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Abstract

Since its introduction in 2014 by Amazon, the Function as a Service (FaaS) model of serverless computing has set the expec-
tation to fulfill the promise of on-demand, pay-as-you-go, infrastructure-independent processing, originally formulated by cloud
computing. Yet, serverless applications are fundamentally different than traditional service-oriented software in that they pose
specific performance (e.g., cold start), design (e.g., stateless), and development challenges (e.g., debugging). A growing number
of cloud solutions have been continuously attempting to address each of these challenges as a result of the increasing popularity of
FaaS. Yet, the characteristics of this model have been poorly understood; therefore, the challenges are poorly tackled. In this paper,
we assess the state of FaaS in open-source community with a study on almost 2K real-world serverless applications. Our results
show a jeopardized ecosystem, where, despite the hype of serverless solutions in the last years, a number of challenges remain
untackled, especially concerning component reuse, support for software development, and flexibility among different platforms —
resulting in arguably slow adoption of the FaaS model. We believe that addressing the issues discussed in this paper may help
researchers shaping the next generation of cloud computing models.

1. Introduction

Since the introduction of FaaS in 2014 by Amazon, all major cloud service providers, including Google, Microsoft,
and IBM, have started supporting equivalent services. By now, this model is also available in a growing number of
open-source platforms such as Apache OpenWhisk, OpenFaaS, and Kubeless. Gartner has predicted that half of the
global enterprises will adopt serverless computing by 2025 [[1].

The key idea is that programmers implement one or more functions that execute in isolation based on activating
events such as HTTP requests, file uploads, or database triggers. The provider is then responsible for infrastructure
management, enabling programmers to solely focus on the application logic rather than on resource provisioning.
Along with securing scalability, this approach reduces costs because charges are based on the actual resources that
an application consumes, spawning less functions if the load reduces. The FaaS approach, with fully automatic
infrastructure management, and a truly pay-as-you-go, up and down scaling mechanism, appeared to finally fulfill the
original expectations around cloud computing’s transparent, on-demand provisioning [2].

A closer look indicates a more articulated reality. Despite the name suggesting that serverless functions are indeed
Jjust functions executed in the cloud, serverless applications have more diverse characteristics and requirements than
the applications developed using traditional cloud models, leading to subtle issues such as unpredictable performance
and cost [3}4}15], 1ack of tool support for testing and debugging [6, 7], and vendor lock-in [8]]. These issues encouraged
researchers and providers to propose a variety of solutions to address the challenges introduced by FaaS [9, (10, [11]].
Yet, a recent study on serverless application development [[12] reports that programmers still struggle to adopt the
FaaS model due to its immature ecosystem — lacking support for common application implementation tasks such as



package integration and function invocation as well as low-level development such as provider, function, and resource
configurations.

The growth of attention to FaaS and the challenges mentioned above demand for a reality check on the adoption
of this model and a better understanding of the FaaS ecosystem. In this study, we inspect a snapshot [13]] of about 2K
open-source real-world serverless applications to investigate the main technological and architectural characteristics
of these applications, and answer the following research questions regarding open-source FaaS software: RQ1: How
has the popularity of FaaS been growing since its appearance? RQ2: How are applications that adopt the FaaS model
implemented in practice? RQ3: How are the programmers mitigating the current limitations of FaaS? RQ4: What are
the use cases currently targeted by FaaS?

Our work indicates that despite the increasing offer of FaaS services by cloud providers, this model is still strug-
gling with fundamental issues. Among other results, we have found that (RQ1) despite the growing popularity of
FaaS in recent years, few already mature projects adopt this model, due to several technological and design chal-
lenges concerning migration. Besides, component reuse across projects is alarmingly modest, depicting an ecosystem
(community-driven repositories of reusable components, open marketplaces) that is still in its infancy. (RQ2) The
flexibility in software development that is possible in principle — multi-language application, just to mention one
aspect — is not exploited in practice — Node.js and Python cover 92% of serverless software. This is likely due to
a mismatch between the technology commonly used in microservices (e.g., JVM, with high start up time) and the
FaaS execution model (cold start for every function). (RQ3) Support for the development process is severely lacking,
with developers systematically adopting proprietary plugins and external services for local integration testing, secu-
rity management, and function orchestration. (RQ4) The stateless nature of FaaS, the limited amount of dedicated
memory, and short-lived functions limit the use cases of FaaS to mostly non-memory-intensive web services and data
processing. We conjecture that the issues above constitute a significant barrier to entry for the adoption of the Faas
model, explain its limited success, and constitute a burning priority for the research community in the next years.

As of October 2022, GitHub, with more than 101 Mﬂ programmers and 42ME]public repositories, is the largest
collection of open-source projects. We believe that a dataset that takes a snapshot of all available projects of a
particular class in GitHub is representative of how a technology is being used in practice. In this study, we focus
on open-source applications. While a generalization to close-source projects would require further investigation, we
believe that the results presented here can guide future research that aims to better understand the the entire FaaS
ecosystem. For example, a previous study [14] projects from GitHub indicates that the open-source nature of the
application does not impact the size of the project and the team size. As we consider such features—among others—
in our investigation of serverless applications (Section[4.T)) we expect that the results provide a valuable indication for
close-source projects, too.

To the best of our knowledge, this is the first study on FaaS targeting the source code of serverless applications and
the largest study on real-world serverless applications to date. We provide implications of our results for researchers,
programmers, and serverless providers. The software and the analysis developed for this study are publicly availableﬂ

2. Background

This section introduces FaaS along with an example of a serverless application in the FaaS model.

