cause current testing methods are either slow or demand
significant development effort.

https://orcid.org/0009-0004-1715-2059
https://orcid.org/0000-0003-2911-8304
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3618305.3623607
https://doi.org/10.1145/3618305.3623607
https://doi.org/10.1145/3618305.3623607


SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal David Spielmann, Daniel Sokolowski, and Guido Salvaneschi

2 A Novel Approach for Efficient Testing
To solve this dilemma, we propose ProTI, a novel unit testing
approach for PL-IaC programs we envisioned [16]. ProTI
automatically mocks all resource definitions and employs a
generator for test input and a set of oracles for validation
(Figure 1). A test case is defined by the sequence of observed
resource configurations the generator—and therefore the
mocks—return. The oracles validate the target configuration
of each resource, i.e., they check all mock inputs. ProTI runs
the mocked IaC program quickly in many different config-
urations, halting once a bug is detected, or after a defined
amount of runs or time in the successful case. To that end,
ProTI is a property-based testing [2, 6] and fuzzing [17] tool
for IaC programs. Both ProTI’s generator and oracles are ex-
changeable plugins to empower reuse across IaC programs
and be extensible towards existing and novel test case gen-
eration and validation techniques. In essence, ProTI enables
fast and extensible unit testing with low development effort.

3 ProTI is Effective with Type-based Plugins
We implemented ProTI for Pulumi TypeScript based on the
JavaScript testing framework Jest [5], the property-based
testing library fast-check [4], and Pulumi’s runtime mocking.
The first ProTI plugins are type-based, using resource config-
uration types from Pulumi package schemas. The type-based
generator provides test input by generating concrete values
for observed resource configurations that comply with the
resource’s type. Similarly, the type-based oracle dynamically
checks each concrete resource target configuration for com-
pliance with the type information. As each Pulumi package
defines a package schema, our plugins are out-of-the-box
compatible with all Pulumi resources available today.
In a preliminary evaluation, we compare ProTI with cur-

rent PL-IaC testing techniques on variants of a Pulumi Type-
Script program, which deploys a website on AWS S3 display-
ing a word chosen randomly from a list. Three variants of
the program have an error: (1) has an error that consistently
causes the program to fail, (2) async error has an error in
a callback that depends on the observed configuration of a
resource, and (3) off-by-one error sometimes fails because it
draws a random number that is one bigger than the highest
index in the words list. Lastly, (4) is correct, and (5) AWS RDS
additionally deploys a serverless database cluster. ProTI is
equipped with the type-based generator and oracle plugins,
and one execution runs 100 test cases. The alternative tech-
niques to (a) ProTI for testing PL-IaC programs are (b) naïve
unit testing, using amock that neither validates nor generates
configurations, (c) dry running, running the program with-
out deploying it using Pulumi’s preview, and (d) integration
testing, simply executing the deployment.

Figure 2 shows the average run times over 12 repetitions
and whether the error was (always) found. Dry running can-
not find errors in code depending on observed configuration,

1: error

2: async error

3: off-by-one error

4: correct

error always found

error occasionally found

error not found

a) ProTI b) Unit
Testing

c) Dry
Running

d) Integration
Testing

0

10

20

av
er

ag
ed

ru
n

ti
m

e
[s

]

1

1 1
1

2

2 2

2
3

3 3

3

4

4 4

4

5) AWS
RDS

0

100

200

a

b c

d

Figure 2. Average run time over 12 executions and whether
an error was found for testing techniques on an IaC program.

and unit testing crashes on async error. ProTI exercises all
code with realistic values in many configurations, while inte-
gration testing only tests a single one. Thus, ProTI is the only
technique that always detects all errors. ProTI is arguably
fast, considering it runs up to 100 test cases in similar dura-
tions in which the alternatives run a single test case. Further,
correct and AWS RDS show that ProTI takes longer with more
resources (6 vs. 25) but is independent of their deployment
duration. In contrast, integration testing is heavily slowed
down by the long deployment time of the serverless database
in AWS RDS. Lastly, no extra testing code was needed for
ProTI, showing the limited effort required by ProTI.

4 Advanced Generators and Oracles
ProTI enables efficient testing of IaC programs, relieving
developers from the tedious task to develop high-quality
testing code. Instead, generator and oracle plugins that are
implemented once can be reused to test many IaC programs.
However, implementing effective plugins is not trivial. Ideal
plugins would be complete and correct, i.e., an ideal generator
would generate all possible configurations and no unrealis-
tic ones, and an ideal oracle would detect all misconfigura-
tion without identifying any valid configuration as incorrect
(false positives). Further, ideal generators prioritize tests that
are prone to fail, finding bugs as early as possible.

With the type-based plugins ProTI, showed already to be
effective, even though these plugins are by far not ideal: The
types are only an approximation (e.g., a valid TCP port must
be an integer within a certain range, but its type ‘number’
includes also fractions and integers outside the valid range),
and the test case prioritization is naïve. Yet, ProTI’s effective-
ness will further improve with more advanced plugins, and
ProTI enables researchers and practitioners alike to easily
explore existing and novel ideas, which could leverage, e.g.,
search-based [12], state-machine-based [3], or combinatorial-
coverage-based [7] testing techniques. ProTI facilitates the
discussion of novel test case generation and oracles, driving
ever-more effective IaC testing.

Acknowledgments
This work has been co-funded by the Swiss National Science
Foundation (SNSF, No. 200429).



