Infrastructure as Code for Dynamic Deployments

Daniel Sokolowski
daniel.sokolowski@unisg.ch
University of St. Gallen
Switzerland

ABSTRACT

Modern DevOps organizations require a high degree of automation
to achieve software stability at frequent changes. Further, there is a
need for flexible, timely reconfiguration of the infrastructure, e.g.,
to use pay-per-use infrastructure efficiently based on application
load. Infrastructure as Code (IaC) is the DevOps tool to automate
infrastructure. However, modern static IaC solutions only support
infrastructures that are deployed and do not change afterward. To
implement infrastructures that change dynamically over time, static
IaC programs have to be (updated and) re-run, e.g., in a CI/CD
pipeline, or configure an external orchestrator that implements
the dynamic behavior, e.g., an autoscaler or Kubernetes operator.
Both do not capture the dynamic behavior in the IaC program
and prevent analyzing and testing the infrastructure configuration
jointly with its dynamic behavior.

To fill this gap, we envision dynamic IaC, which augments static
IaC with the ability to define dynamic behavior within the IaC
program. In contrast to static IaC programs, dynamic IaC programs
run continuously. They re-evaluate program parts that depend on
external signals when these change and automatically adjust the
infrastructure accordingly. We implement D¢ as the first dynamic
IaC solution and demonstrate it in two realistic use cases of broader
relevance. With dynamic IaC, ensuring the program’s correctness
is even harder than for static IaC because programs may define
many target configurations in contrast to only a few. However, for
this reason, it is also more critical. To solve this issue, we propose
automated, specialized property-based testing for IaC programs
and implement it in ProTl.

CCS CONCEPTS

« Software and its engineering — Orchestration languages;
Cloud computing; Architecture description languages.

KEYWORDS

DevOps, Infrastructure as Code, Cloud, Software Evolution, Testing

ACM Reference Format:

Daniel Sokolowski. 2022. Infrastructure as Code for Dynamic Deployments.
In Proceedings of the 30th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
"22), November 14-18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3540250.3558912

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ESEC/FSE 22, November 14—18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3558912

1775

1 INTRODUCTION

DevOps organizations unite development and operations in cross-
functional teams to improve their Software Delivery and Operational
(SDO) performance [12]. They aim at producing stable software
(Dev) with reliable operations (Ops), requiring automation along the
whole software delivery pipeline. In these efforts, the tool to auto-
mate infrastructure management is Infrastructure as Code (IaC) [22].

Early IaC solutions, e.g., Ansible [4] and Chef [7] used imperative
scripts. Later, in declarative solutions, e.g., Puppet [28], developers
only describe the desired infrastructure state, and the tool auto-
matically derives the required actions to achieve it. Declarative
IaC is often preferred because it promises better adaptability and
robustness. More recent IaC solutions focus on declarative provi-
sioning of virtualized cloud infrastructure. In AWS CloudForma-
tion [3], ARM [21], and Terraform [15], developers describe the
infrastructure in JSON, YAML, or similar tool-specific DSLs, e.g.,
HCL and Bicep. The AWS Cloud Development Kit (AWS CDK) [34]
and CDK for Terraform (CDKTF) [14] allow to generate AWS Cloud-
Formation and Terraform programs from IaC programs written in
a general-purpose programming language. Thus, they are limited
to the abilities of the underlying tools’ JSON, YAML, or HCL DSLs.
In contrast, Pulumi [26] performs the operations itself, enabling in-
tertwined IaC program execution and deployment operations. This
approach allows, e.g., arbitrary computations based on a resource’s
post-deployment configuration to configure other resources, pro-
viding a more integrated user experience. In this project, we focus
on the most recent generation of IaC solutions, leveraging (impera-
tive) general-purpose programming languages like Go, Python, and
TypeScript to declaratively define the desired infrastructure state.

The core abstraction in all common declarative IaC solutions is
the typed, directed, acyclic resource graph [44] (examples in Fig-
ure 1). Nodes are resources, i.e., deployable units like servers, files,
or policies. Arcs are dependencies, typically describing depends-on
or contained-in relationships. The arcs constrain the order in which
resources have to be (un)deployed, i.e., a resource may only be
deployed after all resources it depends on are available and must
be undeployed before any of them. E.g., a server must exist before
a file on it, and the file must be deleted before the server.

Today’s IaC solutions implement static IaC, where the resource
graph is static, i.e., the IaC program runs once, terminates, and
the infrastructure remains unchanged until the next execution. To
achieve dynamic infrastructure behavior, developers have to fall
back on external tools like CI/CD pipelines or dynamic infrastruc-
ture resources like Kubernetes operators. They either re-run the
TaC program with changed configuration or statically configure a
dynamic orchestrator. This prevents central, holistic analysis and
testing of the infrastructure configuration and its dynamic changes.