2.1. FaaS in a nutshell

Cloud computing refers to the combination of hardware and system software in the data centers and the appli-
cations that they offer as a service [15]. Depending on the abstraction model, software as a service, platform as a
service, or infrastructure as a service can be offered to clients [16]. With the growth of cloud computing, an increasing
number of programmers migrated from physical machines to virtual ones to scale their applications in response to the
changing requirements. Even though the virtual resources drastically minimize infrastructure maintenance and the
pay-per-use model significantly reduces the operational costs, infrastructure provisioning is still required to manage
the virtual machines [17].
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A recent newcomer in the line of cloud computing models is the FaaS model for serverless computing [18]]. The
term serverless computing was initially introduced as a processing or networking model that does not use an actual
server to operate, such as peer-to-peer software or client-side only solutions [19}[20]. With the rise of cloud computing,
the term serverless shifted to abstracting server management away from programmers, such as the case of software as
a service [21]]. In recent years, FaaS has rapidly become one of the most popular models of serverless computing — in
a way that these two terms are often used interchangeably.

The FaaS model of serverless computing refers to server-hidden solutions that employ an event-driven paradigm
to trigger stateless functions [18]]. A serverless application includes services composed of functions that are managed
by providers and triggered by events. The services are units of configuration where function properties — such as their
triggering events, resources and security concerns — are defined. Event triggering for the functions can be due to a
scheduler, to an HTTP request from an Application Programming Interface (API) gateway, or to various event sources
such as database triggers or message queues — depending on the events supported by the provider.

Leaving the management of functions into the hands of the provider enables autoscaling that not only eases the
development and maintenance of the serverless applications but also reduces costs by scaling idle instances to zero
when they are not required. Yet, autoscaling — likely most important characteristic of FaaS — can result in a dra-
matic reduction of the performance and utility of serverless applications [4]. Autoscaling requires applications to be
stateless. Therefore, in a serverless application, the state of a function is not preserved through multiple executions.
There is also a possibility that different functions of an application do not execute on the same machine. As a result,
applications require to use external shared storage systems such as Amazon Simple Storage Service (S3) for exchang-
ing intermediate data [22]. Obviously, communicating through an external storage system is slower and costlier than
point-to-point message exchange.

Another consequence of autoscaling is that in an application with several functions, most dependencies are only
available at runtime. As a result, local integration testing and debugging can be impossible in particular cases [8]].
Even though a single function can be unit tested locally before deployment, there is still a lack of tool support for
testing, debugging and continuous integration of serverless applications with more than a single function [6,[7]. Other
characteristics of serverless applications, including delays caused by the time needed for the container starts (cold
start latency) [5], complex triggering processes [3l], and limited lifetime of functions [4] can also significantly impact
the performance of serverless applications, making it harder to predict than traditional cloud solutions.

2.2. Example of a Serverless application

The overall procedure of developing a serverless application from scratch — with minor variations in implemen-
tation details for each serverless platform — consists of three main steps: (1) Configuration of the environment and
resources related to FaaS using the cloud console or a definition file written in a data serialization language such as
YAML, (2) Implementation of functions with a focus on the application logic, and (3) Deployment of the application
to a platform [12].

service: simple-clock

1

2

3 provider:

4 name: aws

5 runtime: python3.7

6 region: us-east-1

7 timeout: 3

8

9 functions:

10 currentTime:

11 handler: handler.getTime
12 events:

13 - http:

14 path: ping
15 method: get

Listing 1: Configuration of a serverless service

We present an example of a clock serverless application deployed using the Serverless Frameworkﬂ the open-
source tool used by the applications in our dataset. This application includes a single service and a single function.
The configuration file of the simple-clock service is in Listing[T} The list of available properties for a service mainly
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depends on the features supported by the provider. These properties can range from the details of function deployment
to the access management and specification of resource requirements.

The provider property (lines 3 — 7) specifies the cloud provider that the Serverless Framework uses to deploy
the functions. The function will be deployed to Amazon Web Services (AWS) instances in the US-east region with
a Python runtime and maximum of 3 s execution time. The AWS credentials are required so that the Serverless
Framework can have access to creating and managing resources. The functions property (lines 9 — 15) includes
declarations such as the name of the functions, their handlers, runtimes, and triggering events. This service contains
only a function named currentTime. The handler for this function is the getTime method triggered by a HTTP request.
The handler for the currentTime function is in Listing 2] The getTime method (in Python) simply returns a JSON
object with two variables, a status code and a message with the current time.

1 import json
2 import datetime

def getTime (event, context):

4
5 clock = datetime.datetime.now().time ()

6 body = {

7 " ": "Current time is :" + str(clock)
8 }

9

10 response = {

11 " ": 200,

12 " ": json.dumps (body)

13 }

15 return response

Listing 2: A serverless function handler

Although the name of the function is currentTime, the HTTP API endpoint is exposed as ping; Therefore, the
endpoint can be directly invoked with a HTTP request using a tool such as curl. The URL needed for the HTTP
request is assigned and sent back to the programmer by the provider as the result of the deployment.

3. Study Design

In this section, we describe our data source in detail and we present the methodology we follow to answer them.

3.1. Data source description

This study is focused on open-source projects. We define “open-source” projects simply as the projects that their
source code is publicly available, without considering the dependencies on third-party resources or issues related to
licensing management. We used an existing dataset [[13] of 1,877 real-world serverless applications extracted from
GitHub. The dataset consists of serverless applications with at least a serverless function, a specific provider, and
active contributors for a project lifetime of more than a year. The providers for these applications are AWS, Microsoft
Azure, Google Cloud Platform, Apache OpenWhisk, Cloudflare, and Others, and the applications are developed using
different programming languages such as Python, Java, Ruby, and JavaScript.

