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Abstract
Programming distributed systems is notoriously hard due to – among the others – concurrency,

asynchronous execution, message loss, and device failures. Homogeneous distributed systems consist
of similar devices that communicate to neighbours and execute the same program: they include
wireless sensor networks, network hardware and robot swarms. For the homogeneous case, we
investigate an experimental language design that aims to push the abstraction boundaries farther,
compared to existing approaches.

In this paper, we introduce the design of XC, a programming language to develop homogeneous
distributed systems. In XC, developers define the single program that every device executes and
the overall behaviour is achieved collectively, in an emergent way. The programming framework
abstracts over concurrency, asynchronous execution, message loss, and device failures. We pro-
pose a minimalistic design, which features a single declarative primitive for communication, state
management and connection management. A mechanism called alignment enables developers to
abstract over asynchronous execution while still retaining composability. We define syntax and
operational semantics of a core calculus, and briefly discuss its main properties. XC comes with
two DSL implementations: a DSL in Scala and one in C++. An evaluation based on smart-city
monitoring demonstrates XC in a realistic application.
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1 Introduction

Programming distributed systems is notoriously hard because they require reasoning about
a number of issues that inevitably arise in this setting, including concurrency, remote
communication, asynchronous execution, message loss and device failures.

The design of programming languages for distributed systems attempts to address these
issues by carefully combining cases where (i) programmers are given explicit control over
certain aspects of distribution, (ii) the design employs abstraction to hide low level mechanisms
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from developers. A well-known example of explicit control is fault tolerance in the actor
model, where developers can define a reaction strategy in case of failures (through the
so-called actor supervision hierarchy) [3]. However, the actor model abstracts over placement
and – at least in the original actor model – actors communicate with actors on the same
machine the same way they do with a remote actor. Similar combinations of abstraction
and explicit control position other distributed programming languages in the design space.
For example, in the MPI model for HPC, processes are organized in topologies and can
explicitly send messages close to them in such topology [45]. In Partitioned Global Address
Space Languages [28], the programming model abstracts over the memory separation across
processes. Pub-sub systems abstract over the binding between message sender and receivers
ensuring that senders and receivers can seamlessly join and leave the system [31]. In summary,
the design of these programming models stems from a combination of explicit control ensured
to the user and details that are abstracted over.

An important class of distributed systems are homogeneous and situated, i.e., they
are composed of similar devices that communicate with ‘neighbours’, and execute similar
programs. This property has been observed, e.g., in distributed systems for hierarchical
control of network routing [37], crowd management by handheld devices [16], Wireless
Sensor Network (WSN) connectivity management [36] and gossip-based data aggregation
[35], task allocation in robot swarms [18, 46], and coordination of enterprise servers [24].
More applications are emerging, pushed by the scientific and technological trends of the
Internet of Things (IoT) and of Cyber-Physical Systems (CPS) [47], and of the coordination
of mobile agents [40]. Crucially, ‘homogeneity’ in large-scale systems also stems from the case
where each device runs a program from a predefined set – corresponding to a homogeneous
configuration with a single program with an initial branch.

In this paper, we address the issue of programming such a class of homogeneous systems.
Over time, several approaches have been proposed to address these kinds of systems, including
spatial computing [29], ensemble-based programming [27, 1], and, notably, field-based comput-
ing [49, 38, 40], where the overall distributed system behaviour is understood as producing a
computational field, i.e., a map from network nodes to values. Inspired by these works, we
investigate XC, a novel programming language design that captures their essence (as detailed
in Section 7) into a single construct aiming to abstract over low-level concerns developers
face in distributed systems, while allowing differentiated messages to neighbours. We show a
design where concurrency, asynchronicity, network communication, message loss, and failures
do not need to be handled explicitly. Thanks to a mechanism that is referred to as alignment,
distributed programs written in this style retain composability even if devices operate fully
independently, waking up, executing the program and communicating asynchronously at
arbitrary times and frequencies. Messages from other devices are processed homogeneously,
hence developers do not need to separately handle the case when a message is lost or a device
fails: such lost message is simply not part of the (homogeneous) computation. All required
computational mechanisms can be unified into a single declarative construct called exchange,
which provides (i) access to neighbours’ values, (ii) persistence of information for subsequent
executions, (iii) communication with neighbours, and (iv) compositional behaviour.

To summarise, this paper provides the following contributions:
We describe the design of XC, a programming language for homogeneous distributed
systems that abstracts over concurrency, network communication, message loss, and device
failures. Crucially, XC retains compositionality even with asynchronous communication,
thanks to alignment.
We show that XC can effectively capture a number of applications in distributed systems,
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including distributed protocols such as gossiping, finding an optimised communication
channel, and common applications in self-organizing systems.
We provide a formalization of a core calculus for XC, including syntax and operational
semantics, and briefly discuss its main properties.
We implement XC as publicly available Scala and C++ internal DSLs, together targeting
a number of different execution platforms.
In addition to the applications above, we evaluate our approach on a case study demon-
strating XC’s applicability to real-world scenarios and its compositionality, and answering
two research questions: (RQ1) whether the decentralised execution of the XC program
on each device induces the desired collective behaviour; and (RQ2) to what extent such
behaviour can be expressed by composition of simpler functions.

The paper is structured as follows. Section 2 introduces XC design, Section 3 demon-
strates XC through examples, Section 4 presents the formalization, Section 5 discusses the
implementation, Section 6 evaluates XC, Section 7 compares XC to the related work, Section 8
concludes and outlines future research directions.

2 XC Language Design

2.1 System model
Asynchronous, round-based execution and communication. We consider devices that
send/receive messages with (physical or logical) neighbours. The set of neighbours of any
device can change dynamically to model, e.g., spatial movement, failures, and network
delay. Existing homogeneous systems (cf. [15]) typically work with devices that repeatedly
execute a computation aimed at producing a message for some neighbours, whereas message
reception is asynchronous. Therefore, we abstract device behaviour through a notion of
(execution) round, whereby a device independently “fires” and “atomically executes” a XC
program, then it sends a resulting message to neighbours before waiting to execute the
round again—sometimes we say it “wakes up”, execute the round, and then “go back to
sleep”. The behaviour of each device in the network is developed as a single program1. Such
execution rounds may occur at comparable periodic intervals on all devices but there is no
such assumption in general (every device may have its own scheduling of rounds). Indeed, a
device can run out of battery and never wake up again, or it can restart waking up after a
long time if the battery gets charged. In summary, rounds—hence the communication among
devices—are entirely asynchronous.

Last-message buffering and dropping. The messages received by a sleeping device queue
up in a buffer. When the device wakes up, it executes a XC program that processes such
messages, producing new messages to send out. Such messages are eventually processed by
the neighbours when they wake up for their next round. For example, in the system execution
in Figure 1, there are four devices δ1 to δ4. In the considered time span, device δ2 wakes up
twice and performs two computation rounds, ϵ1 and ϵ2. Grey arrows indicate messages that
get lost and are never received. The computation ϵ2 processes three messages, received from
δ4, δ3, and δ1 while δ2 was asleep. After the computation, δ2 sends out a message to δ3 and
to δ1. The order of messages from a same sender is preserved but, other than that, there are

1 This approach is often referred to as macroprogramming [44] or multi-tier programming [50]. It does not
restrict realisable behaviours as devices can still exhibit different executions of the same program.

ECOOP 2022



20:4 Functional programming for distributed systems with XC

!4

!1

!2

!3

ε1 ε2

1
2

3

5

6

Figure 1 XC system model

very few assumptions on messages. If a device δ1 runs multiple rounds before a device δ2 even
runs a single round, δ2 sees only the message received from the last round of δ1, i.e., newly
received messages from a same sender overwrite older ones. Also, messages are not removed
from the buffer after reading them, unless they expire (i.e., are deemed too old according to
any pre-established criterion) or unless they are replaced by a new message from the same
device, allowing messages to (possibly) persist across rounds. The XC design abstracts over
the specific expiration criteria: common choices include removing messages after each read,
or after a validity time elapses. This time interval is highly application-specific and stems
from a trade-off between (i) tolerance to communication delays and failures, and (ii) recovery
speed after truthful changes on data and neighbourhoods.

When a device δ wakes up, it usually does not find messages from every other device in
the system: (i) another device may be too far to send a message to δ; (ii) messages may get
lost; (iii) devices may disappear or fail; (iv) a device may reboot, losing its queue of received
messages; (v) δ may deem messages from some devices to be expired. Crucially, XC does not
require distinguishing among those cases. When a device wakes up, it finds some messages
from (the most recent available execution round of) some other devices. The devices for
which a message is available in a certain round are the neighbours for that round.

This system model and the terminology associated to it (e.g., ‘send message to a neigh-
bour’) is adopted throughout the paper. These design choices make XC agnostic to the
actual communication channel, topology creation and discovery mechanism: e.g., push or
pull, broadcast or point-to-point. For example, the same programming model would apply
even if a device, after waking up, contacts the neighbours to fetch their current value in
a pull fashion. Instead, in a network of micro-controller devices, Bluetooth 5.0 extended
advertisements could be used to share data with neighbour devices in physical proximity,
without an explicit discovery mechanism, as the topology is induced by the messages that
are actually received. Such an implementation would also grant causal consistency [2]. On
the other hand, a network of higher-end devices may communicate point-to-point over IP,
with discovery mechanisms based on broadcasted messages or rendezvous servers.