To solve this issue, we envision dynamic IaC, allowing to de-
scribe dynamic infrastructure behavior in the IaC program, i.e.,

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2911-8304
https://doi.org/10.1145/3540250.3558912
https://doi.org/10.1145/3540250.3558912

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

[Bucket |€«——— BucketObject
(a) Static website (Listing 1).

[Bucket |«—{ BucketObject |—>{ WeekdaySource |
(b) Using WeekdaySource; dynamic IaC with Dj,c (Listing 2).

RemoteConnection Infra ,—>| RemoteConnection |

Editor
| Bucket |<—| Offer Wish |<—|Bucket0bject |—>| WeekdaySource |J

(c) Decentralized and coordinated through dynamic IaC (Listing 3).

Figure 1: Resource graphs of the website IaC programs.

expressing dynamically changing resource graphs. For instance, to
efficiently use pay-per-use infrastructure, developers could define
that the infrastructure is different based on the load (i.e., an external
signal), implementing automatic reconfiguration in the dynamic
IaC program. In our previous work on automating the coordina-
tion of deployments, a topic that is motivated by our survey with
134 IT professionals [38], we already proposed an early, specialized
dynamic IaC solution [36]. In our work on how to update com-
ponents in modern distributed systems such that no distributed
transaction breaks [37], we discussed another inherently dynamic
infrastructure topic. Building upon these works, we develop the
general dynamic IaC solution D¢ (Section 4). We discuss Dj,c in
both use cases that we studied in depth (Section 5) and evaluate its
performance and benefits compared to current solutions (Section 7).

Dynamic IaC amplifies the need for easy and thorough testing
because developers have to ensure the correctness of all infrastruc-
tures their dynamic IaC program configures—in contrast to static
IaC programs, targeting only a single or few infrastructure con-
figurations. Current testing of modern IaC programs is limited to
standard unit testing (before deployment), property testing (during
deployment), and integration test (after deployment) [27]. Prop-
erty and integration testing is potentially costly and slow, and unit
testing is typically example driven and effortful.

To close this gap, we propose ProTl (Section 6), a specialized,
automated tool for property-based testing [11] (a technique pio-
neered by QuickCheck [8]) of static and dynamic IaC programs.
ProTl automatically runs IaC programs in many different configu-
rations before deployment, allowing out-of-the-box quick but thor-
ough termination testing. Further, ProTl is an easy way to check
application-specific properties in IaC programs. We plan to evaluate
ProTI on all public Pulumi TypeScript programs on GitHub, and all
IaC programs used in this project (Section 7).

2 RELATED WORK

Infrastructure as Code. Rahman et al. [29] provide a systematic
overview of IaC research. Guerriero et al. [13] discovered through
interviews that practitioners need better support and tooling for
IaC program maintenance and evolution. Various works studied
problems, code smells, evolution, and proposed linters for Ansible,
Chef, and Puppet [24, 25, 30, 31, 33, 35]. Previous IaC research is
centered around IaC solutions that focus on configuring resources
without their provisioning, meanwhile often referred to as Config-
uration as Code (CaC). This work focuses on declarative IaC for
virtualized cloud infrastructure, including provisioning.

Resource Orchestration. Weerasiri et al. [43] give an overview of
cloud resource orchestration techniques, Ranjan et al. [32] on the

1776

Daniel Sokolowski

Listing 1: Static website showing the weekday in Pulumi.!

1.1 const bucket = new aws.s3.Bucket("website", {
1.2 website: { indexDocument: "index.html" } 3});
1.3 const today = getWeekday(new Date());

1.4 new aws.s3.BucketObject("index", {

1.5 bucket: bucket, key: "index.html",
1.6 contentType: "text/html; charset=utf-8",
1.7 content: “<IDOCTYPE html>${today}™ 3});