The fundamental difficulty of creating such a dataset is distinguishing serverless applications from others. One
can search for serverless applications using keyword search. Although, the presence of a keyword does not guarantee
that an application is serverless. Analogously, an application may be serverless without containing a specific keyword.
Alternatively, one can search for serverless applications supported by each provider based on each provider’s specific
serverless configuration file. Although, the serverless configuration files are hardly distinguishable from other cloud
setups. For example, one of the default serverless configuration files in AWS is index.js. In response to creating
function event in Lambda console, AWS creates this file for Node.js serverless applications to generate a handler
functionﬂ In October 2022, there were more than 306 M index.js files on GitHub, most unrelated to Serverless
applications. To mitigate these issues, the authors of [[13] extracted GitHub projects developed using Serverless
Framework and filtered them against the empty, toy, immature, and inactive projects. Serverless Framework requires
applications to have a configuration file exclusively for serverless applications — with the same default name across
different providers and platforms — making the search for these applications feasible.

Shttps://docs.aws.amazon.com/lambda/latest/dg/lambda-nodejs.html
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The challenges of identifying serverless applications and accessing their source code led us to limit the scope
of this study to open-source serverless applications deployed using Serverless Framework. Therefore, self-hosted
solutions that do not require any automation deployment tool are excluded from our dataset. For the rest of this paper,
when we mention serverless applications, we point to the projects publicly published in GitHub and automatically
deployed using Serverless Framework.

We believe that the dataset is representative of the domain for two reasons. First, according to a study on server-
less frameworks [23], Serverless Framework, with the highest number of supported providers like AWS, Microsoft
Azure, or a Kubernetes-based solution like Kubeless, and with the security, deployment, testing, and monitoring of-
ferings, is the most extensive framework. Second, Serverless Framework, with more than 43 K GitHub stars and 15
M downloads, is the most popular open-source serverless deployment automation tool to date (reportedly 90% [24]).
Therefore, the applications developed using this framework are de-facto representative of the serverless applications
supported by each provider. In addition, we argue that using a particular framework for deployment does not affect
the implementation of these applications since the configurations of a serverless application depend on the adopted
provider — not the adopted framework. Serverless Framework is only an automation tool that facilitates easier deploy-
ment of serverless applications across multiple vendors by providing a unique configuration file. This is while the
configuration of the application is dependent on the properties that each vendor supports.

3.2. Code repository analysis

The dataset includes the URLSs of the repositories, the cloned version of the repositories from GitHub, and their
git commit history. To discuss RQ1, we used the git commit history to access the dates that different files were added
to a project and the number of contributors to each project. We also extracted the meta-data of each project using the
mercy-preview media type provided by GitHub API to know about the number of GitHub stars and licenses for each
repository.

We used Python scripts to automatically extract the related information for answering RQ2 from the serverless
configuration files. The configuration file of a serverless application includes deployment parameters such as the name
of the provider and the programming language of the serverless services, and the function details such as the triggering
events. We used clocﬁ] to know about the files in the repositories and the lines of code based on each programming
language.

To answer RQ3, we used Python scripts to extract the external resources and plugins from the configuration files.
To get the runtime dependencies of Python projects, we used pipreqﬁ] that generates the pip requirements.txt file based
on the imports of a project. We used npm—lsﬁ to get the list of installed packages in a project for Node.js dependencies.

For answering RQ4, we used the meta-data of each repository that includes the topics and description of each
project. We manually checked the readme files and Github repository descriptions of each repository along with a
superficial inspection of the source codes to know about the potentials and purposes of serverless components in every
project.

4. Results and Implications

In this section, we present the main findings of our study for each of the RQ1-RQ4 and we discuss their implica-
tions for researchers, programmers, and serverless providers.

4.1. Popularity of FaaS

Schleier-Smith et al. [2] estimated that serverless computing would evolve to dominate cloud computing. To
verify this hypothesis in the open-source community, we consider the adoption rate of FaaS, the migration rate to
FaaS, contributors to each project to estimate the popularity of FaaS among industrial projects, and stars and licenses
to investigate the popularity of FaaS as a reused-based ecosystem.

Figure [1| shows the creation date of each repository and the release date of the major serverless providers. Since
all the applications in our dataset are developed using the Serverless Framework, we consider the release date of this

Shttps://github.com/AlDanial/cloc
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framework, October 2015, as the starting point for our analysis. More than 50% of serverless applications are created
since 2018, indicating the rapid growth of this model in recent years. Instead, less than 15% of the repositories
were created before October 2015. Interestingly, such projects have started as non-serverless projects and adopted
the FaaS model later on, after the introduction of the Serverless Framework. We extracted the time required for
each project to add the first serverless feature after the first commit to find the projects that migrated to or adopted
the FaaS model sometime after creation (Figure[2). Almost 45% of the projects are born as serverless applications.
Although nearly 40% of the projects migrated to or adopted the model more than one month after creation, the
number of already mature projects that adopted this model is modest, despite the claims about potential improvement
in cost and maintenance/operation effort. The low number of migrations is most likely due to the multiple design and
technological challenges even when migrating simple use cases to a FaaS model [12} 23]

To evaluate the team size of the projects developing serverless applications, we extracted the number of contribu-
tors to each project (Figure 3). About 82% of the projects are developed within small groups of less than six people,
and only less than 1% of the projects belong to large groups — more than a hundred programmers. Inevitably, these
numbers are affected by the fact that not many companies publish their projects on GitHub. A previous study [26]
shows that the average team size for developing software in industry-type projects is 8.16 members — almost three
members more than the average team size of more than 91% of the projects in our dataset, which is 5.5 members.
Compared to individual programmers and small groups, large organizations are even more concerned about migration
challenges due to the high cost, long duration, and involved organizational restructurings [27]]. These challenges can
be a major factor for the relatively lower interest of teams with larger size to this model.

