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ABSTRACT

Software systems must be updated regularly to address changing

requirements and urgent issues like security-related bugs. Tradition-

ally, updates are performed by shutting down the system to replace

certain components. In modern software organizations, updates

are increasingly frequentÐup to multiple times per dayÐhence,

shutting down the entire system is unacceptable. Safe dynamic

software updating (DSU) enables component updates while the sys-

tem is running by determining when the update can occur without

causing errors. Safe DSU is crucial, especially for long-running or

frequently executed asynchronous transactions (workflows), e.g.,

user-interactive sessions or order fulfillment processes. Unfortu-

nately, previous research is limited to synchronous transaction

models and does not address this case.

In this work, we propose a unified model for safe DSU in work-

flows. We discuss how state-of-the-art DSU solutions fit into this

model and show that they incur significant overhead. To improve

the performance, we introduce Essential Safety, a novel safe DSU

approach that leverages the notion of non-essential changes, i.e.,

semantics preserving updates. In 106 realistic BPMN workflows,

Essential Safety reduces the delay of workflow completions, on

average, by 47.8% compared to the state of the art. We show that

the distinction of essential and non-essential changes plays a cru-

cial role in this reduction and that, as suggested in the literature,

non-essential changes are frequent: at least 60% and often more

than 90 % of systems’ updates in eight monorepos we analyze.
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1 INTRODUCTION

Updating long-running software systems is essential to address

changing requirements and mitigate security vulnerabilities in a

timely manner. Updates become more frequent in modern software

development following agile methods and DevOps principles [19],

requiring automation of updates and low impact on the running

system to prevent frequent interruptions.

Traditionally, software updates are performed by shutting down

software systems and restarting them after replacing some com-

ponents with new versions. While this approach is simple, it is

disruptive and infeasible for larger systems, where a full restart

may take a long time. As a result, researchers have investigated less

disruptive dynamic software updating (DSU) [52], i.e., updates that

occur while the system is running. Thereby, a component update

in the middle of a transaction must not result in inconsistencies.

For example, if a client requires a security token to access a server

and the server is updated to a new token scheme in a naïve way,

verifying a previously generated token could fail [8]. Safe DSU

determines when an update can be performed without incurring se-

mantic inconsistenciesÐthe so-called update condition. It leverages

various information, such as the system topology and the progress

of transactions.

A common solution to implement long-running, frequent, and

expensive transactions areworkflows, sometimes referred to as long-

running transactions [27, 40]. Workflows are extremely common

in modern software applications to express a sequence of tasks

and the data flow between them, decoupling process flows from

application logic and enabling automation. Workflows have been

used for a long time and recently gained popularity to orchestrate

weakly coupled components. For instance, workflow engines have

been adopted at modern software companies (e.g., Conductor at

Netflix [42]) and are supported by major cloud providers (e.g., AWS

StepFunction [4] and Google Cloud Workflows [26]).

Safe DSU is crucial for workflows: Ignoring update safety and

retrying the transactions that were broken by an update may be ac-

ceptable for applications with inexpensive, short-lived transactions,

but the cost of repeating broken transactions increases with the

transactions’ amount, duration, and resource consumption. Thus, es-

pecially for long-running or frequently executed workflows, delays

or retries after failure on component updates potentially require

large amounts of additional resources and introduce severe delays.

This issue is even more relevant in CI/CD pipelines, where changes

are small and frequently deployed [15].

Unfortunately, existing safe DSU solutions have not been studied

in the context of real-world workflows. Crucially, previous research

only considers synchronous transactions and cannot be directly

transferred toworkflows, which are asynchronous. To close this gap,

we investigate a new formal model for safe DSU suitable for work-

flows. We show how our new model can capture state-of-the-art
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DSU approaches and analytically compare them within the model,

setting the conceptual ground for the performance differences that

we later inspect empirically.

Another challenge in using safe DSU for workflows is that exist-

ing approaches introduce significant performance overhead. They

either do not reach their update condition in a timely manner

(Version Consistency (VC) [8, 38]) or make strong assumptions

sacrificing safety if the assumptions are not satisfied (Tranquil-

ity (TQ) [60]). To reduce the performance overhead compared to

the state of the art and retain safety, we propose the safe DSU ap-

proach Essential Safety. Its update condition Essential Freeness is

based on the observation that a significant amount of updates are

non-essential changes, i.e., they never interfere with running trans-

actions because they do not introduce semantic changes. Thanks to

identifying non-essential changes, Essential Safety reduces delays

and interruptions due to updates in workflow-based applications

and retains strong guarantees on correct system operation.

This work paves the way to apply safe DSU to modern workflow

architectures, e.g., in cloud applications [4, 26]. In addition, the

identification of non-essential changesÐupdates without semantic

changesÐcan be refined using insights from the application and the

developers. This insight opens an opportunity for future research

to provide more precise characterizations of non-essential changes,

reducing the number of expensive updates and further improving

DSU performance.

All our evaluation data and the software developed for this pa-

per are publicly available [56]. In summary, this paper makes the

following contributions:

(1) We propose a new formal model for DSU supporting asyn-

chronous workflows. We show that state-of-the-art DSU ap-

proaches, as well as our approach, fit into such a model, en-

abling a direct comparison.

(2) We propose Essential Safety as a novel approach for safe

DSU, which leverages the identification of whether an update

introduces a semantic change, i.e., is essential.

(3) We analytically compare Essential Safety to previous DSU

approaches, show that Version Consistency is a conserva-

tive over-approximation of Tranquility and Essential Safety,

and highlight the different information taken into account,

explaining the performance difference among such solutions.

(4) We empirically confirm by simulating 106 realistic collabora-

tive BPMN workflows and analyzing eight monorepos that

Essential Safety provides the best performance among safe

DSU approaches, that identifying non-essential changes is

effective to improve safe DSU’s performance, and that, in

practice, at least 60 % and often more than 90 % of the updates

are non-essential changes.

The paper is organized as follows. Section 2 outlines the issue

of safe DSU for workflows. Section 3 presents related work. Sec-

tion 4 describes our model for safe DSU in workflows and intro-

duces our approach Essential Safety. Section 5 presents Essential

Safety’s practical realization. Section 6 analytically compares Es-

sential Safety with previous DSU solutions. Section 7 empirically

evaluates our contribution, and Section 8 concludes.

Book hotel Book flightBook car

Cancel hotel Cancel car Cancel flight

Success? Success? Success?
yes

no no no

Trip
requested

Trip 
booked

yesyes

Trip
booking

failed

Figure 1: BPMN workflow of the trip booking saga.

2 THE DYNAMIC UPDATE PROBLEM

In this section, we introduce a workflow as a running example to

explain the problem of safe DSU. Workflows are used extensively

in software systems to express the execution of interrelated tasks.

2.1 The Trip Booking Saga

The running example is the trip booking case study [48], shown

as BPMN workflow [45] in Figure 1. A hotel, a car, and a flight

are booked sequentially. Each of these steps may fail, triggering

compensating actions for the bookings performed up to the current

execution pointÐa design pattern referred to as łsagaž [22].