2.2 XC’s key data type: Neighbouring Values
Datatypes in XC. XC features two kinds of values. Local values ℓ include traditional types
A like float, string or list. Neighbouring values (nvalues) are a map w from device identifiers δi

to corresponding local values ℓi, with a default ℓ, written ℓ[δ1 7→ ℓ1, ... , δn 7→ ℓn]. A nvalue is
used to describe the (set of) values received from and sent to neighbours. In highly decoupled
distributed systems only a few neighbours may occasionally produce a value. The devices
with an associated entry in the nvalue are hence usually a subset of all devices, e.g., because
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a device is too far to provide a value or the last provided value has expired. The default is
used when a value is not available for some reason as will be discussed later (e.g., if a device
just appeared and has not yet produced a value). For this reason, it is convenient to adopt
the notation above and read it “the nvalue w is ℓ everywhere (i.e., for all neighbours) except
for devices δ1, ... , δn with values ℓ1, ... , ℓn.

To exemplify nvalues, in Figure 1, upon waking up for computation ϵ2, δ2 may process
a nvalue w = 0[δ4 7→ 1, δ3 7→ 2, δ1 7→ 3], corresponding to the messages carrying the scalar
values 1, 2, and 3 received when asleep from δ4, δ3, and δ1. The entries for all other devices
default to 0. After the computation, δ2 may send out the messages represented by the nvalue
w′ = 0[δ3 7→ 5, δ1 7→ 6]; so that 5 is sent to δ3, 6 is sent to δ1, and 0 is sent to every other
device (such as a newly-connected device with no dedicated value yet). We also use the
notation w(δ′) for the local value ℓ′ if δ′ 7→ ℓ′ is in w, or the default local value ℓ of w otherwise,
reflecting the interpretation of nvalues as maps with a default. For instance, w′(δ1) = 6
and w′(δ2) = 0. To help the reader, in code snippets, we underline the variables holding
neighbouring values, and, similarly, we underline a primitive type A to indicate the type of a
nvalue w = ℓ[δ1 7→ ℓ1, ... , δn 7→ ℓn] where ℓ, ℓ1, ... ℓn have type A.

Nvalues generalize local values. A local value ℓ can be automatically converted to a nvalue
ℓ[] with a default value for every device. In fact, the distinction between local values and
nvalues is only for clarity: local values can be considered equivalent to nvalues where all
devices are mapped to a default value. In the formalization (Section 4) local values and
nvalues are treated uniformly. Functions on local values are implicitly lifted to nvalues, by
applying them on the maps’ content pointwise. For example, given w1 = 0[δ4 7→1, δ3 7→2] and
w2 = 1[δ4 7→2], we have w3 = w1 + w2 = 1[δ4 7→3, δ3 7→3]. Note that δ3 7→3 in w3 is due to the
fact that δ3 7→2 in w1 and δ3 has default value 1 in w2. Using also the automatic promotion
of local values to nvalues, we have that w1 + 1 = 0[δ4 7→1, δ3 7→2] + 1 = 1[δ4 7→2, δ3 7→3].

Operations on nvalues. Besides pointwise manipulation, nvalues can be folded over, similar
to a list, through built-in function nfold(f : (A,B) → A, w : B, ℓ : A) : A, where the
function f is repeatedly applied to neighbours’ values in a field w (thus excluding the
value for the self device), starting from a base local value ℓ. For instance, assume that
δ2 is performing a nfold operation, with the current set of neighbours {δ1, δ3}. Then
nfold(+, w1, 10) = 10 + w1(δ1) + w1(δ3) = 10 + 0 + 2, where w1 = 0[δ4 7→ 1, δ3 7→ 2] is as
above. As nvalues should be agnostic to the ordering of the elements (i.e., the ordering of
the identifiers δ′), we usually assume that f is associative and commutative.

Sensors and actuators. Since XC programs may express the collective behaviour of homo-
geneous systems situated in some (physical or computational) environment, the devices are
typically equipped with sensors and actuators. Sensors, in particular, are meant to provide
access to contextual and environmental information. These can be accessed by the program
through built-in functions as shown in next sections. In a round, similarly to how messages
are considered, the program is executed against the most recent sample of sensor values. On
the other hand, actuators can be run at the end of the round against the program output
(which may collect all the desired actuation commands).

▶ Example 1 (Distance estimation). A node can estimate its distance from another node in
the network by leveraging an existing estimate n provided by its neighbours. To this end, one
selects the minimum (using nfold with starting value Infinity) of neighbours’ estimates n
increased by the relative distance estimates senseDist (provided by a sensor in the device).

ECOOP 2022
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Name Type scheme Description
Communication:

exchange (A, (A) → (T, A)) → T Exchanges messages
Neighbouring value manipulation:

nfold ((A, B) → A, B, A) → A Folding of a neighbouring value
self (A) → A Extract the self-message

updateSelf (A, A) → A Update the self-message
Sensors used in examples:

uid num Unique device identifier
senseDist num Distance estimates to neighbours

Point-wise operators:
+ ,- , * , / (num, num) → num Arithmetic operators

and, or (bool, bool) → bool Boolean operators
==, <=, >= (A, A) → bool Relational operators2

mux (bool, A, A) → A Multiplexer operator
pair (A, B) → (A, B) Pair creation
fst ((A, B)) → A First element of a pair
snd ((A, B)) → B Second element of a pair

Constructors:
−1, 0, 0.25, 1, Infinity num Numeric constructors

True, False bool Boolean constructors
Pair (A, B) → (A, B) Pair constructor

Figure 2 XC: name, type scheme and description of built-in data constructors and functions.

1 def distanceEstimate(n) { // has type scheme: (num) → num
2 nfold(min, n + senseDist, Infinity)
3 }

Notice that n and senseDist sum up neighbour-wise; if neighbour δ shares estimate n(δ),
the node’s best estimate from that neighbour is n(δ) + senseDist(δ). The minimum among
all estimates is selected, or Infinity if no neighbour is available. ◀

Additional built-in operations on nvalues are self(w : A) : A, which returns the local
value w(δ) in w for the self device δ, and updateSelf(w : A, ℓ : A) : A which returns a
nvalue equal to w except for the self device δ – updated to ℓ. The substitution notation
stand for defaulted map updates, so that updateSelf(w, ℓ) = w[δ 7→ ℓ]. Indeed, the notation
ℓ[δ1 7→ ℓ1, ...] for nvalues can be understood as a substitution updating ℓ (the map equal to ℓ
everywhere) by associating ℓn to δn.

XC operators on nvalues behave uniformly on neighbours to encourage uniform behaviour
on each element of a nvalue. This approach is idiomatic in XC and results in a more resilient
behaviour – inherently tolerate changes of neighbourhoods between rounds. Yet, non-uniform
behaviour can be encoded via built-in function uid (combined with communication primitives,
Section 2.3), which provides the unique identifier δ of the current device.

Figure 2 shows a summary of every built-in function used in this paper. Constructors
and point-wise operators are standard; the multiplexer operator mux(ℓ1, ℓ2, ℓ3) returns ℓ2 if ℓ1
is True, ℓ3 otherwise. We also omit pair and use the shortcut (v1, v2) for pair construction,
and use infix notation for binary operators whenever convenient. Built-ins for neighbouring
values has just been discussed. We introduce the exchange operator in the next section.

2.3 Communication in XC: Exchange
XC features a single communication primitive exchange(ei, (n) => return er send es) which
de-sugars to exchange(ei, (n) => (er, es)) and is evaluated as follows. (i) the device computes

2 The generic A type in relation-based operators is not allowed to be a function type.
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the local value ℓi of ei (the initial value). (ii) it substitutes variable n with the nvalue w of
messages received from the neighbours for this exchange, using ℓi as default. The exchange
returns the (neighbouring or local) value vr from the evaluation of er. (iii) es evaluates to
a nvalue ws consisting of local values to be sent to neighbour devices δ′, that will use their
corresponding ws(δ′) as soon as they wake up and perform their next execution round.

Often, expressions er and es coincide, hence we provide exchange(ei, (n) => retsende) as
a shorthand for exchange(ei, (n) => (e, e)). Another common pattern is to access neighbours’
values, which we support via nbr(ei, es) = exchange(ei, (n) => return n send es). In
nbr(ei, es), the value of expression es is sent to neighbours, and the values received from
them (gathered in n together with the default from ei) are returned as a nvalue, thus
providing a view on neighbours’ values of es.

It is crucial for the expressivity of XC that exchange (hence nbr) can send a different
value to each neighbour, to allow custom interaction, as exemplified below. Next, we show
the self-organising distance algorithm which showcases the interplay of exchange and nfold.

▶ Example 2 (Ping-pong counter). The following function produces a neighbouring value of
“connection counters” with neighbours, i.e., it associates every neighbour to the number of
times a mutual connection has been established with it.

