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Abstract
Developers automate deployments with Programming Lan-
guages Infrastructure as Code (PL-IaC) by implementing IaC
programs in popular languages like TypeScript and Python.
Yet, systematic testing—well established for high-velocity
software development—is rarely applied to IaC programs
because IaC testing techniques are either slow or require
extensive development effort. To solve this dilemma, we de-
velop ProTI, a novel IaC unit testing approach, and implement
it for Pulumi TypeScript. Our preliminary experiments with
simple type-based test case generators and oracles show that
ProTI can find bugs reliably in a short time, often without
writing any additional testing code. ProTI’s extensible plugin
architecture allows combining, adopting, and experimenting
with new approaches, opening the discussion about novel
generators and oracles for efficient IaC testing.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging; Software functional prop-
erties; Orchestration languages; • Computer systems orga-
nization → Cloud computing.
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1 Today IaC Testing is Slow or Effortful
Infrastructure as Code (IaC) [13] automates the complex
management of resources and deployments for cloud ap-
plications. Beyond simplifying the orchestration, IaC intro-
duces consistency and reproducibility into the deployment
process [8, 10, 11, 15]. Today, Programming Languages IaC
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// Create AWS S3 bucket
new aws.s3.Bucket('b', {

website: { /∗ ... ∗/ }

});

/∗ ... ∗/
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Figure 1. High-level architecture of IaC testing with ProTI.

(PL-IaC) enables developers to tackle the complexity by im-
plementing IaC programs in high-level programming lan-
guages like Python and TypeScript. The established PL-IaC
solutions are Pulumi [14] and the Cloud Development Kits
(CDKs) of AWS [1] and Terraform [9].

IaC programs describe the desired target state of the de-
ployment as an append-only graph of immutable resource
configurations and the dependencies between them. For in-
stance, the Pulumi TypeScript program in Figure 1 defines
an AWS S3 bucket object by instantiation of an object of
the resource’s type and passing the resource’s configuration
to the constructor. Based on such a target state, the PL-IaC
solution sends the target configuration of each resource to its
deployment engine, which creates or updates the resources
and returns the resources’ observed configuration post de-
ployment. The observed configuration is then accessible on
the resources’ object in the rest of the IaC program.

Using PL-IaC introduces the benefits of programming lan-
guages to IaC, but their challenges, too. Like traditional soft-
ware, IaC programs are susceptible to bugs, which could
prevent deployment, break functionality, or introduce secu-
rity issues. Testing is a central technique to ensure program
reliability. However, developers rarely test IaC programs
systematically—as we found studying PL-IaC programs on
GitHub. This stems from the practical infeasibility of current
PL-IaC testing techniques. Integration testing is slow and
resource-intensive, leading to increased costs and waiting
times. Unit testing bypasses these issues at the expense of
high manual development effort because each resource defi-
nition has to be mocked with logic to validate configurations
and to generate artificial observed configurations, simulating
the complex behavior of the cloud. In summary, developing
reliable PL-IaC programs at high velocity is a challenge be-
cause current testing methods are either slow or demand
significant development effort.
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2 A Novel Approach for Efficient Testing
To solve this dilemma, we propose ProTI, a novel unit testing
approach for PL-IaC programs we envisioned [16]. ProTI
automatically mocks all resource definitions and employs a
generator for test input and a set of oracles for validation
(Figure 1). A test case is defined by the sequence of observed
resource configurations the generator—and therefore the
mocks—return. The oracles validate the target configuration
of each resource, i.e., they check all mock inputs. ProTI runs
the mocked IaC program quickly in many different config-
urations, halting once a bug is detected, or after a defined
amount of runs or time in the successful case. To that end,
ProTI is a property-based testing [2, 6] and fuzzing [17] tool
for IaC programs. Both ProTI’s generator and oracles are ex-
changeable plugins to empower reuse across IaC programs
and be extensible towards existing and novel test case gen-
eration and validation techniques. In essence, ProTI enables
fast and extensible unit testing with low development effort.

3 ProTI is Effective with Type-based Plugins
We implemented ProTI for Pulumi TypeScript based on the
JavaScript testing framework Jest [5], the property-based
testing library fast-check [4], and Pulumi’s runtime mocking.
The first ProTI plugins are type-based, using resource config-
uration types from Pulumi package schemas. The type-based
generator provides test input by generating concrete values
for observed resource configurations that comply with the
resource’s type. Similarly, the type-based oracle dynamically
checks each concrete resource target configuration for com-
pliance with the type information. As each Pulumi package
defines a package schema, our plugins are out-of-the-box
compatible with all Pulumi resources available today.
In a preliminary evaluation, we compare ProTI with cur-

rent PL-IaC testing techniques on variants of a Pulumi Type-
Script program, which deploys a website on AWS S3 display-
ing a word chosen randomly from a list. Three variants of
the program have an error: (1) has an error that consistently
causes the program to fail, (2) async error has an error in
a callback that depends on the observed configuration of a
resource, and (3) off-by-one error sometimes fails because it
draws a random number that is one bigger than the highest
index in the words list. Lastly, (4) is correct, and (5) AWS RDS
additionally deploys a serverless database cluster. ProTI is
equipped with the type-based generator and oracle plugins,
and one execution runs 100 test cases. The alternative tech-
niques to (a) ProTI for testing PL-IaC programs are (b) naïve
unit testing, using amock that neither validates nor generates
configurations, (c) dry running, running the program with-
out deploying it using Pulumi’s preview, and (d) integration
testing, simply executing the deployment.

Figure 2 shows the average run times over 12 repetitions
and whether the error was (always) found. Dry running can-
not find errors in code depending on observed configuration,
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Figure 2. Average run time over 12 executions and whether
an error was found for testing techniques on an IaC program.

and unit testing crashes on async error. ProTI exercises all
code with realistic values in many configurations, while inte-
gration testing only tests a single one. Thus, ProTI is the only
technique that always detects all errors. ProTI is arguably
fast, considering it runs up to 100 test cases in similar dura-
tions in which the alternatives run a single test case. Further,
correct and AWS RDS show that ProTI takes longer with more
resources (6 vs. 25) but is independent of their deployment
duration. In contrast, integration testing is heavily slowed
down by the long deployment time of the serverless database
in AWS RDS. Lastly, no extra testing code was needed for
ProTI, showing the limited effort required by ProTI.

4 Advanced Generators and Oracles
ProTI enables efficient testing of IaC programs, relieving
developers from the tedious task to develop high-quality
testing code. Instead, generator and oracle plugins that are
implemented once can be reused to test many IaC programs.
However, implementing effective plugins is not trivial. Ideal
plugins would be complete and correct, i.e., an ideal generator
would generate all possible configurations and no unrealis-
tic ones, and an ideal oracle would detect all misconfigura-
tion without identifying any valid configuration as incorrect
(false positives). Further, ideal generators prioritize tests that
are prone to fail, finding bugs as early as possible.

With the type-based plugins ProTI, showed already to be
effective, even though these plugins are by far not ideal: The
types are only an approximation (e.g., a valid TCP port must
be an integer within a certain range, but its type ‘number’
includes also fractions and integers outside the valid range),
and the test case prioritization is naïve. Yet, ProTI’s effective-
ness will further improve with more advanced plugins, and
ProTI enables researchers and practitioners alike to easily
explore existing and novel ideas, which could leverage, e.g.,
search-based [12], state-machine-based [3], or combinatorial-
coverage-based [7] testing techniques. ProTI facilitates the
discussion of novel test case generation and oracles, driving
ever-more effective IaC testing.
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