Each task in the workflow is implemented as a serverless func-

tion. Some of the functions are coupled through a shared database

on which they operate, constituting components. In our exam-

ple, the car booking and cancel functions constitute the car rental

component, and the remaining four functions are the holiday com-

ponent. These components are the smallest unit of updates, e.g.,

when the car rental component is updated, the serverless functions

for both łbook carž and łcancel carž are replaced by a new version.

Figure 2 shows the trip booking case study as a UML sequence

diagram. We added the labels A to E and b to d to reference points

in time during the execution. If there is no error, only A to E occur

and not b to d, because they are on the paths that only occur on

the failure of a booking task, executing the compensation tasks.

2.2 The Need for Safe Dynamic Updates

Updating a component in a workflow may break the correct execu-

tion in two cases. The first case is the update of a component while

it is currently executing a task, i.e., it is active. For example, if a

workflow instance runs the łbook hotelž task, updating the holiday

component can cause incorrect behavior. In line with the literature

on dynamic updates, we consider updating an active component

(i.e., one that executes a task) always unsafeÐthis problem is studied

in a different research line [18, 58, 59] and requires hot-swapping

code as well as migrating the state representation across versions.

The second case is when a component performs two tasks within

the same transaction and an update introduces a semantic change

in between. For example, in the trip booking saga, after łbook hotelž

completes (after B in Figure 2), if łbook carž is not successful and

the holiday component is updated with a new version that uses

a different format for hotel booking IDs, łcancel hotelž does not

behave correctly: either it does not find the correct booking to

cancel orÐeven worseÐit finds the wrong one. Thus, the workflow

instance fails to revoke the hotel booking. To avoid such errors, safe

DSU approaches specify update conditions. They determine when

an update can be performed such that it does not cause semantic

mismatches.
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Figure 2: Sequence diagram of the trip booking saga.

2.3 The Role of Non-Essential Changes

To reach the update condition for a safe update and to uphold it until

the update completes, safe DSU approaches require monitoring and

may block tasks. For instance, to update the car rental component,

a DSU approach might block all calls to the car rental component

until the update completes. Once all running tasks on car rental

terminate, a safe update condition is met and upheld until the

update is completed. Both reaching and upholding a safe update

condition lead to significant overhead and delay. The overhead

grows with the amount, duration, and resource consumption of

the transactions, which results in considerable overhead for highly

frequent, expensive transactions that can be found in workflows.

DSU approaches should block tasks as little and short as possible.

For existing DSU approaches [32, 38, 60], the overhead is high

in long-running, frequently executing workflows (cf. Section 7),

prohibiting their use for the safe continuous deployment of such

applications. However, in practice, a substantial fraction of the

changes running through a continuous deployment pipeline tend

to be small and do not introduce semantic changes, i.e., non-essential

changesÐa reality ignored by previous work on DSU. Thus, we can

apply a less disruptive update condition to most updates. It requires

less task blocking to be reached and upheld and greatly reduces

unnecessary overhead.

Essential Safety (ES), our novel safe DSU approach for work-

flows, leverages the distinction between essential and non-essential

changes. Essential Safety reduces DSU disruption to a minimum

while providing the same safety as the state of the art, enabling safe

DSU in real-world, long-running, frequently executed workflows.

In Table 1, we compare, for existing DSU approaches [32, 38, 60]

and for Essential Safety, when updating the components in the

trip booking case study (cf. Section 2.1) is safe. Checkmarks corre-

spond to safe update time intervals. The highlighted cells indicate

intervals where the component is activeÐthese intervals are unsafe

under all update conditions. If an update is an essential change,

Essential Safety provides the same safe update intervals as Version

Consistency (VC), which is generally safeÐin contrast to Tranquil-

ity (TQ). For non-essential changes, the intervals indicated by (✓)

are additional safe intervals and, thus, Essential Safety provides

the highest number of safe update intervals.

Table 1: Update conditions over the time 𝑡 in the trip booking

saga for Quiescence (Q), Tranquility (TQ), Version Consis-

tency (VC), and Essential Safety (ES).

Holiday Car Rental

𝑡 Q TQ VC ES Q TQ VC ES

A ✓ ✓ ✓ ✓ ✓ ✓

B ✓ ✓ ✓

C ✓ (✓)
D (✓)
d (✓)
c ✓ (✓)
b ✓ ✓ ✓ ✓

E ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 RELATED WORK

Closest to our work is previous research on opaque box safe DSU [8,

32, 38, 60], which we compare with in detail in Section 6. In con-

trast, transparent box approaches [29, 57] leverage formal models

of the programs to identify points in time when it is safe to update.

While transparent box methods allow more fine-grained analyses,

they rely on strong assumptions on the implementation technology,

making them hard to apply to general distributed systems, sup-

porting components implemented using heterogeneous paradigms,

languages, and technologies. The survey of Seifzadeh et al. [52]

discusses several platforms with DSU. We now discuss related re-

search on (1) updating software in running processes, (2) software

reconfiguration, (3) workflow evolution, and (4) continuous delivery.

Finally, we provide an insight into (5) DSU in practice.

Dynamic Code Replacement. In this work, we focus on safe dy-

namic updates of components that are not currently executing code.

Complementary to our work, there are approaches for updating

running components. Updating the code of a running program was

investigated already in the 1970s [18]. Later, Erlang [6] has been

one of the first programming languages to enable hot swapping, i.e.,

modules can be replaced at run time (the new version is loaded

when the next invocation occurs), and programmers can specify

state transfer between modules. A similar solution for dynamic

code replacement is also available in the Ada programming lan-

guage [59]. More recently, dynamic code replacement on the Java

Virtual Machine has been supported in the Jvolve [58] and in the

DCE VMs [61] as a modification to the Java HotSpot VM.

These approaches focus on the technical realization of code

replacement while the system is running and assume that devel-

opers correctly handle transferring the state of components across

updates. Another line of work focuses on ensuring that state trans-

formations are correct, e.g., using type systems [30]. Gu et al. [28]

replay the sequence of invocations performed on the old object on

the new one to ensure that it reaches the same state.

Software Reconfiguration. Dynamic software reconfiguration is

about changing the configuration of a software product at run time

while the system is operational. Research focuses on reconfigura-

tion models ensuring the preservation of consistency properties

and minimizing system disruption [11]. Adapta [49] is a reflec-

tive middleware for self-adaptive, component-based applications. It

aims to decouple the application logic from the code that handles
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the adaptation, and it requires run-time monitoring and trigger-

ing mechanisms. Software reconfiguration has been applied to

distributed execution, where remote system nodes interpret recon-

figuration scripts [10]. Software self-adaptivity is a research line

on switching the behavior of applications at run time, for example,

using metaprogramming or reconfiguration of component-based

systems [39].