1 def ping-pong() { // has type scheme: () → num
2 exchange( 0, (n) => retsend n + 1 )
3 }

Every time a device evaluates ping-pong, it first gathers a neighbouring value w associating
neighbours to their respective connection counter – 0 is for newly connected devices. Expres-
sion n + 1 is computed substituting w for n, incrementing each such counter (including for
newly connected devices, which now map to 1). The resulting value w + 1 is both returned
by the expression and shared with neighbours. As long as a connection between two devices
is maintained, each receives a connection counter from the other and increments it before
sending it back – overall counting the messages bouncing back-and-forth. Once a connection
between devices breaks and the corresponding messages expire, the connection counter resets
to 0, then starts increasing again in case a connection is re-established. Crucially, the program
sends different values to neighbours to keep a distinct connection counter with each. ◀

▶ Example 3 (Self-organising distance). Computing the minimum distance from any device of
the network to a set of source devices results in a gradient structure [10]. Gradients are a key
self-organisation pattern with several applications like estimating long-range distances and
providing directions to move data along minimal paths. Function distanceTo offers a simple
implementation, consisting of a distributed version of the Bellman-Ford algorithm [26].

1 def distanceTo(src) { // has type scheme: (bool) → num
2 exchange( Infinity, (n) => retsend mux(src, 0, distanceEstimate(n)) )
3 }

Its repeated application in a (possibly mobile) network of devices stabilises to the expected
distances from devices where src is true. The exchange expression in the body updates
a local estimate of the distance by (i) using Infinity as default distance; (ii) returning
distance zero on source devices; (iii) in other devices, selecting the minimum of neighbours’
estimates increased by the relative distance estimates (Example 1). If such estimated distance
is d, then d is both shared with neighbours (as a constant map with the same estimate
d for every neighbour) and returned by the function. Operator mux (i.e., a strict version
of if that computes both its branches, and then selects the output of one of them as
result based on the condition) is needed, as sources, though returning 0, must also evaluate

ECOOP 2022
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Figure 3 XC alignment mechanism for Example 4.

function call distanceEstimate (thus sharing their value n). Any change in the network
(e.g., due to failure, mobility, dynamic joining) directly affects the domain of n, hence the
local computation and eventually the whole network—resulting in inherent adaptiveness. ◀

2.4 Compositionality through alignment
If a program executes multiple exchange-expressions, XC ensures through alignment that the
messages are dispatched to corresponding exchange-expressions across rounds.

▶ Example 4 (Neighbour average). The following function average computes the weighted
average of a value across the immediate neighbours of the current device:

1 def average(weight, value) { // has type scheme: (num) → num
2 val totW = nfold(+, nbr(0, weight), weight);
3 val totVl = nfold(+, nbr(0, weight*value), weight*value);
4 totV / totW
5 }

First, the total weight of neighbours is computed in Line 2, by first producing a nvalue of
neighbours’ weights through nbr(0, weight), and then reducing it to its total by nfold,
using weight as base value to ensure that the weight of the current device is also considered.
A similar operation is performed in Line 3, where the products weight*value of neighbours
(including the current device) are added. The weighted average is then obtained as totV /
totW and returned by the function.

This function contains two calls to nbr, which in turn perform calls to the exchange
built-in, both with messages of type num. XC ensures that the messages from the different
communicating routines are correctly dispatched to neighbours, each used only in the
corresponding call to exchange in the neighbours, thus not mixing values and weights. ◀

XC ensures that the values produced by an exchange are processed by the corresponding
exchange in the next round, i.e., the exchange in the same position in the AST and in the
same stack frame. Considering both the AST and the stack frame ensures that exchange
operations are correctly aligned also in case of branches, function calls and recursion. Figure 3
demonstrates alignment. Top-left is a tree representation of the XC program in Example 4,
accounting for stack frames and children in the AST. The larger box with multiple compart-
ments denotes the AST of a function, considering only exchange, nfold, and functions using
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them. Top-right is a system execution. Dotted arrows connect a round (circle) to the next
on the same device, and curly arrows denote messages. Within each round we show a tree
corresponding to the one top-left. Note that all rounds execute the same tree. Bottom-left
zooms into two rounds of different devices evaluating average with fully aligned program
executions: corresponding expressions at the same tree locations interact and consider each
other among neighbouring values. Red dashed arrows connecting exchange expressions that
belong to different rounds show this interaction. We will discuss partial alignment in the next
section, after introducing conditionals. Alignment is a crucial feature in XC because it enables
functional composition of distributed behaviour, ensuring that messages are transparently
dispatched in the correct way, as exemplified in the following.

▶ Example 5 (Fire detection). Function closestFire returns the distance from the closest
likely fire (if any), by relying on the simpler functions average and distanceTo, based on
arguments temperature and smoke which we can assume to be provided by available sensors.

1 def closestFire(temperature, smoke) { // has type scheme: (num, num) → num
2 val trust = nfold(+, 1, 1);
3 val hot = average(trust, temperature) > 60;
4 val cloudy = average(trust, smoke) > 10;
5 distanceTo(hot and cloudy)
6 }

In Line 2 the function establishes a trust level for the node, which is proportional to
the number of neighbours of that node (thus considering central nodes as more relevant),
computed as nfold(+, 1, 1). Line 3 checks whether the average temperature, weighted by
trust, is above 60 degrees Celsius. Similarly, Line 4 checks whether the average concentration
of smoke, also weighted by trust, is above 10%. Finally, Line 5 computes distances to places
where both conditions are met (high temperature and smoke) through function distanceTo.
Several exchange calls are evaluated by both the average and distanceTo functions: thanks
to alignment, the messages processed by each of them are those generated by the same ones
in previous rounds of neighbouring devices. ◀

2.5 Conditionals
XC supports if (cond) {e1} else {e2} conditional expressions. Crucially, their semantics
interplays with the communication semantics of XC. Since only the exchange operations in
the same position within the AST and stack frame align, with a conditional, an exchange
aligns only across the devices that take the same branch. Thus, while evaluating an XC sub-
expression, we consider only aligned neighbours, that are round neighbours which evaluated the
same sub-expression (as AST and stack frame). Non-aligned neighbours are never considered
in the evaluation of the sub-expression, e.g., for the construction of the w of received messages
in an exchange, or for determining which values of a nvalue should be folded over by a
nfold. As a result, a conditional expression splits the network into two non-communicating
sub-networks, each evaluating a different branch without cross-communication.

▶ Example 6 (Domain-isolated distance computations). Consider a connected network of
service requesters and providers. Suppose these nodes are dynamically split into two domains:
those involved in local computations (local) and those offloading computations (not local)
to gateways, special service providers which provide cloud access. We may want to compute
the distance to gateways without considering the devices involved in local computations.

1 def distanceToGateways(local, gateway) { // has type scheme: (bool, bool) → num
2 if (local) { Infinity } else { distanceTo(gateway) }
3 }
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XC program tree
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Figure 4 XC alignment mechanism with conditionals for Example 6.

During a round, the program evaluates to Infinity on devices where local is true. Such
devices are considered “obstacles” to avoid. On devices where local is false, the program
evaluates distanceTo(gateway), which consist of an exchange-expression (c.f. Example 3).
Devices in the local group do not compute such exchange expression, and do not contribute
to the assessment of distances: distanceTo is executed in isolation on non-locals.

Now suppose we would like the local subgroup to compute distances from local requester
s, and the other subgroup to still compute distances from gateways, excluding in such
computations the devices of the complementary group.

1 // has type scheme: (bool, bool, bool) → bool
2 def distanceInServiceProvisioning(local, requester, gateway) {
3 if (local) { distanceTo(requester) } else { distanceTo(gateway) }
4 }

In this case, in any round, only a single exchange expression is computed, always in the same
position in the AST (corresponding to a call of function distanceTo). However, the messages
exchanged by devices in the local group must not be matched with those exchanged by
device outside the local group, otherwise every device would just compute their distance
from the closest local requester or non-local gateway, which is not the intended behaviour.
Luckily, XC grants that this does not happen, as exchange expressions arising from different
branches have different stack frames, hence happen in separate interaction domains. ◀

Figure 4 shows partial alignment for Example 6. At the top, we show the program tree
for distanceInServiceProvisioning. Note that conditionals are not visible here. Bottom-
right, we show a system execution: in each round, only one of the distanceTo branches is
executed – the branch that has not been evaluated is dashed. Bottom-left, we zoom into two
rounds of devices that align only partially: they evaluate some common expression which is
fully aligned (red dashed arrow), then follow a different branch where there is no alignment.
Notice that alignment occurs on the execution of function distanceInServiceProvisioning
but no actual data is exchanged (since no evaluated exchange or nfold expression is aligned).
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2.6 Fault tolerance in XC
The abstractions discussed so far allow and encourage developers to write XC programs that
are resilient to failures. In case a node fails or a message gets lost in inter-node communication,
the exchange handles the failure transparently from programmers: the node simply does
not show up among the neighbours of a given node in the next alignment. With exchange,
developers specify the logic to collectively operate over the neighbours’ messages, and make
no assumptions on their number or identity, while being encouraged to express the behaviour
homogeneously through point-wise operations and nfold. As a result, in XC it is idiomatic
to write programs with implicit fault tolerance and resilience to devices that dynamically join
and leave the set of neighbours (e.g., because they physically change location), transparently
from programmers. Programming resilient behaviour can also take advantage of functional
composition: simpler resilient blocks can be composed together, building complex applications
while retaining fault-tolerance. However, it is important to note that XC does not provide
guarantees on fault tolerance by itself. Being a Turing-complete language, non-resilient
behaviour can inevitably be programmed, although mostly non-idiomatically: guarantees on
idiomatic subsets of the language may be provided, as briefly discussed in Section 4.