To accelerate the adoption of FaaS, researchers may further investigate the migration barriers to characterize the
architectural changes required for converting a monolithic or microservice-based system to a serverless application. In
addition, serverless applications typically contain multiple components that require deployment into distinct environ-
ments, testing in combination with each other, and clear identification when an error arises. Serverless providers can
help with the adoption and migration process by automating the continuous integration and continuous deployment
pipelines, supporting integration testing and debugging tools, and improving monitoring services [28} [6} 29].

We investigated GitHub stars to estimate the maturity of serverless applications (Figure ). Almost half of the
serverless applications do not have any GitHub star, and only less than 5% of the projects have more than a hundred
stars. A former study reveals that three out of four programmers consider the number of GitHub stars a criterion
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for deciding to reuse a GitHub project or to contribute to it. This result, together with the low number of GitHub stars
for the serverless projects, indicates the low potential for code reuse in the current state of the serverless ecosystem.

From a legal perspective [31], the open-source community depends on licensing for redistribution, integration,
and reuse of existing code. To know more about the potential for component reuse enabled by project licensing in
serverless ecosystem, we extracted the licenses used by each project (Figure [5). More than half of the projects come
with no license, meaning that all rights are reserved, and the projects are not open-source or available for reuse [32].
Yet, 37% of the projects are under the MIT, Apache-2.0, and BSD-3-Clause licenses, three of the most permissive
ones [32].

Although FaaS has been introduced as a general-purpose abstraction [33]], the low potential and legal possibilities
of component reuse in this ecosystem is a surprising finding that systematically leads to application-specific solutions.
This characteristic indicates that the state of FaaS is still a long way from defining a reuse-based ecosystem in the
style of, e.g., Maven Java packages. The efforts to address these issues are in their early stages: the AWS Server-
less Application Repository (SARf] has been recently proposed as a managed repository to store and share reusable
serverless components. In addition to contributing the best practices to develop serverless applications, we believe the
attempt to share these components goes in the right direction by motivating programmers to develop applications with
use cases that will significantly contribute to the growth of the serverless community. Yet, we argue that the ultimate
solution for this issue should be community-driven repositories managed by independent parties.

4.2. Implementation of serverless applications

Designing a serverless application is challenging due to the several technological and architectural choices such
as the serverless provider, the programming language, the workflow and granularity of functions, and the selection of
triggering events [12]. We study the most popular approaches to develop a serverless application and investigate the
factors affecting the decision-makings.

Starting from the most popular technologies (Figure [6), AWS, which provides the FaaS offerings of 96% of the
applications in our dataset, is by far the most popular serverless provider. The predominance of AWS is also reported
in a previous study [34]. We believe that this dominance is influenced by the maturity of the platform and by the
variety of the supported services [35]. Other popular providers that, however, see much lower adoption are the Google
Cloud Platform followed by Apache OpenWhisk — an open-source platform that has been a pioneer of FaaS.

According to our results[4.] the cases of migration of already mature projects to the FaaS model are quite limited.
One of the main issues in this context, is the vendor lock-in, introduced by the adoption of serverless providers,
that affects the applications in various dimensions such as portability, implementation requirements, and architectural
designs [25]. Our data clearly indicate that AWS remains the technological leader of the FaaS ecosystem. We argue
that the dominance of a single technology worsens the lock-in problems of by limiting the programmers to specific
services and offerings. In addition, the risk and uncertainty of depending on a third party as a serverless platform are
high, particularly in industrial projects. [36]. These problems can be tackled by adopting comprehensive open-source
serverless platforms that enable programmers to have more flexibility in their decisions. Although a few mature open-
source platforms such as OpenFaaS with more than 22 K GitHub stars and Apache OpenWhisk with more than 5 K
GitHub stars exist, they either introduce infrastructure provisioning challenges to the system due to the self-hosted
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nature of these platforms, or they force the usage of a cluster manager such as Kubernetes, that introduces yet another
platform to the project and adds up to the cognitive overhead[]ﬂ

Serverless platforms support several programming languages by providing runtimes. Each runtime supports a
single version of a programming language, multiple versions, or even multiple programming languages. Figure
shows the distribution of language runtimes for the serverless services. Node.js and Python, with more than 92% of the
services, are the most popular, followed by Java (2.7%). Some cloud providers, such as AWS, allow programmers to
use custom runtimes. The provided runtime in less than 1% of the services refers to this case. The significant difference
among the values can be explained through the results of previous studies [37,[38]] that show the choice of the language
ultimately affects cold start latency; For example, in AWS, JavaScript and Python have much lower start latencies than
other programming languages such as Java. This issue has been tackled by recent approaches [39} 40| [41]] to mitigate
the cold start problem — these soluations may eventually lead to a higher adoption of the other programming languages.
Besides, there is a considerable difference between the numbers of packages related to serverless computing provided
by different language runtimes. As of July 2021, there are 4,473 JavaScript packages on Node Package Manager
(npmﬂ tagged with “serverless” that ease the development of serverless applications, from enabling programmers to
run AWS functions locally{]ZI to solutions for speeding up cold startﬂ With the same tag, we found 546 packages
on Python Package Index (PyPi and 134 artifacts on Maven repositorie explaining the predominance of Node.js
among popular language runtimes.