Updating Workflows. Researchers have examined how existing

workflows can be modeled to support changes while they are ex-

ecuted. Casati et al. [13] address the problem by defining a set of

transformation rules and dividing the state space into parts that

are terminated or handled by different process definitions. Geiger

et al. [23, 24] present a detailed review of the current state and

evolution of BPMN 2.0 support and implementation, finding a lack

of standard compliance in current implementations.

Updates in Continuous Delivery. A recent overview of the impact

of continuous delivery (CD) by Lwakatare et al. [37] investigates CD

implementations in five different development contexts. Laukka-

nen et al. [34] provide an overview of adoption problems of CD

and show that most research work focuses on issues that devel-

opers face, but developers usually consider release and software

update problems to be external factors. Updating components in CD

poses a problem in real-world settings according to semi-structured

interviews conducted by Claps et al. [14] at Atlassian. At least

7 out of 10 interviews highlight that seamless upgrades are hard

to implement in large systems and potentially consume signifi-

cant amounts of resources. Gallaba et al. [21] infer dependencies

between components using build execution tracing to accelerate

CI/CD pipelinesÐinformation that could be used to identify non-

essential changes. Infrastructure as code (IaC) has been adopted to

increase automation in modern development pipelines [41]. Tra-

ditionally, IaC solutions in CD are executed as one-off tasks and

treat when to update as external decision. However, the recent in-

troduction of long-running, reactive deployment scripts [55] blurs

the line between application and infrastructure code, enabling the

required monitoring and logic for safe DSU.

DSU in Practice. Today, safe DSU relies on complex workarounds,

avoiding the need for safe update intervals. Cloud vendors and

deployment platforms, e.g., Kubernetes [1], provide variations of

blue-green [20] and canary [50] deployment strategies. Parallel

change [51] is a pattern for safe interface updates that replaces un-

safe changes with a sequence of safe ones. These solutions provide

safe DSU for software where the components for the application

logic are stateless and a (transactional) database holds the state.

However, this hypothesis does not always apply, e.g., in the case of

workflows involving components that belong to various authorities.

In such a case, using a central database is infeasibleÐa codified

principle in microservice architectures [43]. In many scenarios, e.g.,

Web applications for social networks, it is accepted that updates

may break multi-request transactionsÐretry is cheap, but it ham-

pers user experience. In other scenarios, retry is not acceptable

because it requires too much time or resources, wherefore safe DSU

is needed to minimize the updates’ impact.

4 EFFICIENT, SAFE DYNAMIC UPDATES OF
WORKFLOW COMPONENTS

In this section, we present a formal model for workflow execution.

We propose Essential Safety as a safe and efficient updating ap-

proach. We then show how Essential Safety’s update condition

Essential Freeness can be reached and upheld during an update.

4.1 Workflow Execution Model

Various workflow modeling languages exist, including standards

like BPMN [45] and BPEL [44], as well as vendor-specific DSLs

like the Amazon States Language [3] for AWS Step Functions [4].

Though thesemodeling languages differ in features and expressivity,

they all organize consecutively executed tasks in a graph structure.

We formally model their shared core concepts.

We consider the system landscape 𝐿 = (R,W,T , C, 𝑖) consisting
of workflow engines R, workflows W, and tasks T, which are

implemented by components C, related by 𝑖 : T → C. We model

a workflow𝑊 = (𝑇, 𝑃, 𝐵, 𝐸) ∈ W with a directed graph of tasks

𝑇 ⊆ T that are connected to the tasks which can be executed nextÐ

the succeeding tasksÐby arcs 𝑃 ⊆ 𝑇 ×𝑇 . A workflow’s initial tasks

are 𝐵 ⊆ 𝑇 and the end tasks 𝐸 ⊆ 𝑇 . All non-end tasks must have

at least one succeeding task. Thus, a task 𝑡 ∈ 𝑇 is either in 𝐸 or

there exists at least one edge (𝑡, 𝑡 ′) ∈ 𝑃 . Workflows are executed

as workflow instances 𝐼 = (𝑟,𝑊 ,𝐴,𝑉 , 𝐹, 𝑆) ∈ I in the workflow

engine 𝑟 ∈ R where 𝐴 ⊆ 𝑇 is the active tasks, initialized as 𝐴 = 𝐵.

The workflow engine updates 𝐴 during the execution of 𝐼 . The

workflow instance terminates once no task is active anymore, i.e.,

𝐴 = ∅. 𝑆 is the workflow instance’s state. All tasks 𝑇 of 𝐼 can read

from it at the beginning of their execution and write to it after their

execution.𝑉 ⊆ 𝑇 are the visited tasks, i.e., the set is initially empty,

and all tasks that are removed from 𝐴 during the execution are

added to 𝑉. 𝐹 ⊆ 𝑇 are the potential future tasks, i.e., all tasks that

are reachable in the directed graph (𝑇, 𝑃) from a task in 𝐴. Note

that 𝐹 is a conservative over-approximation of the future tasks, i.e.,

not all tasks in 𝐹 have to be executed. For instance, consider BPMN

exclusive gateways, as included three times in Figure 1, which have

multiple outgoing paths, but only exactly one will be executed. All

tasks on a path after a BPMN exclusive gateway are initially in 𝐹

and all tasks on the paths not taken are removed from 𝐹 without

being executed once the gateway is processed.

Based on the definition of active tasks 𝐴, we define a component

𝑐 ∈ C is active if it executes any active task:

Definition 4.1 (Active Component). A component 𝐶 ∈ C is called

active if it currently executes a task in any workflow instance:

∃𝐼 = (𝑟,𝑊 ,𝐴,𝑉 , 𝐹, 𝑆) ∈ I, 𝑡 ∈ 𝐴 : 𝑖 (𝑡) = 𝐶 .

4.2 Essential Safety

We define a safe and efficient update condition for long-running,

frequently executed workflows. A workflow instance always exe-

cutes correctly if every component is only updated (1) after it has

executed its last task, (2) before it executes its first task, or (3) if

it does not execute any task in the workflow instance. In contrast

to previous work, our approach also allows a component to be

updated if it already executed a task and may execute a task in the

future if the update does not introduce a semantic change. We call
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such updates non-essential changes, in contrast to essential changes,

which introduce a semantic modification:

Definition 4.2 (Essential Change). An update of a component

𝐶 ∈ C from version 𝑣 to 𝑣 ′ is an essential change for workflow

instance 𝐼 = (𝑟,𝑊 ,𝐴,𝑉 , 𝐹, 𝑆) ∈ I, if the possible execution of any

future task 𝑡 ∈ 𝐹 | 𝑖 (𝑡) = 𝐶 on 𝑣 ′ is not guaranteed to produce the

same resulting state 𝑆 and side effects as executing 𝑡 on 𝑣 .