3 XC at Work

We now show XC in action by means of example applications in areas like WSNs, IoT, and
large-scale CPS. The examples are chosen to (i) highlight how composition in XC, enabled
by alignment, allows programmers to divide and incrementally deal with the complexity
of expressing distributed adaptive behaviour; and (ii) show that the expressiveness of XC
enables the encoding of advanced algorithms (e.g., with self-organisation properties); and
(iv) present reusable components used later in our evaluation (Section 6).

▶ Example 7 (Gossip). The function gossipEver spreads the information associated to an
event (e.g., pressing a button) through a network. It consists of a single exchange expression
executed on every device.

1 def gossipEver(event) { // has type scheme: (bool) → bool
2 exchange( False, (n) => retsend nfold(or, n, self(n) or event) )
3 }

The first argument of the exchange (Line 2) sets the initial value to False for n (and
thus for newly-connected devices, including for the current device in its first round). The
second argument is a lambda, whose parameter n is the nvalue representing the gossips of
neighbouring devices (including the current device itself, for which n includes the gossip
value in its previous round). Function nfold collapses the neighbours’ gossips through binary
operation or (checking whether there is any gossip equal to true), with the starting value
self(n) or event which is true if either the current device had a true gossip in its previous
round (i.e., self(n) is true) or a true value is fed right now (event). The resulting value,
the new gossip for the device, is both returned by the function and sent to each neighbour. ◀

Notice that the gossip function is agnostic to the network structure and it avoids explicit
message management. Its repeated application by a (possibly mobile) network of devices
realises the expected behaviour, returning true in every device after a button has been pressed
anywhere in the network as soon as possible, that is, as soon as the fastest chain of messages
from the originating event is able to reach the device.

This function is fully decentralised and every device executes the same logic. Yet, gossip
only spreads a Boolean event, and once the gossip becomes true, there is no way to flip it to
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false again. Arbitrary data types and reversibility, require one to break symmetry: some
devices (leaders) act as sources of truth, and the others will receive their most recent data
through a broadcast routine, such as the following.

▶ Example 8 (Broadcast). Function broadcast below implements the propagation of the
value at nodes of minimal dist outwards, along minimal paths ascending dist. We assume
that dist is produced by a function such as distanceTo (Example 3).

1 def broadcast(dist, value, null) { // has type scheme: (num, A, A) → A
2 val selfRank = (dist, uid);
3 val nbrRank = nbr(selfRank, selfRank);
4 val bestRank = nfold(min, nbrRank, selfRank);
5 val parent = nbrRank == bestRank;
6 exchange( value, (n) =>
7 val selfKey = (value==null, selfRank);
8 val nbrKey = (n==null, nbrRank);
9 val res = snd(nfold( min, (nbrKey, n), (selfKey, value) ));

10 return res
11 send mux(nbr(False, parent), res, null)
12 )
13 }

First each device identifies a single parent device, as the neighbour having the minimal rank,
computed in bestRank (Line 4). Such rank is a pair of dist and uid (Line 2), ordered
lexicographically, ensuring that the parent is the neighbour of minimal distance to the
knowledge source (using uid to break ties). The chosen parent is encoded as the only
neighbour for which a true value is present in nvalue parent (Line 5).

Then, an exchange expression sorts out the broadcast received from parent devices,
propagating the result to children. The value of the device for the current round is computed
in res (Line 9), and is taken from the neighbour with the minimum key, i.e., minimum rank
for a non-null value (we assume that False < True). For the current device, we use the
argument value (Line 7). For neighbours, we use the value received from them in n (Line 8).
The resulting value res is returned by exchange and by the whole function, (Line 10). This
(possibly band-consuming) value is sent only to neighbours which selected the current device
as parent, that is, neighbours where nbr(False, parent) is true. Every other neighbour
receives null instead (possibly lighter to transmit): the selection over values and nulls is
performed per-neighbour by built-in operator mux (Line 11). ◀

The function broadcast above uses differentiated messages to neighbours to reduce the
network load. This result is achieved by sending values only to the neighbours that actually
need them, using placeholder null values for the others. In case the message propagation
does not need to reach every device of the network, but only some targets, this load can be
further reduced by restricting the broadcast into a channel, as we explain next.

▶ Example 9 (Broadcast into a Channel). The function channelBroadcast selects a region
channel of a given width connecting a source device with a destination device dest, and
performing a broadcast within the region.

1 // has type scheme: (bool, bool, num, A, A) → A
2 def channelBroadcast(source, dest, width, value, null) {
3 val ds = distanceTo(source);
4 val dd = distanceTo(dest);
5 val channel = ds + dd <= broadcast(ds, dd, Infinity) + width;
6 if (channel) { broadcast(ds, value, null) } else { null }
7 }
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The channel region is computed through the geometrical definition of ellipse (Line 5): the sum
of the distances ds towards source and dd towards destination (computed by distanceTo,
Lines 3-4) should surpass the distance between source and destination by at most width for
devices in the channel. The distance between source and destination is obtained through
broadcast(ds, dd, Infinity): the parameter ds of the broadcast defines that values
should be propagated from the source outwards; and the value propagated is the parameter
dd, as it is evaluated in the source (and thus the distance between source and destination).
Then, a conditional is used to selectively broadcast the value in the source outwards only in
the channel region – null elsewhere (Line 6). ◀

The example illustrates functional composition: channelBroadcast composes several
instances of distanceTo (Example 3) and broadcast (Example 8) to realise a more complex
behaviour. Also, the composition preserves the self-organising properties of its constituent
parts, hence it able to automatically adapt to changes in source, dest, width, and topology
(because, e.g., of mobility or failure).

So far, we have presented functions to build a communication structure to disseminate
information over the network. Yet, we haven’t addressed the problem of collecting such
information, especially in the non-trivial case where it is obtained by inspecting the whole
network (or part of it).

▶ Example 10 (Information collection). The collect algorithm (inspired by [8]) aggregates
the value currently present in the network, via an arithmetic or an idempotent accumulator,
progressively in a network towards a source node—identified as the zero-value of a gradient
dist (cf. Example 3). The result is updated when values change, unlike Example 7 where a
true cannot revert to false.

1 def weight(dist, radius) { // has type scheme: (num, num)→num
2 max(dist-nbr(0,dist),0)*(radius-senseDist)
3 }
4 def normalise(w) { // has type scheme: (num) → num
5 w / nfold(+, w, 0)
6 }
7 // has type scheme: (num, num, A, (A, A) → A, (A, num) → A) → A
8 def collect(dist, radius, value, accumulate, extract) {
9 exchange( value, (n) =>

10 val loc = accumulate(n, value); // local estimate
11 return loc
12 send extract(loc, normalize(weight(dist, radius)))
13 )
14 }

The exchange construct (Line 9) handles neighbour-to-neighbour propagation of partial
accumulates. First, it applies accumulate (Line 10) to aggregate the local value with
the received partial accumulates n into loc; this is the result of collect (Line 11). In
other words, the idea is that the local partial accumulate is obtained by accumulating
the partial accumulates of neighbours. Then, it computes a normalised weight (Line 12),
via functions weight and normalise, measuring neighbour reliability, using this weight
to extract from loc the partial accumulates to send to neighbours (Line 12). Function
weight (Line 1) is parametrised by a gradient value dist and value radius representing the
maximum communication range for neighbour interaction; so, the expression is non-negative
and the computed weight is larger for neighbours farther from the communication boundaries
(i.e., less likely to be lost as neighbours) and closer to the source of the collection. In
normalise (Line 4), normalisation of weights w is achieved by dividing the computed weights
for neighbours by the sum of the neighbours’ weights. Depending on the nature of the
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1 def smartC(isDetector, isOpsCentre, channelWidth, inspectionRadius, commRadius,
2 localWarning, warningThreshold, localLog, nullLog, logCat) {
3 val detectorDist = distanceTo(isDetector);
4 val inspected = detectorDist < inspectionRadius;
5 val nullReport = (uid, 0, nullLog);
6 val report = if (inspected) {
7 val (sumWarning,numNodes) = collect(detectorDist, commRadius, (localWarning, 1.0),
8 (v, l) => (nfold(+, fst(v), fst(l)), nfold(+, snd(v), snd(l))),
9 (v, w) => (fst(v)*w, snd(v)*w)