Serverless applications can provide independent services, and each of these services can include several functions.
Programmers can implement every single service and function using the language from the range of the supported
runtimes that better targets the purposes of the application as well as the required throughput [42]. Yet, about 10%
of the applications in our dataset provide more than a single service, and more than 85% of these multi-services
applications are developed using the same language for all services. Similarly, only 1.5% of the serverless services in
the applications contain runtime separate specifications for each function — the remaining are single-runtime services.

Even though FaaS theoretically enables individual programmers to contribute to collaborative projects with the
programming language in which they are most productive, most serverless applications in our dataset are developed
using a single language runtime. This result might be affected by the fact that we considered each application in
our dataset as a monorepo. Therefore, we cannot generalize the result to the applications that span over several
repositories. Even though the team expertise and required integration effort have significant effect on the choice
of programming language, we still believe that programmers will have more flexibility to choose the programming
language once they do not have to worry about cold-start latency. Various techniques already exist to speed up function
start-up. Researchers can help this process with further studies on reducing start-up latency, e.g., to reuse existing
execution environments for running several functions or to pre-allocate and pre-warm such environments [41} 139} 43].
Serverless providers can help by improving the start-up time of the less popular (in FaaS) language runtimes, and
programmers can accelerate this process by improving the support for the FaaS model in different language runtimes
via developing serverless related packages and adding them to the package manager of each runtime.

Project size heavily influences the effort to develop software, as well as maintainability after development [44]].
Despite the limitations, Lines of Code (LoC) is still a widely used metric for project size [45 The LoC metric
typically counts every physical source line of code in a program, excluding blank lines and comments. A major
limitation of LoC as a metric is the case of different programming languages. To mitigate this issue, we selected
the serverless applications developed using the four most popular language runtimes (Node.js, Python, Java, and Go)
in the FaaS ecosystem to investigate their sizes individually. We considered the language runtimes specified in the
serverless services as the runtime of the application. For applications with multiple services in different languages,
we considered each service an individual serverless application.

Figure[I0[a) shows the cumulative distribution of LoC per serverless application based on language runtime. More
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Figure 10: Applications’ sizes

than 95% of the applications developed using Node.js, Python, and Go consist of less than 100K LoC. For Java, this is
the case in all applications in the dataset. Based on the project size classification reported by Aguilar et al. [46], these
numbers indicate that serverless applications typically have a medium to small size; consequently, they are expected
to require less than 60 months and fewer than 10 team members for development. Figure[I0[b) considers applications
with less than 10K LoC. More than 90% of these applications developed using Node.js, Python and Go have less than
3K LoC, while this number is 70% for Java applictions. A former study [47] concluded that more LoC are required
for a Java function compared to JavaScript or Python. Our results confirm a similar pattern in the FaaS ecosystem.
Often, more LoC are required for a serverless function in Java compared to Python and Node.js — possibly another
factor that leads programmers to choose these language runtimes in the serverless configuration.

Figure |8 shows the number of functions per application. More than 94% contain ten functions or less, a value
consistent with previous findings [8| [34]]. We also investigated the number of functions per service of a serverless
application. About 58% of these services define a single function. More than 99% contain twenty functions or less.

We believe that the low number of functions per service and per application stems from the difficulties program-
mers encounter when designing the workflow of serverless software [48] 49]. The workflow specifies the order in
which a pool of functions should be executed (chaining, branching, or parallel), and it can be defined via functions
that orchestrate other functions or via external schedulers [50]. In addition to challenges like failure handling and
process monitoring, designing the workflow for complex applications where functions require access to various parts
of a shared state can be particularly cumbersome due to the stateless nature of FaaS [48]. Therefore, programmers
are forced to introduce orchestration services to coordinate serverless components [50, |48]. Typically, each serverless
provider has its own serverless orchestration service (e.g., Step Functions for AWS) with a specific programming
model (e.g., Amazon States Language). In addition to further exacerbating lock-in, these platform-dependent coordi-
nation services add the cognitive overhead of learning new technologies to the adoption and migration process. These
issues suggest the necessity of further research in the direction of an open-source, platform-independent programming
model and orchestration service that can be used across platforms.

The correct granularity of serverless functions is still disputed. The current views cover a wide range from con-
sidering single methods as a serverless function to wrapping a full microservice into a serverless function [51} [34]].
Following the results from a previous study based on programmers interviews [8]], we also observed two common pat-
terns for implementing functions based on their triggering events (Figure[9). The most common case is that functions
are fine-grained as one function per API endpoint such as HTTP and WebSocket. Alternatively, there is one function
per external resource such as Amazon Simple Queue Service (SQS). Figure[TT|demonstrates the methods used by the
HTTP API endpoints. The results show that more than 97% of these endpoints are as fine-grained as individual HTTP
requests — about half of them being the get request.

We selected the serverless applications developed using Node.js and Python with less than 1K LoC to study the
number of functions in each and investigate patterns in the size of each function (Figure [I5). While there are several
applications with less than 200 LoC and more than four functions, most have more than 800 LoC and only a single
function. Although a previous investigation [47] reports that the average LoC for a function in JavaScript is 47,
serverless programmers do not seem to stick to a specific size spectrum — our samples cover a broad range from a few
LoC to hundreds. Yet, we should emphasize that this result is affected by the programming style and the usage of
dependencies in each application, which are not considered in this study.