Every other change (given the definition above) is a non-essential

change. Identifying whether a change is non-essential is not decid-

able in general as it boils down to the program equivalence prob-

lem. Since misclassifying essential changes as non-essential breaks

safety, we conservatively under-approximate non-essential changes

with a catalog of known non-essential changes that can be found

through efficient analyses. Kawrykow and Robillard [31] describe

non-essential changes as (1) cosmetic, (2) behavior-preserving, and

(3) unlikely to provide further insight into component relation-

ships. This includesÐbut is not limited toÐtrivial type updates,

local variable extractions, rename-induced modifications, trivial

keyword modifications, local variable renames, and whitespace and

documentation-related updates. Definition 4.2 leaves open adding

more sophisticated analyses to find non-essential changes, includ-

ing application-specific ones. Identifying non-essential changes is

important in practice but orthogonal to our contribution.

Updating a component with non-essential changes is always safe

while the component is not active. We introduce Essential Safety

(ES): only updating components when they are essentially free.

Definition 4.3 (Essential Freeness). A component 𝐶 ∈ C is essen-

tially free, if it

(1) is not active and

(2) a. will not be active in a workflow instance in which it already

executed a task (�𝐼 = (𝑊,𝐴,𝑉 , 𝐹, 𝑆) ∈ I, 𝑡 ∈ 𝑉 , 𝑡 ′ ∈ 𝐹 :

𝑖 (𝑡) = 𝐶 ∧ 𝑖 (𝑡 ′) = 𝐶) or

b. its update is a non-essential change for all workflow in-

stances 𝐼 = (𝑊,𝐴,𝑉 , 𝐹, 𝑆) ∈ I, 𝑡 ∈ 𝑉 | 𝑖 (𝑡) = 𝐶 in which it

already processed a task.

Considering a single workflow instance of the trip booking saga,

updates with non-essential changes can always be performed with-

out violating the workflow’s correctness if the respective com-

ponent is not currently executing a task. For instance, using the

intervals marked in Figure 2, the car rental component can always

be updated except within C and c. If the update is an essential

change, the update must not occur between a component’s first

and last task execution in the workflow instance. For example, an

essential change of the car rental component may not occur within

B, d, and c because it might be the case that łcancel carž is executed

in the future after that łbook carž has been already executed on the

current version of the component.

4.3 Reaching Essential Freeness

Strategies to reach safe DSU update conditions trade-off between

update timeliness and interruption. Timeliness is the length of the

interval between requesting the update and the beginning of the

component exchange, i.e., the point in time when the component

stops executing tasks. Interruption is how long a workflow in-

stance’s completion is delayed due to the update. The following

reaching strategies from the literature [32, 38, 60] can be used to

reach Essential Freeness.

Waiting (W). The update waits for Essential Freeness. The inter-

ruption is limited because only workflow instances that started after

the update begins are delayed and the update’s duration bounds the

interruption. Yet, the update is not guaranteed to start in bounded

time, i.e., timeliness is unpredictable. Thus, this approach is not

suitable where Essential Freeness rarely occurs by chance.

Blocking Tasks (BT). The starting of tasks on the component to

update is delayed until after the update. This strategy ensures that

Essential Freeness is reached in bounded time, but it may cause

more interruption than Waiting.

Blocking Instances (BI). The strategy is similar to Blocking Tasks,

but instead of delaying tasks, the start of new workflow instances

that need the component is delayed until after the update. While

this strategy also guarantees the update is reached, it might take

longer. The interruption is expected to be similar to Blocking Tasks

but is reduced if multiple updates occur in parallel.

Concurrent Versions (CV). For non-essential changes, all new task

executions are served by the new version running in parallel to

the old version, which completes the already running tasks. For

essential changes, the old version also executes new tasks belong-

ing to workflow instances that already executed at least one task

on it. Thus, the old version remains available until no workflow

instance needs it anymore. This strategy provides good timeliness

and no interruption, but it requires running two parallel versions

of a component, significantly increasing complexity, especially for

stateful components.

Except for Concurrent Versions, all reaching strategies require

Essential Freeness to hold until the update is completed. This can

be achieved by applying Blocking Tasks to a component during its

update, delaying the start of new tasks until the update is completed.

5 REALIZING SAFE DYNAMIC UPDATES

Determining and reaching the update condition is trivial with a

single centralized workflow engine. Such a central entity (1) knows

the state of all workflow instances I, and (2) can delay the execution
of tasks and whole workflow instances. However, the system land-

scape L may comprise multiple workflow engines R, each hosting

a subset of workflow instances I. Hence, no centralized view ex-

ists on all workflow instances. Modern, scalable workflow engines,

e.g., Zeebe [12], are by default decentralized over multiple separate

workflow engines to improve scalability and fault tolerance.

To ensure their safe update, all workflow engines invoking tasks

on a shared component have to coordinate. Hence, reaching Essen-

tial Freeness for a component requires considering all workflow

instances I that use the component. We propose a dissemination

algorithm that the workflow engines use to notify components

of their workflow instances’ status. The algorithm ensures that

components are aware of their role in all workflow instances using

them. Each component can then locally decide whether it reached

the update condition and can be safely updated.
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5.1 Dissemination Algorithm

Algorithm 1 shows the dissemination algorithm that workflow

engines execute for each workflow instance. The four callback pro-

cedures in Algorithm 1 are called reactively based on the events in

the workflow execution, e.g., before a task is started, the procedure

in Line 1.5 is called. Using the procedures, the workflow engine

(1) announces to components that they might be used, (2) marks

components that were used, and (3) locks components (not exclu-

sively) while they are used. Every component stores its status in the

workflow instances, i.e., every component maintains for each work-

flow instance the information whether it received an announcement

or a marking, which was not revoked yet, and a lock counter.

BeforeWorkflow, AfterWorkflow, BeforeEachTask, and

AfterEachTask are executed on the workflow engine before/after

a workflow instance is executed and before/after each task is run.

TheAnnounce, RevokeAnnouncement,Mark, RevokeMarking,

Lock, and Unlock procedures are called remotely on the compo-

nent passed as their first argument. Remote calls are asynchronous

unless the execution blocks to get the return value using await.

Components can delay their response at the await synchronization

points to interrupt the workflow instance’s execution until they

can accept the announcement, marking, or lock.

The BeforeWorkflow procedure (Line 1.2) announces to com-

ponents 𝑐 (Line 1.4) from the set of potential future tasks (Line 1.3)

of the workflow instance 𝐼 that 𝑐 might participate in 𝐼 . Announce-

ments are revoked after completing tasks (Lines 1.11 to 1.14) if the

component will not be used (again).

Before the workflow instance invokes a task on a component for

the first time, the engine marks the component (Lines 1.6 to 1.8).

Markings remain for the rest of the workflow instance’s execution

and are revoked after its completion (Line 1.17).

Every time a workflow instance invokes a task, the engine locks

the component (Line 1.9) and unlocks it after the task is completed

(Line 1.15). A workflow instance might lock the same component

multiple times before unlocking due to parallel task execution. The

components internally increase a counter with every locking and

decrease it with every unlocking. If the counter is positive, the

workflow instance runs tasks on the component.