10 );
11 val meanWarning = sumWarning / numNodes;
12 val localWarning = meanWarning > warningThreshold;
13 val warning = broadcast(detectorDist, localWarning, False);
14 val logs = if (warning) {
15 collect(detectorDist, commRadius, localLog, logCat, (v, w) => v)
16 } else { nullLog };
17 (uid, meanWarning, logs)
18 } else { nullReport };
19 channelBroadcast(isDetector, isOpsCentre, channelWidth, report, nullReport)
20 }

Figure 5 Possible XC implementation of a smart city monitoring application

aggregation (arithmetic or idempotent, e.g., sum or minimum), different accumulate and
extract functions are used: in the former case, the value is multiplied by the weight:

1 def accumulate(v, l) { nfold(+, v, l) } // has type scheme: (A, A) → A
2 def extract(v, w) { v * w } // has type scheme: (A, num) → A

In the latter case, we choose to either send the value or not (also increasing efficiency as in
Example 8) depending on whether the weight exceeds a given threshold:

1 def accumulate(v, l) { nfold(min, v, l) } // has type scheme: (A, A) → A
2 def extract(v, w) { mux(w >= 0.25, v, Infinity) } // has type scheme: (A, num) → A

Improvements over [8] are both stylistic (cleaner code) and in the precision of weights, since
in [8] they had to be indirectly (and approximately) deduced on the receiving end. ◀

▶ Example 11 (Smart City Monitoring). We consider SmartC, a scenario of smart city
monitoring, where devices cooperate with neighbours to process and relay information in
the distributed system. This is achieved by the collective execution of an XC program. The
system consists of detectors, non-mobile nodes (e.g., smart traffic lights) that collect in a
bounded surrounding area the contributions of other possibly mobile devices that we call
data-providers (e.g., buses or people with wearables). Data-providers exhibit a local warning
value, which signals a need for intervention. Detectors collect warning values and compute a
mean warning in their area: when the mean warning exceeds some threshold, then they also
collect logs from data-providers and dispatch collected data towards the closest operations
centre. The operations centre might be several hops away from the source, so we want to
“broadcast” data hop-by-hop along a short “path” of devices—but without flooding the whole
network. The system (i) collects and routes data from nodes closer than a certain range
towards the closest detector; (ii) lets detectors compute the mean levels of warning of the
corresponding areas; (iii) lets detectors collect and aggregate logs if their mean warning
exceeds a certain threshold; and (iv) creates self-healing broadcast channels from detectors to
the closest operations centres. This logic is implemented by function smartC (Figure 5), which
reuses distanceTo, collect, broadcast and channelBroadcast (Examples 3 and 8–10).
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Syntax:
e ::= x

∣∣ fun x(x){e}
∣∣ e(e)

∣∣ val x = e; e
∣∣ ℓ ∣∣ w expression

w ::= ℓ[δ 7→ ℓ] nvalue

ℓ ::= b
∣∣ fun x(x){e}

∣∣ c(ℓ) local literal

b ::= exchange
∣∣ nfold

∣∣ self
∣∣ updateSelf

∣∣ uid
∣∣ ... built-in function

Free variables of an expression:
FV(x) = {x} FV(ℓ) = FV(w) = ∅ FV(fun x0(x1, ... , xn){e}) = FV(e) \ {x0, ... , xn}
FV(e0(e1,...,en))=

⋃
i=0...nFV(ei) FV(val x = e; e′) = FV(e) ∪ FV(e′) \ {x}

Syntactic sugar:
(x) => e ::= fun y(x){e} where y is a fresh variable

def x(x){e} ::= val x = fun x(x){e};
if(e){e⊤} else {e⊥} ::= mux(e, () => e⊤, () => e⊥)()

Figure 6 Syntax (top), free variables (middle) and syntactic sugar (bottom) for FXC expressions

Function smartC is defined in terms of local values representing parameters for the
algorithm (e.g., warningThreshold) or varying inputs (e.g., localLog, which denotes a set
of log items for a node), which can be thought of as provided by sensors and may change
dynamically. The algorithm works as follows. First, a gradient of distances from detectors is
computed in the system (Line 3). The nodes that are inspected are only those for which the
gradient value is less than inspectionRadius (Line 4). Then, two different behaviours are
defined based on whether a node is inspected or not (Line 6). Nodes not inspected just return
nullReport (Lines 5 and 18). In the domain of inspected nodes, including the detector, a
collection process is activated (Line 7 to 10) in order to let the detector obtain the sum of
warning and the number of devices in the area. With such information, the detector can
process the mean warning (Line 11) and decide whether the warning level is high (Line 12):
such a decision (warning significance) is broadcast from the detector to the rest of the area
(Line 13), as a kind of notification to the devices in the surroundings. Also, depending on
whether the warning level is high (Line 14 to 16), it either collects the logs from all the nodes
in the area (Line 15), or not. In any case, a broadcast on a channel is performed to resiliently
communicate the report (set of logs) from the detector to the operations centre (Line 19). ◀

4 Formalisation of XC

In this section we present a formalisation of the core concepts introduced in this paper
through Featheweight XC (FXC), a minimal calculus for XC. By virtue of its minimality, FXC
is particularly convenient for proving properties both of the language as a whole and of
algorithms and fragments of it, such as: type soundness and determinism with respect to
let-polymorphic typing, denotational characterisation of expressions as space-time values [7],
with functional compositionality of global behaviour. We further discuss XC expressivity and
resilience properties (inherited from results in literature) in Section 7.

4.1 Syntax
Figure 6 (top) shows the syntax of FXC. As in [34], the overbar notation indicates a (possibly
empty) sequence of elements, e.g., x is short for x1, ... , xn (n ≥ 0). Note that the syntax
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induces a standard functional language, with no peculiar features for distribution: distribution
is nonetheless apparent in the operational semantics. An FXC expression e can be either:

a variable x;
a (possibly recursive) function fun x(x){e}, which may have free variables;
a function call e(e);
a let-style expression val x = e; e;
a local literal ℓ, that is either a built-in function b, a defined function fun x(x){e} without
free variables, or a data constructor c applied to local literals (possibly none);
an nvalue w, as described in Section 2.2.

FXC can be typed using standard let-polymorphism for higher-order languages, without
distinguishing between types for local values and types for neighbouring values. This is
accomplished by promoting local values to nvalues, and designing constructs and built-in
functions of the language to always accept nvalues for their arguments (more details on this
in Section 4.2, Device semantics). As local and neighbouring types are not distinguished by
FXC, in this section we avoid underlying neighbouring values and their types. Free variables
are defined in a standard way (Figure 6, middle), and an expression e is closed if FV(e) = ∅.
Programs are closed expressions without nvalues as sub-expressions. Indeed, nvalues only
arise in computations, and are the only values produced by evaluating (closed) expressions.

The syntax in Figure 6 (top) diverges partially from the one used in Sections 2 and 3.
However, the full syntax of XC can be recovered by defining missing constructs as syntactic
sugar. Besides some standard simplifications (infix notation for binary operators, omitted
parenthesis in 0-ary constructors, implicit pair constructor), some non-trivial encoding is
described in Figure 6 (bottom). In particular, lambda expressions can be converted into
fun-expressions with a fresh name, and defined functions can be encoded as a let expression
binding the function name. Branching can be encoded by abstracting the code in the branches,
selecting one of them with the mux operator and then applying it.

4.2 Operational semantics
The operational semantics is defined as (i) a big-step device semantics, providing a formal
account of the computation of a device within one round; and (ii) a small-step network
semantics, formalising how different device rounds communicate.

Device semantics. Figure 7 presents the device semantics, formalised by judgement δ;σ; Θ ⊢
e ⇓ w; θ, to be read as “expression e evaluates to nvalue w and value-tree θ on device δ with
respect to sensor values σ and value-tree environment Θ”, where:

w is called the result of e;
θ is an ordered tree with nvalues on some nodes (cf. Figure 7 (top)), representing messages
to be sent to neighbours by tracking the nvalues produced by exchange-expressions in e,
and the stack frames of function calls;
Θ collects the (non expired) value-trees received by the most recent firings of neighbours
of δ, as a map δ1 7→ θ1, ..., δn 7→ θn (n ≥ 0) from device identifiers to value-trees.

We assume every function expression fun x(x){e} occurring in the program is annotated with
a unique name τ before the evaluation starts. Then, τ will be the name for the annotated
function expression funτ x(x){e}, and b the name for a built-in function b.