In Faa$, the infrastructure is hidden from the programmers. Yet, programmers can specify the maximum memory
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size required to deploy their functions within a specific range supported by the provider as well as the maximum time
function is allowed to run before getting stopped (timeout). The distribution of memory sizes and timeouts required by
the functions are in Figure[I2]and Figure[T3] We considered the default size proposed by the provider for the functions
that do not specify a memory size or timeout. For example, the default memory size and timeout for functions are
1024 MB and 6 s in AWS, 256 MB and 60 s for Google Cloud Platform, and 512 MB and 60 s for OpenWhisk.
Roughly 97% of the functions require 1 GB of memory or less for deployment. 1 GB of memory is enough for simple
web servers such as those with 1K or less visits per day and a couple of websites, or simple word processing tasks.
The limited memory required by the majority of functions suggests that serverless functions are typically expected to
perform non-memory-intensive operations. Yet, serverless applications can still perform memory-intensive operations
by parallel execution of lightweight functions. Similarly, the maximum execution time required by about 85% of the
functions is 30 s, with more than 65% requiring 6 s or less, showing that serverless functions are typically used for
relatively short-running tasks.

The limited amount of time allowed for executing serverless functions and the relatively small amount of memory
for deploying them raise the need for decomposing functions and using external storage resources in data-intensive and
computation-intensive scenarios [12]. Besides increasing the complexity of the application, function decomposition
leads to a higher number of functions that complicates workflow management. Also, external storage negatively affects
the cost and performance of the application, forcing programmers to avoid the FaaS model when cost and performance
are hard constraints. Although the bigger memory size increases the cold start latency [[7] and the longer timeout
makes scaling and cost management more difficult [48]], serverless providers can still consider loosing the restrictions
on execution time and memory size by improving start-up time [41], 39} and using fine monitoring of servers to
increase the applicability of FaaS, ultimately broadening its adoption. Along with eliminating the restrictions on the
upper bounds, Google Cloud Platform and Apache OpenWhisk can reduce their default timeouts to a lower number
due to the high demands for short-lived functions (6s).

4.3. Mitigating the limitations

We observed that one common solution in our dataset to deal with the challenges of FaaS such as state man-
agement, security, and vendor lock-in is the use of external resources and plugins. Despite the popular belief that
serverless applications are mostly used in conjunction with backend as a service resources [52} [8]], several studies re-
veal that this is not the case in practice, most likely due to the latency introduced by an external service [53}[54]]. Only
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Table 1: Popular external resources

Resource Use case #Applications  Occurrence %
DynamoDB database 311 16.6%
S3 storage 168 9.0%
IAM authorization 84 4.5%
API-Gateway  event source 72 3.8%
SNS event source 53 2.8%
SQS event source 46 2.5%

Table 2: Popular serverless plugins

Plugin #Applications  Occurrence %
serverless-offline 502 26.7%
serverless-webpack 320 17.0%
serverless-python-requirements 204 10.9%
serverless-domain-manager 131 7.0%
serverless-dynamodb-local 94 5.0%
serverless-dotenv-plugin 86 4.6%

28% of the applications in our dataset define bindings to a backend as a service resource. Table [T] shows the most
popular external resources used in the dataset. These values show that programmers handle the stateless nature of
serverless applications by sharing state via Amazon DynamoDB for relational data and Amazon S3 for Binary Large
OBjects (BLOB). Less than 10% of the applications use Amazon API-gateway, SNS, or SQS to manage communi-
cation between components and function invocations. Although eliminating the need for infrastructure management
shifts the burden of handling security updates for operating systems and language runtimes from programmers to
serverless providers, the necessity of using external storage systems for sharing state and the potential to receive
function invocations from various types of event sources still expose serverless applications to security risks [2, 53]].
Even though basic Amazon Identity and Access Management (IAM) utilities is by default included in AWS supported
applications to manage resources, specific add-ons need to be added to the configuration file to enable the custom
management of the roles and policies for each function. These resources are used in less than 5% of the applications
to create custom control for accessing AWS services, resources and API endpoints. While these external resources
help to tackle state management, communication, and security issues, they also introduce a significant cognitive over-
head, performance latency (discussed in Section [2.1]), and cost that can be among the reasons for the low adoption of
such services.

Plugin software architectures are often used to compensate missing features in the underlying framework [535].
More than 62% of the applications in our dataset use at least one plugin as a local solution developed by the open-
source community for extending the functionalities of the framework (Serverless Framework in our dataset). Table[2]
presents the distribution of widely-used plugins. The most popular is serverless-offline — more than 26% of the
occurrences — that enables programmers to develop a serverless application locally using the AWS FaaS emulation and
API-Gateway. Programmers often use this plugin to speed up the development cycle, mitigating the limitations of the
FaaS model, such as lack of tooling for integration testing and debugging. The serverless-webpack is another popular
plugin that bundles the serverless functions with Webpac an open-source static module bundler and dependency
manager for Node.js applications. When the plugin is included in a serverless service, it reduces the size of the
function packages by bundling the code with the dependencies needed to run each individual function, resulting
in faster deployments that use less memory. The serverless-python-requirements plugin does a similar task for the

Thttps://webpack.github. io

11


https://webpack.github.io

Table 3: Popular runtime dependencies

Runtime  Dependency Use case Occurrence %
Node.js aws-sdk AWS toolkit 17.1%
Python boto3 AWS toolkit 13.7%
Node.js lodash utility for FP 9.7%
Node.js express web framework 8.4%
Node.js requests HTTP library 7.7%
Python requests HTTP library 6.7%
Python Flask web framework 2.9%

Python applications. The popularity of these plugins suggests the lack of tooling for managing the dependencies of
serverless services with multiple functions. A total 7% applications use the serverless-domain-manager plugin to
manage custom domains with API gateways and reduce the challenges caused by the change of hostnames in case of
redeployment. The serverless-dynamodb-local is used by 5% of the applications to run Amazon DynamoDB locally,
lower latency, as well as help with integration testing and debugging. To reduce the configuration effort, more than
4% of the applications use serverless-dotenv-plugin, a plugin that preloads environment variables into the serverless
configuration file.