The presentation of Algorithm 1 is simplified for clarity. Our im-

plementation includes some optimizations, e.g., it sends announce-

ments (Line 1.4) in parallel, and the messages to 𝑖 (𝑇𝑎𝑠𝑘) in Lines 1.5
to 1.9 are packed into a single multipurpose message.

5.2 Handling Essential Freeness

Algorithm 1 disseminates the necessary information to the compo-

nents to determine, reach, and uphold Essential Freeness. When

performing an update that introduces essential changes, a compo-

nent is essentially free if it holds for no workflow instance an an-

nouncement and a marking, i.e., no workflow instance that already

used the component will use it again. For non-essential changes, a

component is essentially free if it is not locked, i.e., for no workflow

instance, the lock counter is greater than zero.

Using the Blocking Instances strategy, a component delays the

confirmation of announcements until the update has been com-

pleted, blocking all new workflow instances that will call the com-

ponent in BeforeWorkflow and delaying their start. Blocking

Algorithm1Modular dissemination algorithm onworkflow engine

𝑟 for workflow instance (𝑟,𝑊 ,𝐴,𝑉 , 𝐹, 𝑆) with unique identifier 𝐼 .

Announcements Markings Locks .

1: Announcements,Markings← ∅

2: procedure BeforeWorkflow

3: Announcements← {𝑐 ∈ C | ∃𝑡 ∈ 𝐹 : 𝑖 (𝑡 ) = 𝑐 }

4: for all 𝑐 ∈ Announcements do await Announce(𝑐, 𝐼 )

5: procedure BeforeEachTask(Task)

6: if 𝑖 (Task) ∉ Markings then

7: awaitMark(𝑖 (Task), 𝐼 )

8: Markings← Markings ∪ 𝑖 (Task)

9: await Lock(𝑖 (Task), 𝐼 )

10: procedure AfterEachTask(Task)

11: PreviousAnnouncements← Announcements

12: Announcements← {𝑐 ∈ C | ∃𝑡 ∈ 𝐹 : 𝑖 (𝑡 ) = 𝑐 }

13: for all 𝑐 ∈ PreviousAnnouncements \ Announcements do

14: RevokeAnnouncement(𝑐, 𝐼 )

15: Unlock(𝑖 (Task), 𝐼 )

16: procedure AfterWorkflow

17: for all 𝑐 ∈ Markings do RevokeMarking(𝑐, 𝐼 )

Tasks uses a similar approach with locks for non-essential changes

and markings for essential changes. Locks block all workflow in-

stances, markings only the ones that did not use the component

yet. Blocking Tasks does not generally block all task invocations

by delaying locks because this could lead to a deadlock in case

of essential changes: The not-blocked workflow instances already

used the component and may prevent Essential FreenessÐwhich

would cause a deadlockÐor do not use it anymore. For this reason,

Blocking Tasks can only be activated at one component at a time

to ensure deadlock-freeness.

For both strategies above, once reached, the update condition

must be upheld until the update completes. For essential changes,

delaying the confirmation of markings upholds the update condi-

tion. For non-essential changes, locks are delayed.

Waiting and Concurrent Versions do not require any aspect of

Algorithm 1 for their update condition because they do not influence

the execution of workflow instances.

6 WORKFLOW UPDATES IN CONTEXT

In this section, we show how Essential Safety relates to existing

solutions for safe dynamic software updating.

6.1 From Transactions to Workflows

Previous work on DSU [8, 32, 38, 60] focused on synchronous dis-

tributed transactions in component-based systems. They assume

that external clients trigger so-called root transactions, which, in

turn, can run other (sub-)transactions on the same or other compo-

nents. The execution blocks until a sub-transaction completes with

a return value. In Figure 3a, component A runs a sub-transaction

on B, which runs a sub-transaction on C. Afterward, C returns

a value to B, B one to A, and new sub-transactions are run on B

and C. Figure 3b shows the same interaction pattern but synchro-

nous transactions are nested differently: Instead of ending the first

transaction on B, B runs a sub-transaction on A.
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(a) Synchronous

transaction.
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(b) Alternative

synchronous

transaction.

:A :B :C

(c) Asynchronous

workflow.

Figure 3: Modeling a synchronous transaction as workflow.

In this work, we model the system as asynchronous workflows.

Tasks are started based on their order as defined in the workflow

after the previous task(s) are completed. The tasks are coordinated

by the workflow engine, which acts as an event-based middle-

ware. Thus, upon completion, tasks send their results as an update

of the state 𝑆 to the workflow engine, which then starts the suc-

ceeding task(s) with 𝑆 . Modern cloud-based systemsÐalso beyond

workflowsÐadopt the asynchronous model. Typically, such systems

use asynchronous, decoupled communication patterns, e.g., event-

based microservice choreographies or serverless computing [7, 35].

Our asynchronousworkflowmodel can emulate the synchronous

model. For instance, the transaction in Figure 3a can be modeled as

in Figure 3c: the synchronous parent transactions are split into two

tasks (before and after the subtransaction). State can be conveyed

via the workflow instance’s state 𝑆 . This transformation is neither

injective nor surjective: Not every asynchronous workflow can be

translated to a synchronous transaction, and multiple differently

nested synchronous transactions might be transformed to the same

workflow, e.g., both Figures 3a and 3b result in Figure 3c.

6.2 Existing Safe DSU Approaches

We now present three update conditions from the literature and

show how they fit into our asynchronous workflow model.

Kramer and Magee [32] proposedQuiescence (Q), which does

not rely on run time information of workflow instances. Instead, the

workflows’ structure, which is known at design time, and whether

a new workflow instance will be started suffice. If necessary, all

future workflow instances are blocked to enforceQuiescence.

Definition 6.1 (Quiescence). A component is quiescent if it (1) is

not active and (2) will not be active in a workflow instance.

Ma et al. [38] proposed Version Consistency (VC) and evaluated

it with a simulation which was later extended with a system im-

plementation and evaluation based on Apache Tuscany [8]. The

update condition of Version Consistency is called Freeness.

Definition 6.2 (Freeness). A component is free if it (1) is not active

and (2) will not be active in a workflow instance in which it already

executed a task.

Version Consistency is similar to our approach but it does not

distinguish between different types of updates, which are all con-

servatively over-approximated to an essential change.

Vandewoude et al. propose Tranquility (TQ) [60].

Definition 6.3 (Tranquility). A component is tranquil if it (1) is

not active and (2) will not be active in a workflow instance in which

it might execute a succeeding task for a component for which it

already executed a succeeding task.

Though proposed before Version Consistency, Tranquility ef-

fectively corresponds to Version Consistency with the additional

assumption that components follow a łblack-box principlež [60].

For systems satisfying this principle, Tranquility assumes that ver-

sion consistency does not have to be enforced between the internals

of different sub-transactions. For instance, if within the same root

transaction a client uses an authentication component and calls the

server, which uses authentication internally, too, client and server

may safely use different versions of the authentication component.

