Decentralizing Infrastructure as Code

Daniel Sokolowski
University of St. Gallen

Pascal Weisenburger
University of St. Gallen

Guido Salvaneschi
University of St. Gallen

Abstract—Infrastructure as Code (laC) automates deployments for single teams, falling short of
decentralized deployments across groups. We need mature laC solutions that embrace and
consolidate software engineering principles to enable testing and automation advances for

decentralized organizations.

Daniel Sokolowski, Pascal Weisenburger and Guido Sal-
vaneschi, "Decentralizing Infrastructure as Code," in IEEE
Software, vol. 40, no. 1, pp. 50-55, Jan.-Feb. 2023, doi:
10.1109/MS.2022.3192968.

©2023 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
Index Terms: DevOps, Infrastructure as Code,

Cloud

B SOFTWARE MUST ADAPT quickly to chang-
ing business requirements while ensuring stability
and robustness (cf. Sidebar 1). The past two
decades have seen various IT approaches aim-
ing at these goals, e.g., Unified Process, Scrum,
and Extreme Programming, converging into Dev-
Ops [1]. The key focus of DevOps is to enable
the frequent development of software updates and
ensure reliable software operations. The objec-
tives of DevOps are commonly measured through
the software delivery and operational (SDO) per-
formance metrics (cf. Sidebar 2). In contrast to

IEEE Software

Published by the IEEE Computer Society

Sidebar 1: Actionable Insights.

e For software deployment and undeploy-
ment, dependencies across teams and or-
ganizations should be taken into account
because they often constrain the order of
operations.

e Deployment coordination across teams,
which is often manual, should be auto-
mated for better software delivery and op-
erational performance.

e Future decentralized infrastructure-as-
code technology should leverage explicit
interdeployment interfaces for better
testing and automation.

outdated concepts, studies on the state of DevOps
show that, in practice, throughput metrics (e.g.,
higher deployment frequency) correlate positively
with service stability metrics (e.g., lower change
failure rate) [2]. As the base philosophy of mod-
ern IT organizations, DevOps inspired a range of
practices with additional focus and insights, e.g.,
GitOps, MLOps, and DevSecOps.

© 2023 IEEE

https://doi.org/10.1109/MS.2022.3192968

The premise for good SDO performance is
a high degree of automation along the whole
software pipeline [1]. In practice, infrastructure as
code (IaC) [3] automates application deployments
and plays a key role in DevOps organizations.
Modern IaC solutions compare the present infras-
tructure with the desired state and automatically
derive the required deployment actions to move
the infrastructure into that state. In last-generation
IaC solutions, i.e., Pulumi, Amazon Web Services
Cloud Development Kit (CDK), and Terraform
CDK, the desired state is defined in a general-
purpose programming language, e.g., TypeScript,
Python, C#, or Go.

Such IaC scripts are amenable to well-known
software engineering techniques, including ver-
sioning and testing, ensuring robust and repeat-
able deployments. Adopting these methods for in-
frastructure provisioning and application deploy-
ment has become more and more relevant because
system complexity is being moved from inside
software components into their composition. Tra-
ditional monolithic applications only have a few
separately deployed components, while modern,
serverless equivalents consist of tens or hundreds
of smaller components. For instance, a monolithic
webshop could be a single web service and a
database. In contrast, a serverless webshop typi-
cally is split up into various services, including
authentication, order, and shipment, each includ-
ing a dedicated database and multiple serverless
functions.

State of the DevOps Vision

DevOps encourages cross-functional teams,
which contrasts the previous silo-based approach
with separate teams for, e.g., development, op-
erations, and testing [1]. Such teams combine
competence, interest, and responsibility for a sin-
gle application, demolishing the so-called wall of
confusion between teams and preventing unclear,
shared responsibilities. Within a cross-functional
team, an application is jointly designed, devel-
oped, tested, and operated, reducing friction and
enabling fast feedback between activities.

Building teams around applications—not
roles—aims at group independence. Applications,
however, are usually not fully isolated but inter-
act with other applications they depend on. In
our webshop example, the order service requires

Sidebar 2: Software Delivery and Opera-
tional Performance.

The (Accelerate) State of DevOps reports'are
an annual study, begun in 2014, of the appli-
cation and trends of DevOps. Their authors
developed a widely accepted instrument to
measure the maturity of DevOps organiza-
tions, consisting of the following correlating
key metrics:

The deployment frequency measures

how often code is deployed to produc- a

tion. S
3

The lead time for changes measures E

how long it takes until committed code

is deployed to production.