The syntax of value-trees and value-tree environments is in Fig. 7 (top). The rules for
judgement δ;σ; Θ ⊢ e ⇓ v; θ (Fig. 7, middle) are standard for functional languages, extended
to evaluate a sub-expression e′ of e w.r.t. the value-tree environment Θ′ obtained from Θ
by extracting the corresponding subtree (when present) in the value-trees in the range of
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Auxiliary definitions:
θ ::= ⟨θ⟩

∣∣ w⟨θ⟩ value-tree σ sensor state
Θ ::= δ 7→ θ value-tree environment δ device identifier

πi(⟨θ1, ... , θn⟩) = θi πi(w⟨θ1, ... , θn⟩) = θi πi(δ 7→ θ) = δ 7→ πi(θ)

δ 7→ θ |f =
{
δi 7→ θi | θi = w⟨θ′⟩, name(w(δi)) = name(f)

} name(b) = b
name(funτ x(x){e}) = τ

Evaluation rules: δ;σ; Θ ⊢ e ⇓ w; θ
[E-NBR]

δ;σ; Θ ⊢ w ⇓ w; ⟨⟩
[E-LIT]

δ;σ; Θ ⊢ ℓ ⇓ ℓ[]; ⟨⟩

[E-VAL]
δ;σ;π1(Θ) ⊢ e1 ⇓ w1; θ1
δ;σ;π2(Θ) ⊢ e2[x := w1] ⇓ w2; θ2

δ;σ; Θ ⊢ val x = e1; e2 ⇓ w2; ⟨θ1, θ2⟩

[E-APP]
δ;σ;πi+1(Θ) ⊢ ei ⇓ wi; θi for all i ∈ 0, ... , n
δ;σ;πn+2(Θ |f) ⊢ f(w1, ... , wn) ⇓∗ wn+1; θn+1 where f = w0(δ)

δ;σ; Θ ⊢ e0(e1, ... , en) ⇓ wn+1; f[]⟨θ0, ... , θn+1⟩

Auxiliary evaluation rules: δ;σ; Θ ⊢ f(w) ⇓∗ w; θ
[A-FUN] δ;σ; Θ ⊢ e[x := funτ x(x){e}, x := w] ⇓ w; θ

δ;σ; Θ ⊢ funτ x(x){e}(w) ⇓∗ w; θ
[A-UID]

δ;σ; Θ ⊢ uid() ⇓∗ δ; ⟨⟩

[A-XC]
Θ = δ 7→ w⟨...⟩ w = wi[δ 7→ w(δ)]
δ;σ;π1(Θ) ⊢ wf (w) ⇓ (wr, ws); θ

δ;σ; Θ ⊢ exchange(wi, wf ) ⇓∗ wr; ws⟨θ⟩

[A-SELF]

δ;σ; Θ ⊢ self(w) ⇓∗ w(δ); ⟨⟩

[A-FOLD]
Θ = δ1 7→ θ1, ... , δn 7→ θn ℓ0 = w3(δ)
δ;σ; ∅ ⊢ w1(ℓi−1, w2(δi)) ⇓ ℓi[]; θ if δi ̸= δ else ℓi = ℓi−1

δ;σ; Θ ⊢ nfold(w1, w2, w3) ⇓∗ ℓn[]; ⟨⟩
· · ·

Figure 7 Device (big-step) operational semantics of FXC

Θ. This alignment process is modelled by the auxiliary “projection” functions πi (for any
positive natural number i) (Fig. 7, top). When applied to a value-tree θ, πi returns the
i-th sub-tree θi of θ. When applied to a value-tree environment Θ, πi acts pointwise on the
value-trees in Θ.

The alignment process ensures that the value-trees in the environment Θ always correspond
to the evaluation of the same sub-expression currently being evaluated. To ensure this match
holds (as said before, of the stack frame and position in the AST), in the evaluation of a
function application f(w), the environment Θ is reduced to the smaller set Θ |f of trees which
corresponded to the evaluation of a function with the same name (as defined in Fig. 7 (top)).

Rule [E-NBR] evaluates an nvalue w to w itself and the empty value-tree. Rule [E-LIT]

evaluates a local literal ℓ to the nvalue ℓ[] and the empty value-tree. Rule [E-VAL] evaluates a
val-expression, by evaluating the first sub-expression with respect to the first sub-tree of the
environment obtaining a result w1, and then the second sub-expression with respect to the
second sub-tree of the environment, after substituting the variable x with w1.

Rule [E-APP] is standard eager function application: the function expression e0 and each
argument ei are evaluated w.r.t. πi+1(Θ) producing result vi and value-tree θi. Then, the
function application itself is demanded to the auxiliary evaluation rules, w.r.t. the last
sub-tree of the trees corresponding to the same function: πn+2(Θ |f). The auxiliary rule
[A-FUN] handles the application of fun-expression, which evaluates the body after replacing the
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Network configuration (sensors/environment/result fields) and action labels:
Σ ::= δ 7→ σ sensors field N ::= ⟨Σ; Ψ;ψ⟩ network configuration
Ψ ::= δ 7→ Θ environment field
ψ ::= δ 7→ w result field act ::= δ

∣∣ δδ′
∣∣ conf action label

Notations for restriction and update of a sensors/environment/result field m:
m |X = m′ s.t. dom(m′) = dom(m) ∩X and m′(δ) = m(δ)

m[m′] = m′′ s.t. dom(m′′) = dom(m) ∪ dom(m′), m′′(δ) =
{
m′(δ)if δ ∈ dom(m′)
m(δ) otherwise

Transition rules: N
act−−→ N

[N-FIRE] Θ = filter(Ψ(δ)) δ; Σ(δ); Θ ⊢ emain ⇓ w; θ Θ′ = Θ[δ 7→ θ]
⟨Σ; Ψ;ψ⟩ δ−→ ⟨Σ; Ψ[δ 7→ Θ′];ψ[δ 7→ w]⟩

[N-RECV] θ = Ψ(δ)(δ) Θ′ = Ψ(δ′)[δ 7→ θ]
⟨Σ; Ψ;ψ⟩ δδ′

−−→ ⟨Σ; Ψ[δ′ 7→ Θ′];ψ⟩
[N-CONF] δ = dom(Σ′) Ψ0 = δ 7→ ∅

⟨Σ; Ψ;ψ⟩ conf−−−→ ⟨Σ′; Ψ0[Ψ |δ];ψ |δ⟩

Figure 8 Network (small-step) operational semantics of FXC

arguments x with their provided values w, and the function name x with the fun-expression
itself. Rules [A-UID] and [A-SELF] trivially encode the behaviour of the uid and self built-
ins. Rule [A-XC] evaluates an exchange-expression, realising the behaviour described at the
beginning of Section 2.3. Notation w1[δ 7→ w(δ)] is used to represent the nvalue w1 after
the update for each i of the message for δi with the custom message wi(δ). The result is
fed as argument to function wf : the first element of the resulting pair is the overall result,
while the second is used to tag the root of the value-tree. Rule [A-FOLD] encodes the nfold
operators. First, the domain of Θ is inspected, giving a (sorted) list δ1, ... , δn. An initial local
value ℓ0 is set to the “self-message” of the third argument. Then, a sequence of ℓi is defined,
each by applying function w1 to the previous element in the sequence and the value w2(δi)
(skipping δ itself). The final result ℓn is the result of the application, with empty value-tree.
Auxiliary rules for the other available built-in functions are standard, do not depend on the
environment, hence have been omitted.

Network semantics. The evolution of a whole network of devices executing a program emain

is formalised by transitions N act−−→ N ′, which reads “network configuration N evolves to
network configuration N ′ by a transition with label act”. The syntax of network configurations
and action labels is in Figure 8 (top). A network configuration N is a triple ⟨Σ; Ψ;ψ⟩, where:

Σ maps each device δ of the network to a sensors status σ, representing the status of
sensors of δ at a given time (for any choice of a representation of sensor status σ);
Ψ maps each device δ of the network to a value-tree environment Θ, collecting the (non
expired) value-trees received by the most recent firings of neighbours of δ;
ψ is a partial mapping that, at any given time, maps devices δ of the network to the
nvalue w produced by their most recent firings (if any such firing already happened).

We remark that, for each device δ, the sensors status Σ(δ), the value-tree environment Ψ(δ)
and the nvalue ψ(δ) are locally stored in the device δ – there is no global memory.

Each transition N
act−−→ N ′ consists of one of these three different evolution steps:

if act = δ, it formalises the round of device δ, and the memorisation of the resulting
nvalue w and value-tree θ in the device’s local store;
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if act = δδ′ with δ ̸= δ′, it formalises that device δ′ receives a value-tree θ from δ;
if act = conf, it formalises an overall change of the network configuration as (possible)
change of sensor status of devices and (possible) entering/leaving of devices in the network.

A sequence of transitions ⟨∅; ∅; ∅⟩ act1−−→ ...
actn−−−→ Nn thus represents the operational evolution

of a network. The transition rules of the semantics of a program emain are given in Figure 8
(bottom). Rule [N-FIRE] formalises a computation round of device δ: given the locally-
available sensors status Σ(δ) and value-tree environment filtered out of expired value-trees
Θ = filter(Ψ(δ)), it uses the device semantics judgement to obtain the nvalue w and value-tree
θ produced by the round. Then, it uses w to update ψ(δ), and uses θ to update Θ(δ)
(thus modelling immediate reception of the self-message). The filtering function filter(·)
is a parameter of the calculus, meant to clear out old stored values from the value-tree
environments in Ψ, usually based on space/time tags attached to value-trees.

Rule [N-RECV] formalises the reception of a value-tree from device δ by another device
δ′. The message conceptually dispatched is the value-tree θ corresponding to δ obtained
from the value-tree environment Ψ(δ) of δ itself. On the recipient side, the received message
θ is locally associated to δ in the value-tree environment Ψ(δ′) of δ′. Even though rule
[N-RECV] dispatches the same message θ to any recipient δ′, an optimised implementation
could compress received messages by collapsing each received nvalue w within θ to the message
w(δ′) for δ′, discarding the rest before storing it in the local memory.