programming of resource orchestration operations, and COPE [20]
is a distributed policy enforcement engine for resource orchestra-
tors. Plenty of industrial-grade cloud resource orchestrators exist,
e.g., Kubernetes and Mesos. Resource orchestration is about achiev-
ing infrastructure setup and changes. In contrast, IaC is about how
developers configure the infrastructure. IaC solution runtimes are
or use resource orchestrators when running IaC programs.
Modeling Languages. Wurster et al. [44] proposed EDMM as a
least denominator metamodel for IaC solutions and mapped it to
a subset of TOSCA [45]. TOSCA [23] is an OASIS standard for
cloud modeling. Bellendorf and Mann [6] provide an overview
of related research and tools. TOSCA separates static, declarative
topology (i.e., resource graph) descriptions from imperatively de-
scribed dynamic infrastructure behavior, e.g., in BPMN workflows.
In contrast, dynamic IaC with Dj,c allows defining the dynamic
behavior declaratively united with the resource graph description.
Architecture Description Languages (ADLs). ADLs on various lev-
els have been proposed, e.g., ArchJava [2] on the software compo-
nent level and ORS [19] on the service level. Other work enables
constraining such definitions [39]. ADLs allow describing and ver-
ifying architecture. However, unlike IaC, they are not executable
specifications and typically do not cover dynamic behavior.

3 STATIC INFRASTRUCTURE AS CODE

To illustrate the difference between static IaC and dynamic IaC, we
discuss a website deployment: A static HTML page that shows the
weekday hosted in an AWS S3 bucket. Listing 1 is the website’s IaC
program in Pulumi TypeScript, constructing the resource graph
in Subfigure 1a. Lines 1.1 and 1.2 define the S3 bucket hosting
the website. Line 1.3 assigns the current workday as string to the
constant today, which is used in the content of the index.html page
that is an object within the bucket (Lines 1.4 to 1.7).

After executing this IaC program, the website displays the correct
workday. However, the webpage will be wrong the next day because
Pulumi is static IaC, i.e., the IaC program executes once, terminates,
and the infrastructure does not change afterward. With static IaC,
users have two options to ensure that the website displays the cor-
rect weekday every day. First, implementing the dynamic behavior
externally, e.g., a CI/CD pipeline re-runs the IaC program daily.
This separation of static and dynamic concerns prevents a holistic
view and possibility that is beneficial to analyze and test jointly (cf.
Sections 4 and 6). Second, implementing the dynamic behavior in
infrastructure that is configured statically. E.g., AWS could offer a
bucket object resource that replaces the string $$WEEKDAY$$ in the
content with the current weekday when the object is accessed. Such

!For brevity, imports, export, and the bucket policy to allow public access are omitted.

Infrastructure as Code for Dynamic Deployments

a resource would enable the static configuration of the website, e.g.,
removing Line 1.3 and replacing the content value in Line 1.7 with
"<IDOCTYPE html>$$WEEKDAY$$". However, this approach is limited
to the dynamic behavior the infrastructure provider supports.

4 DYNAMIC INFRASTRUCTURE AS CODE

Listing 2 is an alternative IaC program for the weekday website.
In contrast to Listing 1, Line 2.2 defines a WeekdaySource resource,
providing the current weekday in its today property. Given an
implementation of WeekdaySource, Listing 2 is a valid Pulumi pro-
gram and configures the static infrastructure in Subfigure 1b. The
apply method on resource outputs provides access to their values,
which are only available after the resource is deployed. E.g., apply in
Line 2.3 provides the weekday value in the inline function (Lines 2.3
to 2.6). Listing 2 does not generate the dynamically changing value
but retrieves it from a resource. That resource is long-living and
knows when the weekday changes. Unfortunately, with Pulumi,
we can only retrieve the value once, and then the IaC program
terminates, preventing reactively updating index.html.

To solve this issue, we propose Dj,c, an extension of Pulumi
TypeScript for dynamic IaC. In Dj,c, resource outputs are not lim-
ited to values that are resolved once. Instead, they are streams, i.e.,
values that can change over time. IaC programs in Dj,c are con-
tinuously running—in contrast to static IaC programs in Pulumi
that run once and terminate. On the code level, Dj,c evaluates and
deploys the whole program once, like Pulumi. However, unlike
Pulumi, Dj,¢c continues to watch for updates on resource outputs.
Whenever a resource output changes, Dj,c re-evaluates the parts
of the TaC program that depend on the updated output, resulting in
an updated resource graph, Dj,c applies to the infrastructure.

This design yields that Listing 2 is already a valid dynamic IaC
program for Dj,c. Yet, weekdays. today is now a stream of weekday
strings, not a future-like string that is only resolved once. Dj5c
executes all code registered to the stream—here, the inline function
Lines 2.3 to 2.6—whenever a new value is available, i.e., directly
after the IaC program’s start and every midnight.

At first sight, the solution for dynamic IaC is similar to the
opposed workarounds for static IaC (cf. Section 3). Yet, as shown
in the example, the dynamic behavior is not externalized, e.g., to
the WeekdaySource. The external resource is only used as a signal to
(a) trigger partial re-evaluation and (b) provide new data, i.e., the
current weekday. The dynamic behavior—re-configuring another
resource based on the changed weekday—is encoded in the IaC
program, making it a central source for holistic reasoning about
the infrastructure, including its dynamic behavior.