The time to restore service measures

the required time to restore service after

an incident happens. %
©

The change failure rate measures the O

ratio of failed changes to production.

In recent reports, these key metrics are ac-
companied by a fifth one measuring availabil-
ity and, since 2021, reliability.

the authentication service to verify the user’s
permission to view or place an order. Do such
dependencies constrain the order of the applica-
tions’ (un)deployments? For instance, must the
authentication service be deployed before the
order service because of the dependency? If this is
the case, how do the responsible teams maintain
their independence as prescribed by DevOps?
Today’s IaC solutions either require centralizing
deployments, hindering team independence, or
force out-of-band coordination. An external tool
is needed or manual coordination via phone, chat,
and mail is required, coupling the deployment
times synchronously. Is the lack of automated
coordination of deployments across teams a real
problem in DevOps organizations?

Uhttps://www.devops-research.com/research.html#reports

IEEE Software

https://www.devops-research.com/research.html#reports

The Dependencies in DevOps Survey

Our survey of 134 IT professionals sheds
light on these questions. We now provide detailed
insight into the results, extending the presentation
of preliminary results in our previous work [4]
with better precision and reduced error margin.
The full report is publicly available [5]. Figure 1
includes the demographics and broad spectrum
of participants from different companies that we
acquired through snowball sampling in our net-
works and social media.

Figure 2a shows that for 89 % of the respon-
dents, the primary application requires another
application to provide full functionality; 87 % of
the participants state, to different extents, that
such dependencies may constrain the order of
the applications’ deployments (Figure 2b). For
undeployment, more than two-thirds confirm that
dependencies may constrain the order of un-
deployment. Accordingly, dependencies among
applications are ubiquitous and often constrain
the order in which applications can be safely
(un)deployed.

We asked the participants how they coordinate
the order of (un)deployment operations across
independent teams in their organization. Figure 2c
illustrates that only one-fourth of the respondents
coordinate in a fully automated way; 76 % rely
on manual coordination, e.g., via phone, chat,
and mail. We further asked whether they expect
worse, similar, or better SDO performance for
solely manual and fully automated coordination
compared to the case where no coordination is
needed. We expected worse or similar perfor-
mance for both cases because any coordination
introduces overhead. However, 51 % of the re-
spondents expect better SDO performance for au-
tomated coordination. From our perspective, this
is an unjustified belief, but it shows how much
practitioners value automation. In Figure 2d,
we compare, for each SDO performance metric,
whether automated coordination is expected to
yield better performance than manual coordina-
tion. For each metric, the majority of respondents
expect better performance. In summary, IT pro-
fessionals expect better SDO performance from
automated coordination, but manual coordination
is still the norm.

January/February 2023

SDO Performance Location
Elite 20% 1%
High 23% 71% 11%
Medium 44% v @& -
1%
Low 12%
Department Development & Industry Sector Technology
Engineering
9 40%
Ops 10% 45%
& Infra 19% 17%
DevOps & SRE Finance
Number of Employees
10%, 13% | 17% ‘11%[10%[32%
<20 ‘ <100 <500 <2k <5k 25,000
Years of Experience
10% 27% | 25% [18% [18% [
0-2 3-5 6-10 11-15 216

Figure 1: The demographics of the survey respon-
dents and the organization they work in.

This mismatch is remarkable. Apparently,
there is no simple, widely adopted solution to
coordinate deployments automatically. Hence, we
asked which tools the respondents would use for
coordination. Their answers confirm our impres-
sion that current TaC solutions cannot automate
the coordination: the respondents named various
chat and continuous integration platforms as well
as custom scripts, but no one mentioned an IaC
solution, even though IaC is the designated tool
for deployment automation. This circumstance
raises the question: What is missing in today’s
[aC solutions for decentralized teams?

Bridging the Gap: The Future of
Decentralized 1aC

Current IaC solutions are effective for
centralized deployments. However, automating
deployment coordination across decentralized
teams requires coordinating configuration and
the points in time when teams perform their
(un)deployments. Teams should not have to in-
teract synchronously but operate independently
and on demand. Ultimately, new features or bug

a) Number of Dependencies

11% 7% 44% |
0 1 2-5

17% | 20%
6-10 >10

b) Dependencies Constrain the Order of ...