Extensible Testing for Infrastructure as Code SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal

References
[1] Amazon Web Services. 2023. AWS Cloud Development Kit. https:

//aws.amazon.com/cdk/ (Accessed: 2023-08-15).
[2] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight

Tool for Random Testing of Haskell Programs. In Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Program-
ming (ICFP ’00). Association for Computing Machinery, New York, NY,
USA, 268–279. https://doi.org/10.1145/351240.351266

[3] Luis Eduardo Bueso de Barrio, Lars-Åke Fredlund, Ángel Herranz,
Clara Benac Earle, and Julio Mariño. 2021. Makina: a new QuickCheck
state machine library. In Proceedings of the 20th ACM SIGPLAN Inter-
national Workshop on Erlang, Erlang@ICFP 2021, Virtual Event, Korea,
August 26, 2021, Stavros Aronis and Annette Bieniusa (Eds.). ACM,
41–53. https://doi.org/10.1145/3471871.3472964

[4] Nicolas Dubien. 2022. fast-check: Property based testing framework
for JavaScript/TypeScript. https://github.com/dubzzz/fast-check
(Accessed: 2023-08-15).

[5] Facebook. 2023. Jest: Delightful JavaScript Testing. https://jestjs.io/
(Accessed: 2023-01-29).

[6] George Fink and Matt Bishop. 1997. Property-based testing: a new
approach to testing for assurance. ACM SIGSOFT Softw. Eng. Notes 22,
4 (1997), 74–80. https://doi.org/10.1145/263244.263267

[7] Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Ben-
jamin C. Pierce. 2021. Do Judge a Test by its Cover - Combining Com-
binatorial and Property-Based Testing. In Programming Languages
and Systems - 30th European Symposium on Programming, ESOP 2021,
Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings
(Lecture Notes in Computer Science, Vol. 12648), Nobuko Yoshida (Ed.).
Springer, 264–291. https://doi.org/10.1007/978-3-030-72019-3_10

[8] Michele Guerriero, Martin Garriga, Damian A. Tamburri, and Fabio
Palomba. 2019. Adoption, Support, and Challenges of Infrastructure-
as-Code: Insights from Industry. In 2019 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2019, Cleveland, OH,
USA, September 29 - October 4, 2019. IEEE, 580–589. https://doi.org/10.
1109/ICSME.2019.00092

[9] HashiCorp. 2023. CDK for Terraform. https://developer.hashicorp.
com/terraform/cdktf (Accessed: 2023-08-15).

[10] Indika Kumara, Martín Garriga, Angel Urbano Romeu, Dario Di Nucci,
Fabio Palomba, Damian Andrew Tamburri, and Willem-Jan van den
Heuvel. 2021. TheDo’s andDon’ts of Infrastructure Code: A Systematic
Gray Literature Review. Information and Software Technology 137
(2021), 106593. https://doi.org/10.1016/j.infsof.2021.106593

[11] Leonardo A. F. Leite, Carla Rocha, Fabio Kon, Dejan S. Milojicic, and
Paulo Meirelles. 2020. A Survey of DevOps Concepts and Challenges.
ACM Comput. Surv. 52, 6 (2020), 127:1–127:35. https://doi.org/10.1145/
3359981

[12] Andreas Löscher and Konstantinos Sagonas. 2018. Automating Tar-
geted Property-Based Testing. In 11th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2018, Västerås,
Sweden, April 9-13, 2018. IEEE Computer Society, 70–80. https:
//doi.org/10.1109/ICST.2018.00017

[13] Kief Morris. 2021. Infrastructure as Code: Dynamic Systems for the
Cloud Age (second ed.). O’Reilly Media, Inc., Sebastopol, CA, USA.

[14] Pulumi. 2022. Pulumi: Universal Infrastructure as Code. https:
//github.com/pulumi/pulumi (Accessed: 2023-08-15).

[15] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie A. Williams.
2019. A systematic mapping study of infrastructure as code research.
Inf. Softw. Technol. 108 (2019), 65–77. https://doi.org/10.1016/j.infsof.
2018.12.004

[16] Daniel Sokolowski and Guido Salvaneschi. 2023. Towards Reliable
Infrastructure as Code. In 20th International Conference on Software
Architecture, ICSA 2023 - Companion, L’Aquila, Italy, March 13-17, 2023.
IEEE, 318–321. https://doi.org/10.1109/ICSA-C57050.2023.00072

[17] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and
Christian Holler. 2021. The Fuzzing Book. CISPA Helmholtz Center
for Information Security. https://www.fuzzingbook.org/ Retrieved
2021-10-26 21:30:20+08:00.

Received 2023-08-15; accepted 2023-08-30

https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3471871.3472964
https://github.com/dubzzz/fast-check
https://jestjs.io/
https://doi.org/10.1145/263244.263267
https://doi.org/10.1007/978-3-030-72019-3_10
https://doi.org/10.1109/ICSME.2019.00092
https://doi.org/10.1109/ICSME.2019.00092
https://developer.hashicorp.com/terraform/cdktf
https://developer.hashicorp.com/terraform/cdktf
https://doi.org/10.1016/j.infsof.2021.106593
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://doi.org/10.1109/ICST.2018.00017
https://doi.org/10.1109/ICST.2018.00017
https://github.com/pulumi/pulumi
https://github.com/pulumi/pulumi
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1109/ICSA-C57050.2023.00072
https://www.fuzzingbook.org/

	Abstract
	1 Today IaC Testing is Slow or Effortful
	2 A Novel Approach for Efficient Testing
	3 ProTI is Effective with Type-based Plugins
	4 Advanced Generators and Oracles
	Acknowledgments
	References