5 EXAMPLE USE CASES FOR DYNAMIC IAC

We now present two practical use cases of broader relevance.
Automated Decentralized Deployment Coordination. In modern
DevOps organizations, cross-functional teams aim to operate their
application(s) as independently as possible. Still, in practice, appli-
cations depend on one another, and these dependencies carry on to
the applications’ (un)deployment. For example, consider that the
“infra” team is responsible for the bucket of the weekday website
and the “editor” team for index.html. They have to coordinate to

1777

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Listing 2: Weekday website using WeekdaySource resource.!

* 1)

2.1 const bucket = new aws.s3.Bucket("website", { /..
2.2 const weekdays = new WeekdaySource("weekdays")
2.3 const weekdays.today.apply((today) => {

2.4 new aws.s3.BucketObject("index", { /«..+/
2.5 content: “<IDOCTYPE html>${today}™ });
26 1});

Listing 3: Weekday website decentralized across two indepen-
dent teams with automated (un)deployment coordination.!

(a) The infra team’s dynamic IaC program.

3a.l
3a.2
3a.3

const editor = new RemoteConnection("editor", /«..+/);
const bucket = new aws.s3.Bucket("website", /«..+/);
new Offer(editor, "bucket", bucket);

(b) The editor team’s dynamic IaC program.

3b.1 const infra
3b.2
3b.3
3b.4
3b.5
3b.6
3b.7

3b.8

new RemoteConnection("infra", { /+..+/ });
const wish new Wish<aws.s3.Bucket>(infra, "bucket");
const wdays = new WeekdaySource("weekdays");
join(wish.offer, wdays.today).apply((bucket, today) => {
new aws.s3.BucketObject("index", { /«..+/
bucket: infraBucket,
content: “<IDOCTYPE html>${today}” });

DN

ensure that (a) infra deploys the bucket before editor deploys index
.html, (b) editor undeploys index.html before infra undeploys the
bucket, and (c) editor updates index.html when infra changes the
bucket. This coordination can be automated with dynamic IaC in
Dj,c. For instance, Listing 3 and Subfigure 1c show both teams’ dy-
namic IaC programs and the resource graphs. They explicitly define
their connection to the other deployment (Lines 3a.1 and 3b.1). The
infra team offers in Line 3a.3 the bucket to the editor team, which
explicitly wishes for it (Line 3b.2). The offer is deployed when the
wish signals its use and undeployed once the wish confirmed that
it is not used anymore. This achieves that index.html (Lines 3b.5
to 3b.7) is only deployed when the offer is available, always up-
dated with new weekday values, and undeployed when wish.offer
indicates the infra team signals it withdraws its offer.

Safe Dynamic Software Updating (Safe DSU). Updating software
is important, e.g., to fix vulnerabilities or introduce features. How-
ever, updating a component in a distributed system may break
running distributed transactions. If these transactions are frequent
or take long, perhaps even days, breaking and repeating them is
infeasible. Safe DSU is about identifying when a component can be
updated such that no transaction breaks, i.e., they do not have to be
repeated and interruption is minimal. The safety criterion is version
consistency: a component participates in, at most, one version in
each transaction. Safe DSU requires for each component update
that sequentially (1) a safe update interval is enforced, then (2) the
update is performed, and, after completion, (3) the safe update in-
terval is released. In static IaC programs, this protocol cannot be
implemented. Dynamic IaC with D¢ can implement this protocol
by (re-)configuring the component’s inbound proxies and the com-
ponent itself based on the component version and the transaction
monitoring insights of the component’s inbound proxies.