Leveraging the black-box principle, Tranquility results in bet-

ter update timeliness and less interruption than Version Consis-

tency [38]. However, Tranquility is unsafe for systems that do not

follow the black-box principle, as Ma et al. [38] already noticed. It

is generally questionable whether workflows follow the black-box

principle because their tasks often depend on each other, leading

to a violation of the principle.

Quiescence and Version Consistency map directly to our asyn-

chronous workflow model (Section 4.1), i.e., Definitions 6.1 and 6.2

can be trivially verified by inspecting the potential future tasks 𝐹

and the visited tasks 𝑉. Tranquility (Definition 6.3), however, dis-

tinguishes between sub-transactions that are called from the same

transaction and ones that are called from a different transaction.

For example, component C is tranquil between its two executions

in Figure 3a, and it is not tranquil between its two task executions

in Figure 3b. Yet, there is no such distinction in the asynchronous

model in Figure 3c compared to the synchronousmodel (Section 6.1).

Embracing Tranquility’s black-box principle, we assume that all

task executions of a component with preceding tasks from the same

component belong to a single, synchronous transaction, i.e., for

each component, the same version of another component is used for

each of its succeeding tasks. With this definition, in the asynchro-

nous workflow in Figure 3c, component C is only tranquil before

the first and after the second task. Component A, however, may be

updated after its first task, i.e., Tranquility is unsafe if components

do not respect the black-box principle.

6.3 Update Conditions, Operationally

Different subsets of our dissemination algorithm (Algorithm 1) pro-

vide the necessary data to a component to (1) determine that an

update condition for the component is reached, (2) reach the con-

dition (quicker), and (3) uphold the condition once reached. Our

algorithm is inspired by the control algorithm proposed for Version

Consistency, which is based on graph transformations [38] and

verified to be correct [8]. Announcements are similar to their future

edges and markings to past edges; there is no counterpart for locks.

However, their transaction model lacks a holistic view of trans-

actions within the same root transaction because components do

not share their internal logic. In our workflow model, such a view

on workflow instances is available in their workflow engine. We

leverage this holistic view to reduce communication. Table 2 sum-

marizes the parts of Algorithm 1 required by the update conditions

and reaching strategies. We now provide more detailed insights.
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Figure 4: Announcements, markings, and locks at intervals in Figure 2 during the execution of the trip booking saga with Algo-

rithm 1 for all update conditions ( announcement, marking, lock, update safe, non-essential update safe, update unsafe).

Table 2: Elements of Algorithm 1 for updating approaches

and reaching strategies: ✓ necessary, ✓C per preceding com-

ponent, ✓* sufficient for non-ess. changes, ▲ uphold condi-

tion (ess. changes), ■ uphold condition (non-ess. changes).

Approach / Strategy Announcements Markings Locks

Quiescence ✓ ▲ ■

Tranquility ✓
C

✓
C
▲ ■

Version Consistency ✓ ✓ ▲ ■

Essential Safety ✓ ✓ ▲ ✓ ■

Waiting
Blocking Instances ✓

Blocking Tasks ✓ ✓*
Concurrent Versions ✓

In Quiescence, announcements are sufficient to check if compo-

nents are quiescent: They are if they have no announcements. To

reach Quiescence, Kramer and Magee [32] only discuss Blocking

Instances as łpassivationž of components, i.e., ensuring that no

transactions are invoked on the component in the future. The other

three reaching strategies are also applicable but require run time

information, which Kramer and Magee do not consider.

Version Consistency requires announcements and markings, but

no locks. A component is free if it has for no workflow instance

an announcement and a marking. Ma et al. [38] discuss Waiting,

Blocking Tasks, and Concurrent Versions for Version Consistency,

concluding that the last one should be the preferred strategy if

applicable, otherwise Blocking Tasks. Essential Safety and Version

Consistency are equivalent if all updates are essential changes.

Tranquility also requires announcements andmarkings. Yet, both

need to be per workflow instance and per component of the pre-

ceding task(s)Ðnot only per workflow instance as in Algorithm 1.

The condition is then similar to Version Consistency: The com-

ponent is tranquil if it has for no pair of workflow instance and

preceding tasks’ component an announcement and a marking. For

Blocking Tasks, this may deadlock workflow instances, making

Blocking Tasks for Tranquility generally unsafeÐalso for single

updates. Vandewoude et al. [60] use Waiting for Tranquility and

resort to Blocking Instances if the update point is not reached.

6.4 Comparing the Update Conditions

Figure 4 shows the execution of Algorithm 1 in the trip booking saga

(Section 2.1) for the discussed update conditions. The columns show

the time intervals from Figure 2 (aligning with Table 1). The rows

show the update conditions. Each cell depicts the announcements ,

markings , and locks stored on both components at the given

time interval when using the respective update condition. They

further show whether a component can be updated safely, only for

non-essential changes, or the update is unsafe.

Time interval A starts after BeforeWorkflow completes and

ends before BeforeEachTask starts for the first time. All other

time intervals are during the execution of the respective task.

As an example, the bottom row shows Essential Safety. The

first entry illustrates that at time interval A, both the holiday and

the car rental component hold an announcement for the workflow

instance 𝐼 executed on workflow engine 𝑟 . Both components can be

safely updated. In the second entry at time interval B, the holiday

component is additionally marked and locked. Hence, it cannot

be safely updated. At time interval C, the holiday component can

be updated in case the update is a non-essential change because

it holds no lock. However, an essential update would be unsafe

because it holds a marking and an announcement of 𝐼 .

Quiescence exhibits the fewest safe update intervals because

it does not consider run time information on workflow instances.

We assume that no new workflow instance is started after the one

in Figure 2. Otherwise, there would be no safe update interval for

Quiescence at all. In contrast, the safe update intervals for the other

approaches remain unchanged without such an assumption.

Tranquility features all safe update intervals of Version Consis-

tency. Plus, it permits intervals C and c for the holiday component

(✓ in Table 1), which cannot be considered generally safe if the

component does not respect the black-box principle. For instance,

if the holiday component is updated at these intervals in a way that

it writes and reads the hotel booking id in another format to/from

workflows state 𝑆 , łcancel hotelž could fail.

Essential Safety features all safe update intervals of Version

Consistency for essential changes. For non-essential changes, it

provides the most safe update intervals of all approaches.
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Table 3: Construction statistics of the realistic collaborative

BPMN workflows dataset based on RePROSitory [17].

Workflow Collection Size Recovered Unchanged

RePROSitory 572

Collaborative workflows 135

Stuck 37 22

Endless loop 9 6

Incomplete 1 0

Missing internals 10 0

Evaluation dataset 106 28 78

7 EVALUATION

In this section, we empirically evaluate dynamic software updating

for long-running and highly-frequent workflows. We aim to answer

the following research questions.

RQ1: Can safe DSU be adopted in real-world collaborative

workflow applications? With this question, we empirically in-

vestigate whether, with our model for safe DSU in workflows (Sec-

tion 4.1), the approaches discussed in Section 4.2 and 6.2 can be

applied to real-world collaborative workflow applications.