Rule [N-CONF] formalises an update of the sensor status of devices and entering/leaving of
devices (auxiliary notations m |X and m[m′] are in Fig. 8, second frame, representing domain
restriction and pointwise update of maps). Given a new sensors mapping Σ′, the resulting
network configuration contains exactly the devices δ in the domain dom(Σ′) of Σ′. This is
achieved by reducing the result field ψ to the new set of devices through ψ |δ, constructing
an environment field Ψ0 mapping every δ to the empty environment ∅, then reducing the
existing environment field Ψ to the new set of devices through Ψ |δ, and finally using this
to overwrite the values in Ψ0. Note that the reboot of a device δ can be modelled by two
applications of rule [N-CONF]: one removing δ from the network configuration and another
re-inserting it. When a device δ is removed from the network, the content of its local memory
(sensors, messages, result) are lost.

5 Implementation

We implemented a Scala and a C++ version of XC. The Scala version has been developed
as an extension of ScaFi [22], and aims at showcasing the DSL and maximize portability
to different platforms, including simulators. The C++ version has been developed as an
extension of FCPP [5], and has consequently been integrated into the main FCPP distribution.
This version targets performance and devices with limited resources. Running experiments
on real IoT devices with the C++ version is still work in progress.

5.1 Scala DSL
We provide an implementation of XC as a DSL embedded into the Scala language3 because of
its cross-platform support [30], popularity for building distributed systems [33], and advanced
support for internal DSLs [4]. This implementation has been developed as an extension of

3 The Scala DSL is publicly available under the Apache 2.0 license at https://github.com/scafi/
artifact-2021-ecoop-xc and permanently as an archived artifact on Zenodo [21].
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ScaFi [22]. The DSL is organized into a few core XC constructs and a library of reusable
functions. The core constructs (cf. Figure 6) are declared by a Scala trait with the following
interface:

1 trait XCLang {
2 def branch[T](cond: NValue[Boolean])(th: => NValue[T])(el: => NValue[T]): NValue[T]
3 def exchange[T](init: NValue[T])(f: NValue[T] => (NValue[T],NValue[T])): NValue[T]
4 }

The if/ else of XC is modelled as a branch function to avoid conflicts with Scala’s if. The
two branches are call-by-name parameters, as usual. A neighbour value is implemented as a
class with a default message and a concrete map of messages for other devices.

1 class NValue[T](val defaultMessage: T, val customMessages: Map[ID,T] = Map.empty) {
2 def fold[V>:T](init: V)(f: (V,V)=>V): NValue[V] = // ...
3 def map2[R,S](other: NValue[R])(m: (T,R)=>S): NValue[S] = // ...
4 // more built-ins ... (cf. Figure 2)
5 }

We leverage Scala implicit conversions and extension methods [25], imported by mixing in
XCLib, to automatically convert values of type T to NValues of Ts and, e.g., to extend NValues
of Numerics to accept operators like + (to combine nvalues point-wise). An abstract class
XCProgram[T] requires programmers to override the method main:T. Moreover, it exposes
methods sense and senseNeighbour to subclasses for retrieving local and neighbouring
values from the execution environment. For instance, the gradient program (Example 3) can
be encoded as follows.

1 object gradient extends XCProgram[Double] with XCLib {
2 def main =
3 exchange(Double.PositiveInfinity)(n =>
4 mux(sense[Boolean]("source")){ 0.0 }{
5 (n + senseNeighbour("distance")).fold(Double.PositiveInfinity)(Math.min)
6 })
7 }

An XCProgram[T] models a single local computation. As discussed (Section 2.1), a XC
system involves multiple devices repeatedly acquiring context, computing the round, and
propagating messages to neighbours. The execution environment provides a context with
values from the sensors for the built-in sensing functions (cf. Figure 2) and with the messages
from the neighbours. For example, the following code shows the execution on a device:

1 while(true) {
2 val sensorData = getData() // implementation-specific
3 val messagesFromNeighbours = getMessages() // implementation-specific
4 val context = Context(sensorData, messagesFromNeighbours)
5 val (output, messageCollection) = gradient.fire(context)
6 process(output) // implementation-specific
7 propagate(messageCollection) // implementation-specific
8 }

Note that in this implementation message communication occurs only before (Line 3) and
after (Line 7) the firing (Line 5) to ensure that the exchange within the round are all executed
atomically w.r.t. the messages that are received and sent by the device (Section 2.1). The
details of a system implementation depends on the target deployment. Example deployments
that could be implemented include a peer-to-peer network of IoT devices (where each node
handles computation and communication with neighbours), a collection of thin IoT devices
connected to the cloud (where only sensor and actuator data flows between the IoT nodes
and the cloud, which is responsible for running computations and internally handling the
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1 FUN bool gossipEver(ARGS, bool event){ CODE
2 return nbr(CALL, false, [&](field<bool> n){
3 return any_hood(CALL, n) or event;
4 });
5 }

Figure 9 Implementation of the gossipEver function in C++/XC.

message passing), or a simulator (where physical and/or logical devices are virtualised).
What these implementations must do in order to support a XC system is providing the
implementation-specific functions of the listing above: getData() to obtain values from the
local environment, getMessages() to retrieve messages from neighbours (e.g., a peer node
may keep them in a buffer, a cloud platform may use an in-memory database service, a
simulator may use an ad-hoc map-like data structure), process() to drive actuations (e.g.,
locally on a node, or through a command on a cloud back-end), and propagate() to send
exported data to neighbours (e.g., through a direct message to the neighbour, or through a
write on shared state in simulations or cloud).

5.2 C++ DSL
We implemented XC as a C++ DSL4, by extending FCPP [5]. This implementation is
designed for (i) efficiency, and (ii) custom architectures. For (i), we rely on C++’s compile-
time optimization and execution on the bare metal. We also performed careful profiling to
manually optimize crucial parts of the library. For neighbouring values, we use vector<T>
(having two sorted lists for ids and values) from C++ STL—which is more efficient than hash
maps for linear folding and point-wise operations. For communication, we serialise messages
and pass them to the network driver (for low level devices this is usually a non-standard API
where one can configure the byte content of the message and the transmission power). For (ii)
we exploit that C/C++ compilers are usually available for custom architectures, while also
aiming to minimise the amount of dependencies, to ease the deployment. For instance, the
implementation includes its own serialisation header, compile-time type inspection utilities,
multi-type valued maps, option types, quaternions, tagged tuples, etc.

Compared to the Scala implementation, the embedding of XC into C++ is more verbose,
thus requiring additional effort for development (see Figure 9 for a code sample). We are
currently working on testing this implementation on several different back-ends, including:

processing of XC algorithms on large graph-based data in HPC;
deployment on microcontroller architectures with either Contiki OS or MIOSIX.

No external dependencies are needed for those back-ends.

6 Evaluation

In this section, we evaluate XC.5 The goal is to show that (RQ1) the decentralised execution
of the XC program on each device results in the desired collective behaviour and that (RQ2)
the overall behaviour can be expressed by composing functions of collective behaviour that

4 The C++ DSL is publicly available under the Apache 2.0 license at: https://fcpp.github.io.
5 The simulation framework, its description, and instructions for reproducing the experiments are

publicly available at https://github.com/scafi/artifact-2021-ecoop-smartc and permanently as
an archived artifact on Zenodo [20].
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(a) Communication structures are in place (inspec-
tion area and channel from detector to operations
centre). Sensors detect some dangerous situation.

(b) A blackout destroys the original channel. The
channel self-repairs by circumventing the obstacle.

Figure 10 Two snapshots of the SmartC case study.

correctly combine thanks to alignment. The evaluation does not focus on the efficiency
of fault recovering because this aspect is application-dependent – not language-dependent.
For instance, the recovery time for a channel depends on the algorithms used to compute
distances and broadcasts, relative to the network assumptions.

SmartC case study. We consider a simulation of the SmartC scenario described in Ex-
ample 11, and we implement it both in the Scala and C++ DSLs (the results in this section
refer to the Scala implementation). We believe that other application domains, such as
cyber-physical systems (CPS) and wireless sensor networks (WSN), would not pose funda-
mentally different challenges compared to the considered scenario: WSN focus on information
flows, which is part of the case study, and CPS emphasize on actuation, which could be a
simple variant of the scenario, e.g., where agents move according to the gathered reports.
In the simulation setup, 600 devices each running the XC program communicate with every
neighbour currently in a 50-metre range once per second. We consider a single detector
and a single operations centre. The simulator enables the collection of data exported at the
individual nodes (i.e., the program Example 11 is extended with simulation-specific code).
We measure, every second, the actual (instantaneous) mean warning in the inspection area
(using an oracle, namely a process that can inspect the simulated system at any instant) and
the mean warning measured by the operations centre. We consider the average result over
30 simulations varying the actual displacement of devices and scheduling offsets. We inject
a blackout event that disconnects a set of devices from the system, hence disrupting the
channel. Figure 10 shows two snapshots of the simulation with devices (black dots), detector
(red dot), sensors within the area inspected by the detector (green dots), operations centre
(magenta dot), and inoperable devices (cyan dots). Semi-transparent red squares denote
the warning level locally perceived by sensors. Blue squares are nodes in the channel from
detector to operations centre.