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

6 TESTING DYNAMIC IAC PROGRAMS

Ensuring IaC programs work correctly is important and dynamic
IaC amplifies the need for easy and thorough testing (cf. Section 1).
To solve this issue, we propose ProTl, a specialized, automated tool
for property-based testing of static and dynamic IaC programs.
ProTl randomly executes the IaC program many times with dif-
ferent values to find errors systematically. Every resource is re-
placed with an auto-generated mock, and the mocks validate each
occurring resource input value. Resource outputs are so-called ar-
bitraries, random generators for concrete values of the outputs’
specified types. To replace other non-resource objects with mocks,
ProTI| provides an annotation. This suffices to randomly execute
the IaC program thousands of times with different values, pro-
viding out-of-the-box high confidence that the IaC program al-
ways terminates. Additionally, users can add annotations providing
application-specific specifications that ProT| validates and uses for
more precise value generation. A first version of ProT] targets static
Pulumi TypeScript and dynamic Dj,c programs, leveraging Type-
Script decorators and fast-check [10] for property-based testing.
For instance, testing the editor team’s IaC program (Sublisting 3b)
with ProTl runs the program many times. ProT| checks that resource
input values comply with their specified type, e.g., only string values
are assigned to content in Line 3b.7. Arbitrary values are gener-
ated for all resource outputs, respecting their type. E.g., wish.offer
generates different buckets and undefined, signaling the offer is un-
available, and wdays. today generates random string values. Further,
we can add application-specific specifications, e.g., by annotating
content in Line 3b.7 with @inNarrow([/+ 7 weekdays «/].map((d) =>
“<IDOCTYPE html>${d}")), narrowing down its accepted values
from any string to seven concrete strings. Now the ProTl tests fail
because wdays. today may provide any string value. To fix the tests,
WeekdaySource in Line 3b.3 is annotated with @outNarrow({ today:
[/+ 7 weekdays +/] }), narrowing down the values of its today output.

7 EVALUATION

To evaluate Dj,c, we first synthesize typical static IaC programs
and compare their deployment with Dj,c, Pulumi, and AWS CDK,
showing that Dj,¢c does not introduce significant overhead. To eval-
uate Djyc’s dynamic IaC capabilities, we thoroughly demonstrate
its applicability in the two presented use cases of broader relevance:

To motivate automated coordination of decentralized deploy-
ments, we organize a cross-sectional online survey with IT profes-
sionals from industry, complying with common standards, includ-
ing the ACM SIGSOFT guidelines [1, 16, 17]. The survey assesses
the state of application dependencies in practice, whether they con-
strain deployment orders, and how these are coordinated. We then
demonstrate in depth on the TeaStore microservices application [42]
how dynamic IaC can be leveraged for such deployment coordina-
tion. Further, we assess the scaling behavior of the coordination
through dynamic IaC using synthetic decentralized deployment
benchmarks. To confirm general applicability, we automatically con-
vert all public Pulumi TypeScript projects using stack references to
Dj,c with automated deployment coordination. Stack references
are the only mean in Pulumi to depend on another deployment;
however, they do suffice for automated coordination.

1778

Daniel Sokolowski

For safe DSU, we show how state-of-the-art approaches [5, 18, 37,
40] can be applied to modern workflow applications. First, we eval-
uate this application through discrete-event simulation of updates
in all 106 realistic collaborative BPMN workflows from RePROS;-
tory [9]. We then generate dynamic IaC programs in Dy,¢ for these
workflows and repeat the experiments using the Dj,c dynamic IaC
programs, continuous-time simulation for the workflow engines,
and Kubernetes for the execution of the workflow tasks.

To demonstrate the benefits of dynamic IaC’s holistic view, we se-
lect projects using static JaC with Pulumi and CI/CD on GitHub. On
a few representative projects with dynamic infrastructure behavior
in the CI/CD pipeline, we demonstrate and discuss the replacement
with a Dj,c IaC program. We expect to achieve simplified CI/CD
pipelines, the ability to jointly reason and test the infrastructure
and its behavior, and reduced infrastructure update latency.

To evaluate ProTl, we apply it to all publicly available Pulumi
TypeScript programs on GitHub, showing that it is easy to apply
and that we effectively find termination issues. Additionally, we
apply it to the dynamic IaC programs used in our evaluation for
Djac. In contrast to out-of-the-box termination testing, the deeper
insight into these case studies allows us to evaluate the applicability
of Dy,c for checking application-specific properties.

8 CONTRIBUTIONS AND ACHIEVED RESULTS

By now, research on IaC in the SE community either discussed
CaC or modeling. We extend the discussion to modern IaC
solutions, especially solutions leveraging general-purpose pro-
gramming languages, and contribute novel ideas, i.e., for dynamic
IaC, testing, deployment coordination, and safe updating.

We organized the Dependencies in DevOps Survey [38] on
134 IT professionals. The survey shows that (1) applications often
depend on one another, (2) dependencies often constrain the order
of (un)deployment operations, and (3) coordination is typically
manual, even though (4) automation promises better performance.

We implemented and evaluated IS ([mju:z] “muse”) [36], a
dynamic IaC extension of Pulumi [26] using Hareactive [41]. [IS’
performance is better than AWS CDK’s and similar to Pulumi’s.
The scaling behavior is as expected. [IS is the basis for Dj,c.