RQ2: Does Essential Safety significantly reduce the perfor-

mance overhead of safe DSU in realistic workflows? This ques-

tion empirically investigates the performance differences among

the DSU approaches discussed analytically in Section 6.4. Specifi-

cally, we assess whether Essential Safety significantly reduces the

impact of updating realistic workflow applications.

RQ3: How does the share of non-essential changes impact

the performance of Essential Safety? This question investi-

gates to which degree Essential Safety’s performance depends on

the amount of non-essential changes, estimating the share of non-

essential changes that is sufficient to achieve better performance

than the previous approaches. With RQ4, RQ3 validates the assump-

tions motivating the Essential Safety’s performance improvement.

RQ4: How frequent are non-essential changes in software

systems with multiple components? This question verifies the

hypothesis behind Essential SafetyÐthat most updates are non-

essentialÐensuring the generalizability of our results. Such evi-

dence is required to determine the significance and applicability of

our approach to real-world workflows.

7.1 Applicability of Safe DSU to Workflows

We now evaluate whether our model and the safe DSU approaches

are applicable to workflows. For this, we constructed a dataset

of real-world BPMN workflows and implemented a discrete event-

based simulation for safe DSU in workflows using the dissemination

algorithm (Section 5.1). We assess Essential Safety (Section 4) and

the other safe DSU approaches (Section 6.2). The simulation and all

scripts and data are publicly available [56].

No standard benchmark for realistic workflow models exists,

possibly due to their complexity and business relevance [53, 54].

RePROSitory [17] is a database of realistic BPMN workflows. Based

on a full copy from August 3, 2021, we constructed an evaluation

dataset containing 106 collaborative BPMN workflows (Table 3).

We selected all collaborative workflows with two or more BPMN

Table 4: Simulation parameter distributions.

Parameter Distribution

Network latency Weibull: 𝛼 = 1.5, 𝛽 = 30ms (𝜇 = 27.1ms, sd = 18.4ms)
Instances per workflow Weibull: 𝛼 = 1.5, 𝛽 = 20 160 (𝜇 = 18 199, sd = 12 357)
Avg. task duration Weibull: 𝛼 = 1.5, 𝛽 = 2min (𝜇 = 108.3 s, sd = 73.6 s)
Task duration Gaussian: sd = 10 % ∗ 𝜇
Avg. update interval Gaussian: 𝜇 = 12 h, sd = 4 h, min = 1 h, max = 24 h
Avg. update duration Weibull: 𝛼 = 1.5, 𝛽 = 5min (𝜇 = 4.5min, sd = 3.1min)
Update duration Gaussian: sd = 20 % ∗ 𝜇

lanes or poolsÐthe BPMN elements that assign process elements to

collaboration participantsÐwhich we interpret as workflow compo-

nents. Everything outside any lane or pool is a separate component.

Accordingly, all workflows have tasks on at least two different com-

ponents. 57 workflows are not executable because they get stuck,

include endless loops, are incomplete, or only contain the internal

workflow of one lane or pool. We manually recovered 28 of these

with minimal changes.1

Table 4 provides the simulation parameter distributions. All pa-

rameters are chosen with the intent to be as realistic as possible.

Interarrival parameters and durations are Weibull-distributed with

𝛼 = 1.5, commonly used for Internet-based traffic simulations [5].

Update intervals and task durations are Gaussian-distributed, simu-

lating regular CI/CD executions and tasks with predictable, roughly

constant execution time, which is common in business applications.

The workflow instances are distributed over ten workflow engines.

For each workflow, the number of instances is Weibull-distributed

with, on average, one invocation every 66 s. 99.7% of the compo-

nents are updated between once per day and once per hour, which

are fixed limits of the mean update frequency. We draw the points

in time for starting workflow instances and triggering component

updates from a uniform distribution over the simulation timespan

of two weeks. 90% of the updates are non-essential changes. We

performed a sensitivity analysis with both double and half the value

of each parameter using the trip booking saga (Section 2.1). We omit

the plots (reported in [56]), as they do only confirm obvious corre-

lations, e.g., halving the task duration means increases updatability

and decreases workflow duration and update time.

We successfully simulated all 106 workflows for the safe DSU

approaches in Section 4.2 and 6.2 and the reaching strategies (Sec-

tion 4.3). This result positively answers RQ1, showing that safe DSU

can be applied to real-world collaborative workflow applications.

7.2 Performance of Essential Safety

We now investigate the performance differences of the DSU ap-

proaches in the simulation introduced before. Table 5 and Figure 5

compare the updating approaches (Section 4.2 and 6.2) and reaching

strategies (Section 4.3) with the baseline łNo Updatesž where no

updates are performed. All simulations are executed on the same

trace of workflow instance executions and updates. Updatability is

the overall time in which the update condition is met at the compo-

nents (i.e., when updating is safe). The update time measures the

timespan from triggering to completing a component update. It is

split into the update timeliness (until the update condition is met)

and the update duration (after the update condition is met). The

1All exclusions and adjustments are documented in the dataset’s build script [56].
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Table 5: Performancemetric means for all update approaches

and reaching strategies over all simulations in minutes.

Approach / Strategy Updatability
Update Workflow

Duration Timeliness Duration Delay

No Updates (Baseline) 15.9 0.0

Quiescence 2 228.7 9.1 1 384.4 16.6 0.7
Version Consistency 4 510.5 8.2 518.0 16.7 0.8
Tranquility 902.7 8.1 184.7 15.5 0.5
Essential Safety (ES) 4 870.6 5.1 409.5 16.3 0.4
ES: essential changes 4 384.7 8.0 541.8
ES: non-ess. changes 4 924.6 4.8 395.4

Blocking Instances 4 219.3 4.3 11.4 17.4 1.5
Blocking Tasks (BT) 5 309.2 4.4 785.2 16.1 0.7
BT w/o Tranquility 4 651.5 4.4 6.3 16.7 0.8
Concurrent Versions 3 744.6 16.3 0.5 15.9 0.0
Waiting 4 330.0 4.3 2 402.3 16.1 0.2

workflow duration is the timespan between workflow instance start

and completion. The workflow delay is the difference of the work-

flow instances’ start to its start in the baseline. Analogously, the

workflow interruption is the difference of the instances’ completion

times, measured by the sum of the instances’ delay and duration

differences. For Essential Safety, we also report the metrics sepa-

rately for essential and non-essential changes, a distinction that

does not lead to different results for the other approaches.

Among all approaches, we find the least performance impact

on updates and workflow instances with Tranquility. However,

Tranquility is generally unsafeÐin contrast to all other approaches.

Further, Tranquilitywith Blocking Tasks is the only simulation with

deadlocked workflow instances (47.2%), preventing their comple-

tion. These deadlocks positively skew the averages of all metrics for

Tranquility2 because deadlocked workflow instances are excluded

from the measurement data. We observe that Essential Safety has

similar performance to Version Consistency for essential changes

and slightly better performance than Tranquility for non-essential

changes. Overall, Essential Safety’s performance is similar to Tran-

quility, but retains update safety. On average, Essential Safety’s

workflow interruption is 5.0 %, and it provides 8.0 % higher updata-

bility, 21.2 % less update time, and 47.8 % less workflow interruption

than Version ConsistencyÐthe best, safe competitor.