While programmers commonly attempt to mitigate the FaaS challenges by means of external resources and plug-
ins, these approaches are platform-dependent, and they inevitably introduce their own lock-in, cost, and performance
challenges. These issues demand further research about generic and open solutions such as stateful functions [[11]
for handling shared states, defining coverage criteria [56] in integration testing, for the deployment of within secured
units such as Intel’s SGX [57, I58] to run data-sensitive risks, and for automating dependency management [S9]] of
dependencies.

In FaaS, programmers can define packages for frequently used functionalities. Serverless applications can then
list such packages as runtime dependencies. Table [3|shows the most popular dependencies of Node.js and Python in
serverless applications. In more than 30%, developers use the aws-sdk or boto3 packages from the AWS Software
Development Kit (SDK) to programmatically create, configure, and manage the AWS backend as a service resources.
AWS already includes boro3 by default in Python runtimes. The popularity of aws-sdk suggests that AWS can also
include it by default in their supported language runtimes to reduce the size of runtime dependencies and improve
start-up latency during the deployment of serverless applications. Almost 10% of the applications use lodash that
enables programmers to develop more concise and maintainable applications in the functional paradigm. This num-
ber confirms the results from a previous study [52] that functional programming is a relevant programming model for
serverless functions. More than 11% of the applications use express or Flask to build web applications and API end-
points, and more than 14% use requests for HTTP requests. These results indicate that web services and development
of the API endpoints are among the most popular use cases of serverless applications. We discuss these use cases in
more detail in the following section.

4.4. Use cases of FaaS

Since FaaS is relatively new, we still lack a complete overview of its application targets. In particular, it is
unclear whether the model can be adopted in conjunction with other models that require explicit resource provisioning,
whether it is widely applicable, like other cloud models, or it serves a narrower scope, and whether it is adopted in the
presentation layer (frontend) or in the data access layer (backend).

We randomly selected 1K applications in which we manually investigated the role of the serverless services to
gain a better understanding of the areas serverless applications can serve. In roughly 64% of the applications, all
components follow the FaaS model. Yet, in about 35%, serverless services are developed in conjunction with the
services that use traditional cloud-based or server-centric infrastructure. In more than 50% of the applications, the
serverless part concerns the backend services, and there are only about 5% of the applications in which the FaaS
model is adopted only for the frontends. Cold start latency hinders the use of serverless functions for interactive user
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interfaces and can be one of the factors affecting the low number of frontend adoption. Another factor can be the
restricted execution time for running large dynamic frontend applications. Yet, serving static web pages potentially
can be a use case for serverless applications which was not observed as a popular choice in our dataset.

We classified serverless applications into seven categories, and we assigned each of the applications to only one
class of: web service, messenger bot, data processing, image processing, internal tooling, Internet of Things (IoT), or
others. We considered the applications related to developing a website for the Internet or developing an API for a web
server or a web browser as a web service. The messenger bot category refers to the applications developed as a bot for
the services such as Slack and Telegram. We counted the applications providing an API for a database or translating
the format of data to another format as a data processing application. The applications that perform a task such as
image resizing are in the image processing category. The internal tooling category refers to applications for personal
or organizational purposes such as reminders. The applications related to smart homes are in the loT category. The
other category covers the rest.

The use cases of FaaS are in Figure Interestingly, roughly half of the applications are web services with a
serverless service as their backend. The resource requirements of web services vary a lot in different situations. For
example, in a user-based web service such as a commercial website, the number of user requests can significantly
increase because of a newly released product, or it can majorly decrease at specific times of a day. Autoscaling in
FaaS helps with handling peak traffic and reducing costs by optimizing resource usage when the number of requests
is low. Also, FaaS can reduce the latency and improve the performance of a web service by deploying the services
geographically close to the region of users. Even though serverless functions similar to traditional cloud offerings
are still geographically localized and they need to be deployed in specific regions — typically with different pricing
— they can still support optimal redundancy and replication by specifying different deployment models. The other
popular use case of FaaS, with an adoption rate of almost 20%, is data processing. FaaS features both autoscaling and
event-based activation, that makes it a good fit for processing and analyzing real-time streaming data.

Our results indicate that adopting serverless computing does not have to be a binary decision. Depending on the
workload and use case, the FaaS model can be integrated with or connected to traditional architectures to complement
them. Serverless functions are ideal for short-running and non-memory-intensive tasks. The combination of tradi-
tional models and FaaS can be particularly beneficial when programmers choose resource provisioning and potentially
higher cost over the burden of coordinating several serverless functions created from decomposing long-running op-
erations. Researchers can support serverless programmers to make such decisions with further studies that improve
the predictability of serverless applications’ performance and cost [60].