Deployment: 13%‘ 24% | 25% |16%| 22% |
Definitely Not Possibly Definitely
Undeployment: 31% | 34% | 19% | |9%‘
Definitely Not Possibly Def.

c) Manual Coordination Automated Coordination

used to coordinate (un)deployment operations
32%

44% 24%

expected SDO perf. compared to no coordination

79% 36% B’f} 51%

worse worse similar better

| 15%
better
d) Automated vs. Manual Coordination Promises

Deployment Frequency: 160/‘7130/? 28%| 43% |

similar higher

much higher

46% |

much shorter

Lead Time for Changes: ‘21%| 29% |

similar shorter

Time to Restore Service: 11°/? 28% | 28% | 32% |
longer similar
10°/f 37% |25%| 28% |

higher similar

shorter much short.

Change Failure Rate:

lower much low.

Figure 2: Applications usually depend on one an-
other, and such dependencies constrain the order
of (un)deployment operations. Manual deploy-
ment coordination is common, but automated co-
ordination promises better SDO performance. The
participants’ answers regarding (a) their applica-
tion’s number of dependencies, (b) whether de-
pendencies constrain the order of (un)deployment
operations, (c) manual coordination (left) and au-
tomated coordination (right), and (d) the promises
of automated versus manual coordination.

fixes may be developed anytime, requiring con-
tinuous development and deployment. We argue
that strong interfaces and operational decoupling
solve this issue. Their absence truly limits current
IaC solutions in decentralized organizations.

Strong Interfaces

In current IaC solutions, direct interaction
between deployments is only supported via
(cross-)stack references. Such references are
dynamically typed and enable access to the
exported configuration of other deployments. In
the webshop example, the authentication service
may export its IP address and port as an object
{ "address": "10.1.2.43", "port": 83 }. The
order service deployment, which depends on
the authentication service, reads the exported
object from a stack reference and uses its values.
Nevertheless, the order deployment fails if the
authentication service is not deployed or the
format is changed, say, if "address" is renamed
"host". Hence, deploying a service can fail due
to another service’s deployment that is controlled
by another team. Stack references do not enable
detecting that deployment will fail before starting
it. Thus, they are ultimately unsafe and do not
help coordinate deployments.

Instead, interfaces between deployments
should be explicit and, ideally, cover all aspects
relevant to other deployments. For example, the
order deployment should explicitly state that
the authentication service must be deployed
before and that it needs its IP address and port.
Symmetrically, the authentication deployment
should offer its service with the IP address
and port. Describing the interfaces in both the
consuming and the providing deployments—not
only on one side—enables leveraging methods
from (consumer-driven) contract design and
testing. Teams can use mocking and simulation
techniques to test their deployments against
connected deployments before integration.
Further, safe evolution of interfaces between
teams can be facilitated once all relevant
information is explicitly encoded.

Operational Decoupling

Another aspect that hinders decentralized IaC
is that current IaC solutions treat deployments
as one-off tasks that start, execute once, and

IEEE Software

terminate. This behavior carries the design-time
dependencies between the teams’ deployments
to deployment time. Each (un)deployment re-
quires highly coupled, synchronously coordinated
operations between teams. For instance, before
each service deployment, the order team has to
ensure through synchronous communication that
the authentication team has already deployed its
service.

To overcome this limitation, IaC deployments
should run continuously and deploy resources
reactively. Deployments should be long-running
processes that communicate with each other. The
order team, for example, could start its deploy-
ment without requiring synchronization with the
authentication team. However, the order service
remains undeployed as long as its dependency
on the authentication service is unsatisfied. Once
the authentication team starts its deployment, the
order team’s deployment is notified and auto-
matically deploys the order service. Such contin-
uous, reactive deployment behavior can further
be leveraged to automate safe undeployment and
information exchange across deployments.

Our work on [IS (cf. Sidebar 3) demonstrates
that strong interfaces and operational decoupling
enable automated decentralized deployment co-
ordination. Still, there is huge untapped potential
for such IaC techniques for decentralized orga-
nizations to truly improve team independence,
even if the deployments depend on each other.
The gained automation and safety will boost the
teams’ productivity and the SDO performance of
entire organizations.

Acknowledgments

This work is supported by the Swiss Na-
tional Science Foundation (under grant 200429),
the Hessian Initiative for the Development
of Scientific-Economic Excellence (through the
Software-Factory 4.0 project), and the University
of St. Gallen (through the International Postdoc-
toral Fellowship 1031569). This work involved
human subjects or animals in its research. The
authors confirm that all human/animal subject
research procedures and protocols are exempt
from review board approval.

January/February 2023

Sidebar 3: Automated Decentralized Deploy-
ment Coordination with [IS.

