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Abstract

Decentralized applications (dApps) consist of smart contracts that run on blockchains and clients

that model collaborating parties. dApps are used to model financial and legal business functionality.

Today, contracts and clients are written as separate programs – in different programming languages

– communicating via send and receive operations. This makes distributed program flow awkward to

express and reason about, increasing the potential for mismatches in the client-contract interface,

which can be exploited by malicious clients, potentially leading to huge financial losses. In this

paper, we present Prisma, a language for tierless decentralized applications, where the contract

and its clients are defined in one unit. Pairs of send and receive actions that “belong together”

are encapsulated into a single direct-style operation, which is executed differently by sending and

receiving parties. This enables expressing distributed program flow via standard control flow and

renders mismatching communication impossible. We prove formally that our compiler preserves

program behavior in presence of an attacker controlling the client code. We systematically compare

Prisma with mainstream and advanced programming models for dApps and provide empirical

evidence for its expressiveness and performance.

The design space of dApp programming and other multi-party languages depends on one major

choice: a local model versus a global model. In a local model, parties are defined in separate

programs and their interactions are encoded via send and receive effects. In a global language,

parties are defined within one shared program and interactions are encoded via combined send-

and-receive operations with no effects visible to the outside world. The global model is followed by

tierless [19, 9, 4, 5, 11, 25, 26, 20, 27] and choreographic [13, 16, 12] languages. However, known

approaches to dApp programming follow the local model, thus rely on explicitly specifying the

client–contract interaction protocol. Moreover, the contract and clients are implemented in different

languages, hence, developers have to master two technology stacks. The dominating approach in

industry is Solidity [15] for the contract and JavaScript for clients. Solidity relies on expressing

the protocol using assertions in the contract code, which are checked at run time [1]. Failing to

insert the correct assertions may give parties illegal access to monetary values to the detriment of

others [17, 14]. In research, contract languages [10, 6, 23, 24, 8, 7, 18, 3] have been proposed that rely

on advanced type systems such as session types, type states, and linear types. The global model has

not been explored for dApp programming. This is unfortunate given the potential to get by with a

standard typing discipline and to avoid intricacies and potential mismatches of a two-language stack.

Our work fills this gap by proposing Prisma – the first language that features a global programming

model for Ethereum dApps. While we focus on the Ethereum blockchain, we believe our techniques
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35:2 Prisma: A Tierless Language for Enforcing Protocols

to be applicable to other smart contract platforms. Prisma enables interleaving contract and client

logic within the same program and adopts a direct style (DS) notation for encoding send-and-receive

operations (with our awaitCl language construct) akin to languages with async/await [2, 22]. DS

addresses shortcomings with the currently dominant encoding of the protocol’s finite state machines

(FSM) [15, 6, 23, 24, 8, 7]. We argue writing FSM style corresponds to a control-flow graph of

basic blocks, which is low-level and more suited to be written by a compiler than by a human.

With FSM style, the contract is a passive entity whose execution is driven by clients. whereas the

DS encoding allows the contract to actively ask clients for input, fitting dApp execution where a

dominant contract controls execution and diverts control to other parties when their input is needed.

In the following Prisma snippet, the payout function is a function invoked by the contract when

it is time to pay money to a client. In Prisma, variables, methods and classes are separated into

two namespaces, one for the contract and one for the clients. The payout method is located on the

contract via the annotation @co. The body of the method diverts the control to the client using

awaitCl(...) { ... }, hence the contained readLine call is executed on the client. Note that no

explicit send/receive operations are needed but the communication protocol is expressed through

the program control flow. Only after the check client == toBePayed that the correct client replied,

the current contact balance balance() is transferred to the client via transfer.

1 @co def payout(toBePayed: Arr[Address]): Unit = {

2 awaitCl(client => client == toBePayed) {

3 readLine("Press enter for payout") }

4 toBePayed.transfer(balance())

5 }

Overall, Prisma relieves the developer from the responsibility of correctly managing distributed,

asynchronous program flows and the heterogeneous technology stack. Instead, the burden is put on

the compiler, which distributes the program flow by means of selective continuation-passing-style

(CPS) translation and defunctionalisation and inserts guards against malicious client interactions.

We needed to develop a CPS translation for the code that runs on the Ethereum Virtual Machine

(EVM) since the EVM has no built-in support for concurrency primitives which could be used

for asynchronous communication. While CPS translations are well-known, we cannot use them

out-of-the-box because the control flow is interwoven with distribution in our case. A CPS translation

that does not take distribution into account would allow malicious clients to force the contract to

deviate from the intended control flow by sending a spoofed continuation. Thus, it was imperative to

prove correctness of our distributed CPS translation to ensure control-flow integrity of the contract.
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