The reaching strategies’ relative performance trends are similar

among the updating approaches. All strategies add only a small

delay to the workflows. Version Consistency exhibits no delay at

all. Blocking Instances entails the highest delays. For Concurrent

Versions, the update timeliness is similarly low for all updating

approaches, whereas the update duration exhibits some variabil-

ity. Vice versa, all other reaching strategies exhibit similar update

durations but variable update timeliness. This difference is due to

Concurrent Versions running two component versions in paral-

lel, eliminating the workflow interruption because workflow in-

stances never wait for component updates. However, Concurrent

Versions requires that the components’ implementations support

running two different versions in parallel, which our simulation

assumes is possible. If not supported by the components’ implemen-

tations, Concurrent Versions must not be used. Instead, Blocking

2Due to the deadlock skew, Table 5 also reports Blocking Tasks without Tranquility.
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Figure 5: Performance of the safe DSU approaches.

Tasks causes the least impact on component updates in such cases.

Though Waiting delays workflow instances to a lesser extent, it

heavily delays updatesÐon average by 40.0 hours.

Our results answer RQ2 and show that the impact of safe DSU

can be significant. For Essential Safety, the impact of non-essential

changes is completely negligible, and the impact of essential changes

is not higher than with previous approaches. For a realistic change-

set, Essential Safety significantly decreases the overhead of safe

DSU compared to the state of the art.

7.3 Effect of Non-Essential Updates

To evaluate whether distinguishing essential and non-essential

changes is effectiveÐthe assumption behind Essential SafetyÐwe

repeat the previous simulation with different ratios of non-essential

to essential changes. Figure 6 shows the metrics from Section 7.2

for Essential Safety with only essential changes (0%), only non-

essential changes (100 %), and all ratios in between in steps of 20 %

points. The results are presented separately for essential (ess.) and

non-essential changes (non-ess.) as well as combined (total).

In total, the updatability increases with the share of non-essential

changes; on average, 9.5 % from 0 % to 100 % non-essential changes.

The update time reduces, on average, by up to 52.2 % and the work-

flow interruption by 54.8 %.

We now consider essential and non-essential changes separately.

For all metrics and approaches, the results are similar, i.e., inde-

pendent from the share of non-essential changes, except for the

following cases: For Blocking Instances and Blocking Tasks, the

updatabilities slightly decrease with the increasing share of non-

essential changes because the likelihood that multiple updates are

reached jointly and executed as a batch is lower. This increases

blocking times to reach safe update intervals. For the same reason,

the timeliness of essential change updates gets worse for Waiting.
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Figure 6: Performance of Essential Safety for different shares

of non-essential changes (ess.: essential changes; non-ess.:

non-essential changes; total: all changes).

The results answer RQ3: The higher the share of non-essential

changes, the smaller Essential Safety’s overall performance impact.

Thus, considering non-essential changes is crucial and effective to

reduce the overhead of safe DSU for workflows.

7.4 Frequency of Non-Essential Updates

To answer RQ4, we focus on open-source software repositories

and assume that they use a continuous deployment pipeline. In

continuous deployment, every commit may trigger the deployment

of an update. Identifying which components are affected by each

commit requires application knowledge and cannot be easily au-

tomated. Hence, for simplicity, a common practice is to redeploy

all components, even though one can easily hypothesize that a

subset suffices. To assess this hypothesis, we focus on repositories

that aggregate various software components. Such łmonoreposž

are widely used [25, 33, 36, 46, 47]. Typically, the degree to which

components in them depend on each other varies, allowing us to

identify the subset of components that a commit changed.

We investigated eight monorepos that are publicly available on

GitHub and described in [16]. In the monorepos, each component

is encapsulated in its own directory. We identify the directories

that contain a component based on the repository description. We

explore the most recent 10 000 commits of each repository to de-

termine how many components are affected by each commit. We

assume that a component changed if a commit modifies a file in the

component’s directory. For commits that change files not associ-

ated to any component, we consider a conservative approximation

(upper bound), that the commits affect every component, and a spec-

ulative approximation (lower bound), that they do not affect any.

We ignore changes to tests, documentation, and hidden directories.

Table 6 shows for each monorepo the absolute number and the

percentage of affected components (mean over all commits). On

average, even under the conservative approximation, a commit

affects less than half of the components. Under the speculative

approximation, commits affect less than 10 % of the components in

most monorepos. Accordingly, at least 60 %−90 % of the component

updates are non-essential changes.

Table 6: Affected components per commit inmonorepos [16].

Average number of components Average share of components
Monorepo affected by a commit affected by a commit

StartupOS 13 13 % − 41 %
Foursquare Fsq.io 13 8 % − 38 %
M3 22 8 % − 20 %
Celo 23 7 % − 10 %
Berty 31 8 % − 32 %
Stellar Go 41 3 % − 4 %

Habitat 49 5 % − 12 %
Nixpkgs 810 < 1 % − 15 %

So farwe have demonstrated how often commits are non-essential

component changes because the commits do not change a compo-

nent’s code. Additionally, not all code changes introduce semantic

changes, i.e., they are non-essential for all components. Such com-

mits further reduce the observed numbers in Table 6. Previous

studies provide evidence that the amount of such non-essential

changes is significant: (1) Kawrykow and Robillard [31] analyzed

seven open-source Java systems, finding that up to 15.5% of the

method updates are cosmetic, behavior-preserving, or unlikely to

provide further insight into component relationships. (2) Based on

the TravisTorrent dataset [9], Abdalkareem et al. [2] found that

10% of the commits developers manually skip in CI/CD pipelines

are skipped because they are non-essential changes, i.e., they only

touch documentation, source code comments, formatting of source

code, meta files, or are code release preparations.

These results answer RQ4: On average, 60% of the component

changes are non-essential as a lower bound, while we realistically

assume a considerably higher percentage of over 90 %.

8 CONCLUSION

Traditionally, software updates require shutting down the system

before replacing any component. To avoid service disruption, dy-

namic software updating (DSU) techniques ensure that components

can safely be replaced while the application is running. Unfortu-

nately, existing safe DSU approaches introduce a significant perfor-

mance overhead, and it is unclear how to apply them to workflows,

i.e., long-running, asynchronous transactions. To close this gap, we

propose a unified formal model for safe DSU in workflows, show

how state-of-the-art DSU approaches are captured by it, and com-

pare them analytically with Essential Safety, our novel safe DSU

solution. Essential Safety leverages the identification of updates

that have no semantic changesÐnon-essential changesÐeffectively

reducing the performance overhead of DSU. The empirical eval-

uation on 106 realistic collaborative BPMN workflows and eight

monorepos confirms that we enable efficient, safe dynamic software

updating in long-running and frequently executed workflows.
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