Results. Figure 11 shows that the mean warning received by the operations centre (blue)
during a run approximates the actual warning in the inspected area (magenta). The jags in
the second blue wave are due to perturbations (exacerbated by the obstacle) that temporarily
destroy the channel in a few simulations, while delays depend on the firing frequency and
communication hops (from inspection area edges to detector to operations centre).
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Figure 11 Execution of SmartC.

For (RQ1), this result shows that the XC program enables the system to self-organise in
such a way that the operations centre can acquire the mean warning level aggregated by the
detector, in spite of environmental changes and perturbations induced by mobility and failure.
For (RQ2), we remark that the self-organising behaviour resulting from the XC program in
SmartC is achieved by direct composition of several reusable blocks of collective behaviour,
namely distanceTo, broadcast, collect, and channelBroadcast (cf. Example 11).

Comparison with other programming models. Additionally, to get a sense of the benefit
of the XC implementation w.r.t. other programming models, we re-implemented functions
distanceTo and channel (a version of channelBroadcast without the final broadcast) with
actors and pub-sub6. Essentially, the intuition of the XC advantage in terms of expressiveness
lies in the implicit declaration of data exchange for each building block usage, instead of
the more explicit and verbose message handling/sending (for actors) and topic forging with
event consuming/producing (for pub-sub). Despite field calculi have been studied in a series
of papers [49], no systematic comparison (e.g. via formal translation) with other approaches
has been previously carried out. There are two challenges: (i) very few works target the
kind of distributed systems (e.g. self-organisation) targeted by XC, hence a comparison
needs to consider general-purpose languages and a wide spectrum of software designs; (ii)
system behaviour unfolds by the interplay of device semantics and network semantics (cf.
Section 4.2), which are brittle to neatly separate in other approaches. Though, we can here
focus on a comparison among (i) a pub-sub “idiomatic” solution, SPS, (ii) a pub-sub XC-like
solution SPSXC with a design inspired by XC, and (iii) an XC solution SXC. This allows us to
draw some interesting indications on the compactness that programming in XC can provide.

The core programs are 82, 28, 22 LoC long. In SPS, the logic spreads over multiple
subscription handlers, while in SPSXC and SXC the core logic is neatly separated. The SPS
version uses 4 handlers (and crucially, any additional field would need a further handler), 2
sends, and 4 publishes, while SPSXC uses 2, 1, and 3 resp. Also, SPS keeps 6 state variables
for the input context of a device–SPSXC only 3. W.r.t. SXC, SPSXC has a coding overhead due
to the topics management and to the more brittle handling of neighbour data, of about 27%
more LoC, 73% more words, and 35% more method calls. Finally, the main limitation of
SPS is the loss of compositionality, the inter-dependence between the different computations
of fields, and the fragility that stems from the management of change propagation.

6 The paradigm comparison is publicly available at: https://github.com/metaphori/
aggregate-paradigm-comparison.
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7 Related work

We organize related work by first providing a high-level perspective on field-based coordination.
Next we describe approaches based on ensembles and attribute-based communication, which
are close to our solution but adopt fundamentally different design choices. Finally, we
compare in detail with field calculi and briefly discuss abstraction and compositionality.

Field-based coordination. Field-based coordination, as a paradigm to develop self-organising
systems, originate from two main research areas: spatial computing [29], where the idea
of aggregate computing [16] emerged, and coordination models and languages [39]. Two
surveys cover these two perspectives. The work in [15] reviews various DSLs ranging from
multi-agent modelling to WSNs with respect to how they measure and manipulate space-
time, model physical evolution and computation, and (meta-)manipulate computation itself.
More recently, [49] outlines the historical development from tuple-based and field-based
coordination to field calculi, covering the state of the art and future challenges within
aggregate computing research. The latter work also reviews various formalisations of field
computations. As discussed later, XC subsumes the constructs of field calculi as of [48, 6]
and so has a potential as foundation for field-based coordination, and as lingua franca to
describe distributed algorithms for large-scale systems, and specifically for self-organisation.

Ensembles and attribute-based communication. Recently, field-based coordination is
also framed as a paradigm for collective adaptive systems (CAS) [32], which is a further
application target for self-organisation techniques in general. There, related approaches
include ensemble-based engineering [19, 27] and attribute-based communication [1]. Ensemble
approaches leverage the notion of ensemble, i.e., a dynamic group of components typically
specified through a membership relationship, for CAS programming. De Nicola et al. propose
SCEL [27], a process-algebraic approach where systems are made of components, i.e., processes
with an attribute-based interface for addressing their state (knowledge) and evolving by
executing actions on predicated groups of target components; actions provide ways to read,
retrieve, put information, and to create new components. AbC [1] captures the essence of
attribute-based interaction of SCEL: components are (parallel compositions of) processes
associated with an attribute environment, and actions are guarded through predicates over
such attributes. Attribute-based communication approaches exploit attributes labelling
devices and matching mechanisms to dynamically define sets of recipients for multi-casts, to
promote coordination in CASs. This is also possible in field calculi, but it is made much
simpler by the selective communication mechanism in XC, a key contribution of this paper.

Field calculi. Field calculi, surveyed in [49], assume a neighbouring relationship for con-
nectivity and, upon that, enable defining dynamic groups of devices by exploiting branching
and recursion. However, interaction is not based on attribute matching but on execution of
the same functions (alignment) involving communication constructs like exchange.

In the following we compare XC with the field calculus (FC) [48, 6], which is the reference
model for computational fields [49], also implemented by DSLs like ScaFi [22, 23] and
FCPP [5, 13]. FC features two separate kinds of values (and types): local values (of local
type) and neighbouring values (of field type). XC combines these into a single class of nvalues
v = ℓ[δ 7→ ℓ]. In particular, local values are equivalent to nvalues ℓ[] without custom messages,
and neighbouring values are equivalent to nvalues with any valid default message. This
unification allows a simpler type system and, crucially, differentiated messages to neighbours.
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By interpreting FC values as nvalues, all FC message-exchanging constructs (nbr, rep
[48] and share [6]) can be modelled within XC: nbr is the same defined function introduced in
Section 2.2, just restricted to operate on local values only; share corresponds to an exchange
with retsend restricted to operate on local values only; and rep(e1){(x) => e2} can be
translated to exchange(e1, (x) => retsend e2[x := self(x)]). Notice that the converse
translation is not possible, as nbr, rep or share expressions with arguments of neighbouring
type have no defined behaviour in FC. Thus, nbr and exchange in XC are strictly more
expressive than their corresponding FC counterparts nbr and share: they can be used with
expressions producing nvalues with custom messages to model differentiated messages.

The properties for subsets of the field calculus (FC), as surveyed in [49], include eventual
recovery and stabilisation after transient changes (self-stabilisation) [48], independence of the
results from the density of devices [17], real-time error guarantees [12], efficient monitorability
of spatio-temporal logic properties [9, 11], and ability to express all physically consistent
computations (space-time universality) [7]. The fact that every FC program can be encoded
within XC, automatically imports all these results into XC and paves the way towards future
extensions to XC programs not expressible in FC.

Abstraction and compositionality. XC’s mechanism to send and receive messages to/from
neighbours provides a high-level programming model for message passing which abstracts over
failures (cf. Section 2.6) and is reminiscent of shared memory models. Namely: (i) nodes work
on a fixed snapshot of incoming messages once the round starts (because message exchange
occurs only between rounds) and (ii) messages can be overwritten or read multiple times
until they expire, resulting in a model similar to shared memory. This combination, thanks to
the alignment property (a distinctive feature of XC and field calculi, which enables functional
composition as illustrated in Sections 2.4 and 2.5), achieves an abstraction level that it is
not available in the competing spatial computing approaches (surveyed, e.g., in [15, 49]) or
shared memory models (surveyed, e.g., in [42, 43]).

8 Conclusion and Outlook

In this paper, we introduce the design of XC, a programming language for homogeneous
distributed systems that abstracts over a number of traditional issues in developing distributed
applications, including faults, lost messages, and asynchronicity. XC’s minimal design features
only one communication primitive. We show that despite its simplicity, XC can capture a
number of communication patterns in homogeneous distributed systems and it is effective
for writing large scale distributed software.

The design of XC, through nvalues and the new semantic construct exchange, opens
interesting directions for future work. First, we plan to characterise XC programs enjoying
two fundamental properties: self-stabilisation [48], and density independence [17], as the
ability of a field computation to converge with the density of devices filling space. Second,
works such as [48] define combinators, namely, general field functions implementing key
behavioural elements of information diffusion, collection, and degradation, the composition
of which turns out to define a number of interesting higher-level functions. We plan to devise
new such building blocks with XC, e.g. to realise sparse choice of leaders [41] and consensus
[14]. Finally, we are currently assessing the impact of XC constructs on real-world application
programming, thanks to our porting in Scala and C++.
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