We motivated safe DSU, applied approaches to asynchro-
nous workflows, and suggested Essential Safety [37]. The eval-
uation simulates 106 realistic BPMN workflows from RePROSi-
tory [9], confirming the applicability to workflows on distributed
systems. It is the basis for the evaluation of Dj5c on Kubernetes.

We consolidate our work on dynamic IaC in implementing
and evaluating Dj,c, the first IaC solution featuring dynamic IaC
in a general fashion. We implement and evaluate ProTl, a novel,
automated, systematic testing approach for modern IaC programs
based on auto-mocking and property-based testing.

ACKNOWLEDGMENTS

The author’s advisor is Prof. Dr. Guido Salvaneschi, an associate pro-
fessor at the University of St. Gallen. This work has been co-funded
by the Swiss National Science Foundation (SNSF, No. 200429), by
the German Research Foundation (DFG, No. 383964710, SFB 1119),
by the Hessian LOEWE initiative (emergenCITY and Software-
Factory 4.0), and by the University of St. Gallen (IPF, No. 1031569).

Infrastructure as Code for Dynamic Deployments

REFERENCES

(1]

(2]

[9

=

[10

[11]

[12]

[13]

[14

[15]
[16]

[17

(18]

[19

[20]

[21]
[22]

[23]

[24

[25

[26]

ACM Special Interest Group on Software Engineering . 2021. Empirical Standards:
Questionnaire Surveys. https://github.com/acmsigsoft/EmpiricalStandards/blob/
master/docs/QuestionnaireSurveys.md (Accessed: 2021-05-05).

Jonathan Aldrich, Craig Chambers, and David Notkin. 2002. ArchJava: Con-
necting Software Architecture to Implementation. In Proceedings of the 24th
International Conference on Software Engineering (Orlando, Florida) (ICSE "02).
Association for Computing Machinery, New York, NY, USA, 187-197. https:
//doi.org/10.1145/581339.581365

Amazon Web Services. 2021. AWS CloudFormation. https://aws.amazon.com/
cloudformation/ (Accessed: 2021-05-06).

Ansible and Red Hat. 2022. Ansible is Simple IT Automation.
ansible.com/ (Accessed: 2022-07-12).

Luciano Baresi, Carlo Ghezzi, Xiaoxing Ma, and Valerio Panzica La Manna.
2017. Efficient Dynamic Updates of Distributed Components Through Version
Consistency. IEEE Transactions on Software Engineering 43, 4 (2017), 340-358.
https://doi.org/10.1109/TSE.2016.2592913

Julian Bellendorf and Zoltan Adam Mann. 2020. Specification of cloud topologies
and orchestration using TOSCA: a survey. Computing 102, 8 (2020), 1793-1815.
https://doi.org/10.1007/s00607-019-00750-3

Chef. 2022. Chef Software DevOps Automation Tools & Solutions. https://chef.io
(Accessed: 2022-07-12).

Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). Association for
Computing Machinery, New York, NY, USA, 268-279. https://doi.org/10.1145/
351240.351266

Flavio Corradini, Fabrizio Fornari, Andrea Polini, Barbara Re, and Francesco
Tiezzi. 2019. RePROSitory: a Repository Platform for Sharing Business PROcess
modelS. BPM (PhD/Demos) (2019), 149-153.

Nicolas Dubien. 2022. fast-check: Property based testing framework for JavaScrip-
t/TypeScript. https://github.com/dubzzz/fast-check (Accessed: 2022-07-12).
George Fink and Matt Bishop. 1997. Property-Based Testing: A New Approach
to Testing for Assurance. SIGSOFT Softw. Eng. Notes 22, 4 (jul 1997), 74-80.
https://doi.org/10.1145/263244.263267

Nicole Forsgren, Dustin Smith, Jez Humble, and Jessie Frazelle. 2019. 2019
Accelerate State of DevOps Report. https://services.google.com/fh/files/misc/
state-of-devops-2019.pdf (Accessed: 2022-04-07).

M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba. 2019. Adoption,
Support, and Challenges of Infrastructure-as-Code: Insights from Industry. In
2019 IEEE International Conference on Software Maintenance and Evolution (ICSME).
580-589. https://doi.org/10.1109/ICSME.2019.00092

HashiCorp. 2022. CDK for Terraform. https://www.terraform.io/cdktf (Accessed:
2022-07-12).

HashiCorp. 2022. Terraform. https://www.terraform.io/ (Accessed: 2022-07-12).
Mark Kasunic. 2005. Designing an Effective Survey. https://doi.org/10.1184/R1/
6573062.v1

Barbara A. Kitchenham and Shari L. Pfleeger. 2008. Personal Opinion Surveys.
In Guide to Advanced Empirical Software Engineering, Forrest Shull, Janice Singer,
and Dag I. K. Sjeberg (Eds.). Springer, Chapter 3, 63-92.