There is a declarative infrastructure-as-code
solution, (IS ([mju:z] “muse”) [4], in which
independent teams explicitly define their in-
terfaces to other teams’ deployments. Teams
define an offer resource to provide values
and resources to a specific remote deploy-
ment. In the consuming deployments, teams
define a wish resource to explicitly define the
types of the values and resources they expect
from a remote deployment. Together, offers
and wishes define a contract expressing the
assumptions about the deployments’ connec-
tion on the providing and consuming sides.

In [IS, deployments are continuously running
processes, not one-off tasks like, e.g., in Pu-
lumi. Thanks to the information encoded in
wishes and offers, it is possible to automate
the coordination across deployments of inde-
pendent teams. In particular, LIS ensures the
following:

1) A wish and dependent resources are
deployed after the corresponding offer.

2) A wish and dependent resources are
automatically undeployed before the
corresponding offer.

3) Changes in an offer are reactively prop-
agated to the corresponding wishes.

Further, offers and wishes enable better test-
ing prior to deployment. Before a deployment
update, teams can check whether the new
version is compatible with the wishes and
offers of the connected deployments. A pro-
totype of LIS based on Pulumi TypeScript is
available at https://mjuz.rocks.

https://mjuz.rocks

B REFERENCES

1. C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano,
“Devops,” IEEE Software, vol. 33, no. 3, pp. 94-100,
2016. [Online]. Available: https://doi.org/10.1109/MS.
2016.68

2. N. Forsgren, D. Smith, J. Humble, and J. Frazelle, “2019
accelerate state of DevOps report,” https:/services.
google.com/fh/files/misc/state-of-devops-2019.pdf, last
accessed on 2022-04-07.

3. K. Morris, Infrastructure as Code: Dynamic Systems for
the Cloud Age, 2nd ed. O’Reilly Media, Inc., 2021.

4. D. Sokolowski, P. Weisenburger, and G. Salvaneschi,
“Automating serverless deployments for DevOps

in Proceedings of the 29th ACM

Joint Meeting on European Software Engineering

organizations,”

Conference and Symposium on the Foundations

of Software Engineering, ser. ESEC/FSE 2021.

ACM, 2021, pp. 57-69. [Online]. Available:
https://doi.org/10.1145/3468264.3468575
5. ——, “Dependencies in DevOps survey 2021: Version

2.0 (until april 15, 2021).” [Online]. Available: https:
//doi.org/10.5281/zen0d0.6372120

Daniel Sokolowski is a Ph.D.
candidate in the Programming
Group, University of St. Gallen,
9000 St.Gallen, Switzerland.
His research interests include
software engineering and pro-
gramming languages for mod-
ern distributed systems, i.e., modern infrastructure
as code for cloud-native applications. Sokolowski re-
ceived his M.Sc. from the Technical University of
Darmstadt, Germany. He is a member of the As-
sociation for Computing Machinery. Contact him at
daniel.sokolowski@unisg.ch or https://dsoko.de.

Pascal Weisenburger is a
postdoctoral researcher in
the Programming Group,
University of St.Gallen, 9000
St.Gallen, Switzerland. His
research interests include
the design of languages for
distributed systems with sound programming models,
i.e., for safe interaction, composition, privacy, and
placement. Weisenburger received his Ph.D. from the
Technical University of Darmstadt, Germany. He is a
member of the Association for Computing Machinery.
Contact him at pascal.weisenburger@unisg.ch.

" Guido Salvaneschi is

W an associate professor of

- .&5 programming at the University

[: e / of St.Gallen, 9000 St.Gallen,

“\“ Switzerland. His research
’))‘ interests include programming
languages and software
engineering, including languages and architectures
for distributed systems, reactive programming, and
secure software systems. Salvaneschi received
his Ph.D. from Politecnico di Milano, ltaly. He is a
member of the Association for Computing Machinery.
Contact him at guido.salvaneschi@unisg.ch.

IEEE Software

https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1109/MS.2016.68
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://doi.org/10.1145/3468264.3468575
https://doi.org/10.5281/zenodo.6372120
https://doi.org/10.5281/zenodo.6372120
https://dsoko.de

	State of the DevOps Vision
	The Dependencies in DevOps Survey
	Bridging the Gap: The Future of Decentralized IaC
	Strong Interfaces
	Operational Decoupling

	
	Acknowledgments
	REFERENCES
	Biographies
	Daniel Sokolowski
	Pascal Weisenburger
	Guido Salvaneschi