We believe that the most common use cases of serverless applications are another significant factor, in addition
to the ones mentioned in Section [4.2] affecting the popularity of Node.js and Python. According to our results, web
services and data processing are two of the most popular use cases of serverless applications. It is clear that Nodej.js
is a full-stack technology of choice for web services development, and Python is among the preferred languages for
data science [61} 162]]. We argue that improvements of serverless related supported packages by the Python language
runtime can increase the use cases of FaaS for data processing.

5. Threats to Validity

The validity of this study concerns two different aspects: the validity of the data source and the validity of the
analysis.

Despite being extensive in size and variety, the data source used for this study has two main limitations [[13]]. First,
the dataset consists of projects developed using the Serverless Framework. We discussed in Section [3.1] that, based
on GitHub stars and the results of a previous studies [23| 24], the Serverless Framework is the most popular open-
source tool for serverless applications. Therefore, we believe that limiting the data source to projects developed with
this framework does not hinder generalizing the results of our study. Second, AWS plays a major role in serverless
technology, which reflects into the fact that, in the dataset, AWS projects are predominant; consequently, the analysis
can be biased towards AWS models and offerings. We discussed the dominance of AWS in the FaaS ecosystem
in Section 4.2} Therefore, we believe this leaning towards AWS is the nature of any real-world dataset containing
multiple providers and platforms.

The limitation of our analysis comes down to the results related to the RQ4, which required the author(s) of this
study to manually inspect the documentation of the projects to know more about their use cases, and to classify the use
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cases across different categories (Section[d.4). Since this activity is extremely time consuming, we decided to consider
only about half of the dataset, with randomly selected projects. While using a subset of a dataset for manual inspection
is a common practice in several surveys and empirical studies, it is worth mentioning that these classifications may be
subjective based on the understanding of the author(s).

6. Related Work

For an overview of the current research trends in this model, we refer to the ACM’s contributed article on the next
phase of cloud computing [2], to the summary of existing issues compiled during the first international workshop on
serverless computing [21]], and to the Berkeley view on this topic [33].

Some works qualitatively classify and review popular FaaS platforms combining various research methods (e.g.,
literature reviews, interviews, code inspection). Yussupov et al. [35] present a FaaS platform classification framework
obtained by reviewing academic literature and by analyzing platforms’ documentations. They used this framework
to conduct a technology review of ten general-purpose and actively-maintained FaaS platforms from both a business
view and a technical viewpoint. From the business perspective, they consider criteria such as licensing, release status,
community, and documentation while they analyze development experience, testing and debugging, code reuse, etc.
for the technical perspective. Kritikos and Skrzypek [23]] also evaluate and compare several serverless frameworks
based on criteria that map to different phases of a serverless application lifecycle.

Several studies [37, 163l 164} 165, 166, 167, 9, I51]] have evaluated the performance of FaaS solutions by running
benchmark functions on different platforms. The metrics adopted in these studies cover a wide range, including
computing time, memory footprint, network usage, and I/O consumption. Another class of studies investigates the
cost of FaaS platforms based on utilization parameters. Work in [17] presents how adopting the Lambda deployment
architecture reduces hosting costs by studying the migration of two industrial cases of early adopters. Jackson and
Clynch [42] study the impact of language runtime on the cost of serverless functions in AWS Lambda and Azure
Functions. Bortolini and Obelheiro [68] investigate the cost variations within and across FaaS platforms based on the
choice of memory allocation, FaaS provider, and programming language. The research work by Shahrad et al. [69]
characterizes the FaaS development workload of Azure Functions, from the perspective of the provider. Our study is
orthogonal to these works, as we focus on the implementation characteristics of serverless applications, regardless of
the provider’s performance and cost.

A few works have studied the common practices and challenges of implementing a serverless application from
the perspective of serverless providers and programmers. Spillner [52] investigates the evolution of Lambda func-
tions through the AWS SAR providing high-level implementation statistics on its current use. These statistics report
how functions are defined, offered, and stored by investigating the evolution of function-level metadata, code-level
metadata, and code-level implementation of Lambda functions using continuous observation, extraction, mining and
conflation of repositories in AWS SAR. In contrast to our paper, which targets various dimensions of serverless com-
puting and different providers, the work by Spillner focuses only on the evolution of AWS SAR. Eismann et al. [34,[70]
provide a picture of serverless computing, including company adoption, suitable application context, and implemen-
tation of serverless applications. In these studies, the authors analyze 32 open-source serverless projects along with
57 serverless sources including industrial sources, academic literature, and scientific computing. Compared to the
works by Eismann et al., we inspect a much larger dataset which we believe is representative of the current state of
open-source serverless applications.

Wen et al. [12] analyze 22,731 relevant questions from Stack Overflow (a question and answer website for pro-
grammers) to report on the popularity and difficulty level of FaaS for programmers. Leitner et al. [8] present the
results of a mixed-method study consisting of interviews, a literature review, and a Web-based survey to identify best
practices for building serverless applications. They collect the data based on the programmer’s experience while de-
veloping an application. Our work is methodologically different from these studies in that we analyze the source code
of open-source projects to characterize serverless applications.

7. Conclusion

This paper provides insights into the FaaS ecosystem by studying almost 2K real-world serverless applications —
the largest dataset to date. We consider various aspects that characterize FaaS, like growth rate, architectural design,
14



and common use cases. The results of our study provide the picture of an ecosystem that, despite the hype around the
FaaS model in the last few years, is still struggling with a number of basic challenges, including lack of open com-
ponent repositories, limited support for the development process, and fundamental tights to vendor-specific solutions
that inevitably introduce barriers between alternative platforms.
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