Jeff Kramer and Jeff Magee. 1990. The evolving philosophers problem: dynamic
change management. IEEE Transactions on Software Engineering 16, 11 (1990),
1293-1306. https://doi.org/10.1109/32.60317

Ingolf Kriiger, Barry Demchak, and Massimiliano Menarini. 2012. Dynamic Service
Composition and Deployment with OpenRichServices. Springer Berlin Heidelberg,
Berlin, Heidelberg, 120-146. https://doi.org/10.1007/978-3-642-30835-2_9
Changbin Liu, Boon Thau Loo, and Yun Mao. 2011. Declarative Automated Cloud
Resource Orchestration. In Proceedings of the 2nd ACM Symposium on Cloud
Computing (Cascais, Portugal) (SOCC °11). Association for Computing Machinery,
New York, NY, USA, Article 26, 8 pages. https://doi.org/10.1145/2038916.2038942
Microsoft. 2022. Azure Resource Manager. https://azure.microsoft.com/en-
us/features/resource-manager/ (Accessed: 2022-07-12).

Kief Morris. 2021. Infrastructure as Code: Dynamic Systems for the Cloud Age
(second ed.). O’Reilly Media, Inc., Sebastopol, CA, USA.

OASIS. 2013. Topology and Orchestration Specification for Cloud Applications
Version 1.0. OASIS Standard, http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/
TOSCA-v1.0-o0s.html (Accessed on 2020-09-25).

Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2022. Smelly Variables
in Ansible Infrastructure Code: Detection, Prevalence, and Lifetime. In 2022
IEEE/ACM 19th International Conference on Mining Software Repositories (MSR).
61-72. https://doi.org/10.1145/3524842.3527964

Ruben Opdebeeck, Ahmed Zerouali, Camilo Velazquez-Rodriguez, and Coen De
Roover. 2021. On the practice of semantic versioning for Ansible galaxy roles:
An empirical study and a change classification model. Journal of Systems and
Software 182 (2021), 111059. https://doi.org/10.1016/j.js5.2021.111059

Pulumi. 2022. Pulumi: Universal Infrastructure as Code. https://github.com/
pulumi/pulumi (Accessed: 2022-07-12).

https://www.

1779

&
=

S
&,

&
=

(32

[33

[34

@
i

[36

[37

&
&,

[39

[40

[41]

[42]

[43]

(44

S
)

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Pulumi. 2022. Testing. https://www.pulumi.com/docs/guides/testing/ (Accessed:
2022-07-14).

Puppet. 2022. Powerful Infrastructure Automation and Delivery. https://puppet.
com/ (Accessed: 2022-07-12).

Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2019. A system-
atic mapping study of infrastructure as code research. Information and Software
Technology 108 (2019), 65 — 77. https://doi.org/10.1016/j.infsof.2018.12.004
Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The Seven Sins: Security
Smells in Infrastructure as Code Scripts. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 164-175. https://doi.org/10.1109/
ICSE.2019.00033

Akond Rahman, Md Rayhanur Rahman, Chris Parnin, and Laurie Williams. 2021.
Security Smells in Ansible and Chef Scripts: A Replication Study. ACM Trans.
Softw. Eng. Methodol. 30, 1, Article 3 (Jan. 2021), 31 pages. https://doi.org/10.
1145/3408897

Rajiv Ranjan, Boualem Benatallah, Schahram Dustdar, and Michael P. Papazoglou.
2015. Cloud Resource Orchestration Programming: Overview, Issues, and Direc-
tions. IEEE Internet Computing 19, 5 (2015), 46-56. https://doi.org/10.1109/MIC.
2015.20

Julian Schwarz, Andreas Steffens, and Horst Lichter. 2018. Code Smells in
Infrastructure as Code. In 2018 11th International Conference on the Quality
of Information and Communications Technology (QUATIC). 220-228. https:
//doi.org/10.1109/QUATIC.2018.00040

Amazon Web Services. 2022. AWS Cloud Development Kit. https://aws.amazon.
com/cdk/ (Accessed: 2022-07-12).

Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your Con-
figuration Code Smell?. In Proceedings of the 13th International Conference on Min-
ing Software Repositories (Austin, Texas) (MSR ’16). Association for Computing Ma-
chinery, New York, NY, USA, 189-200. https://doi.org/10.1145/2901739.2901761
Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021. Au-
tomating Serverless Deployments for DevOps Organizations. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Athens, Greece) (ES-
EC/FSE 2021). Association for Computing Machinery, New York, NY, USA, 57-69.
https://doi.org/10.1145/3468264.3468575

Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2022. Change
is the Only Constant: Dynamic Updates for Workflows. In Proceedings of the
44th International Conference on Software Engineering (Pittsburgh, Pennsylvania)
(ICSE °22). Association for Computing Machinery, New York, NY, USA, 350-362.
https://doi.org/10.1145/3510003.3510065

Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2022. De-
pendencies in DevOps Survey 2021: Version 2.0 (Until April 15, 2021). https:
//doi.org/10.5281/zenodo.6372120

Ricardo Terra and Marco Tulio Valente. 2009. A dependency constraint lan-
guage to manage object-oriented software architectures. Software: Practice and
Experience 39, 12 (2009), 1073-1094. https://doi.org/10.1002/spe.931

Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. 2007.
Tranquility: A Low Disruptive Alternative to Quiescence for Ensuring Safe Dy-
namic Updates. IEEE Transactions on Software Engineering 33, 12 (2007), 856-868.
https://doi.org/10.1109/TSE.2007.70733

Simon Friis Vindum and Emil Holm Gjerup. 2019. Hareactive. https://github.
com/funkia/hareactive (Accessed: 2022-07-12).

Jbakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research.
In 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS). 223-236. https://doi.
org/10.1109/MASCOTS.2018.00030

Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z. Sheng, and
Rajiv Ranjan. 2017. A Taxonomy and Survey of Cloud Resource Orchestration
Techniques. ACM Comput. Surv. 50, 2, Article 26 (May 2017), 41 pages. https:
//doi.org/10.1145/3054177

Michael Wurster, Uwe Breitenbiicher, Michael Falkenthal, Christoph Krieger,
Frank Leymann, Karoline Saatkamp, and Jacopo Soldani. 2020. The Essen-
tial Deployment Metamodel: A Systematic Review of Deployment Automation
Technologies. SICS Software-Intensive Cyber-Physical Systems 35 (2020), 63-75.
https://doi.org/10.1007/s00450-019-00412-x

Michael Wurster., Uwe Breitenbiicher., Lukas Harzenetter., Frank Leymann.,
Jacopo Soldani., and Vladimir Yussupov. 2020. TOSCA Light: Bridging the
Gap between the TOSCA Specification and Production-ready Deployment Tech-
nologies. In Proceedings of the 10th International Conference on Cloud Comput-
ing and Services Science - Volume 1: CLOSER,. INSTICC, SciTePress, 216-226.
https://doi.org/10.5220/0009794302160226

https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/QuestionnaireSurveys.md
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/QuestionnaireSurveys.md
https://doi.org/10.1145/581339.581365
https://doi.org/10.1145/581339.581365
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://www.ansible.com/
https://www.ansible.com/
https://doi.org/10.1109/TSE.2016.2592913
https://doi.org/10.1007/s00607-019-00750-3
https://chef.io
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://github.com/dubzzz/fast-check
https://doi.org/10.1145/263244.263267
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://doi.org/10.1109/ICSME.2019.00092
https://www.terraform.io/cdktf
https://www.terraform.io/
https://doi.org/10.1184/R1/6573062.v1
https://doi.org/10.1184/R1/6573062.v1
https://doi.org/10.1109/32.60317
https://doi.org/10.1007/978-3-642-30835-2_9
https://doi.org/10.1145/2038916.2038942
https://azure.microsoft.com/en-us/features/resource-manager/
https://azure.microsoft.com/en-us/features/resource-manager/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://doi.org/10.1145/3524842.3527964
https://doi.org/10.1016/j.jss.2021.111059
https://github.com/pulumi/pulumi
https://github.com/pulumi/pulumi
https://www.pulumi.com/docs/guides/testing/
https://puppet.com/
https://puppet.com/
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1145/3408897
https://doi.org/10.1145/3408897
https://doi.org/10.1109/MIC.2015.20
https://doi.org/10.1109/MIC.2015.20
https://doi.org/10.1109/QUATIC.2018.00040
https://doi.org/10.1109/QUATIC.2018.00040
https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.1145/3468264.3468575
https://doi.org/10.1145/3510003.3510065
https://doi.org/10.5281/zenodo.6372120
https://doi.org/10.5281/zenodo.6372120
https://doi.org/10.1002/spe.931
https://doi.org/10.1109/TSE.2007.70733
https://github.com/funkia/hareactive
https://github.com/funkia/hareactive
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1145/3054177
https://doi.org/10.1145/3054177
https://doi.org/10.1007/s00450-019-00412-x
https://doi.org/10.5220/0009794302160226

