
Towards Democratizing Secure Enclave
Programming

Aditya Oak
TU Darmstadt

Amir M. Ahmadian
KTH Royal Institute of Technology

Musard Balliu
KTH Royal Institute of Technology

Guido Salvaneschi
University of St.Gallen

Abstract—
Secure enclaves, like Intel SGX, provide a means to process

data securely on third-party cloud infrastructure with little or no
performance overhead. Developing software that takes advantage
of a secure enclave requires, however, to explicitly deal with a
number of low-level details such as dedicated IO, custom syscalls,
and stringent memory constraints, requiring the expertise needed
for system programming, rather than applications. We discuss
our recent research that provides a developer-friendly approach
to enclave programming—our Java language extension JE.
Finally, we outline our vision of a programming framework
that brings secure enclave programming at the fingertips of
application developers.

Index Terms—Information Flow Control, Trusted Execution
Environment, Security Type System

I. INTRODUCTION

Cloud computing provides anytime, anyplace computing
resources to clients without them facing the burden of
managing the computing infrastructure. In this paradigm, a
cloud provider offers the cloud infrastructure to the clients
on request. This approach ensures on-demand computing and
storage provisioning, but it comes at the price of trusting
the cloud providers with potentially sensitive data. Hence,
the cloud computing paradigm inevitably involves many
data security concerns as data is processed on third-party
machines that are not under the control of customers. For
example, the cloud infrastructure could be controlled by an
attacker or it may not have strict access control policies
to prevent unauthorized access of data. Traditional privacy-
preserving techniques fall short of defending against such
issues. For example, symmetric and asymmetric cryptography
require encrypted data to be first decrypted to perform any
computations – making plaintext data accessible to the cloud
host. On the other hand, homomorphic encryption schemes [1]
allow performing computations directly on encrypted data,
but their high computation time and large ciphertext size can
severely affect the application’s performance.

Hardware-based Trusted Execution Environments (TEEs)
are hardware enclaves that protect data and code from
the system software. A number of hardware vendors have
introduced TEE technologies including Intel with Software
Guard Extensions (SGX) [2], [3], ARM with TrustZone [4],
MultiZone [5] and other designs like [6], [7], [8], [9] and [10].
In TEEs, data can be processed at native speed ensuring that
it remains protected even on a third-party machine without

having to encrypt it – expensive homomorphic encryption can
be avoided to yield better performance.

Despite TEE implementations have been used in a number
of industry products [11], [12], programming software that
takes advantage of TEE functionalities remains challenging.

Figure 1 shows the implementation of a simple password
checker using the C/C++ interface for the Intel SGX enclave
(in Microsoft Visual Studio with SGX add-on). With the
current approach, programmers need to deal with the low-
level details of enclave programming, e.g., partitioning the
code into separate files that define the program running outside
the enclave (main.cpp) and the program running inside the
enclave (enclave.cpp), defining a separate interface between
the environments with the semantics of parameter passing
(enclave.edl), and setting up the enclave (main.cpp, Lines 5
to 9) and its disposal after use (main.cpp, Line 14).

Though the enclave environment is protected by the hard-
ware, an attacker controlling the non-enclave environment can
use various attacks to learn the sensitive data kept inside the
enclave, thus compromising the overall application security. In
Figure 1, an attacker that controls the non-enclave environment
can manipulate the parameters passed to the checkPassword()

call to the enclave code. In such case, the compiler would
not alert the programmer to report a potential security issue.

In this invited talk, we discuss (a) Seamless integration of
enclaves into managed languages like Java and (b) Security
verification of enclave programs with respect to realistic
enclave attackers. We present JE , a language design inspired
by our previous work on multitier programming [13], [14],
[15], to seamlessly support the development of enclave
software. We describe the implementation of JE and evaluate
its applicability by presenting different case studies. Most
of the text of this invited talk is taken either verbatim or
paraphrased from [16] and [17].

II. JE DESIGN

The goal of the JE design is twofold. (i) The design
should abstract away the TEE management details allowing
the programmer to easily specify the parts of the program
that must run inside the TEE. (ii) The design should provide
simple means to specify and enforce security policies for
an application. To this end, we provide a set of security
annotations and functions. The JE compiler leverages these
annotations to automatically partition the application and
perform the necessary steps of enclave management (creation,

1 enclave {
2 trusted {
3 public void checkPassword([in, size=len] char* guess, [out]

int* result, size_t len);
4 };
5 };

enclave.edl

1 const char* password = "secret";
2 void checkPassword(char* guess, int* result, size_t len) {
3 strcmp(guess, password) == 0) ?
4 *result = 1 : *result = 0;
5 }

enclave.cpp

1 #include "sgx_urts.h"
2 #include "enclave_u.h"
3 #define BUF_LEN 100
4 int main() {
5 sgx_enclave_id_t eid;
6 sgx_status_t ret = SGX_SUCCESS;
7 sgx_launch_token_t token = {0};
8 int updated = 0;
9 ret = sgx_create_enclave(ENCLAVE_FILE, SGX_DEBUG_FLAG, &token,

&updated, &eid, NULL);
10 if (ret != SGX_SUCCESS) { ... /* exception */ }
11 char* guess = ... // read guess from stdin
12 int result = 0;
13 checkPassword(eid, guess, &result, BUF_LEN);
14 if (SGX_SUCCESS != sgx_destroy_enclave(eid)) {...}
15 return 0;
16 }

main.cpp

Figure 1: Password checker, C++

initialization, communication). The JE compiler uses the
security annotations and functions to verify information flow
policies via a security type system.

We illustrate the JE features using the password checker
routine provided in Figure 2. In JE , a class can be annotated
with the @Enclave annotation (dubbed enclave class). Both
code and data of enclave classes are stored inside the enclave.
To ensure that data and computations concerning encryption
take place within the enclave, the Password Checker class in
Figure 2 is annotated with the @Enclave annotation. Within
an enclave class, the @Secret annotation identifies secret
fields. The portions of a program influenced by a secret are
also considered secret to prevent flows of sensitive data that
may leak outside the enclave. The password field (Line 3)
is annotated with the @Secret annotation to denote that its
value should not be leaked to the non-enclave environment.
The static methods of enclave classes annotated with the
@Gateway annotation (gateway methods) act as the interface
between the enclave and the non-enclave environments.
The checkPassword method (Line 6) is annotated with the
@Gateway annotation. The checkPassword method accepts a
string from the non-enclave environment and compares it with
the password field, the result is returned to the non-enclave
environment as a boolean value. The return values of gateway
methods must not be influenced by secret information.

In addition to annotations, we provide two operators. The
declassify is a unary operator to downgrade a secret value
into a public one to release sensitive information. The result of
the equality comparison of password and guess is stored in
the result field (Line 8). Since the result field is influenced

1 @Enclave
2 class PasswordChecker {
3 @Secret static String password = ...;
4

5 @Gateway
6 public static boolean checkPassword(String guess) {
7 String guessE = endorse(guess);
8 boolean result = guessE.equals(password);
9 return declassify(result);

10 } }

PasswordChecker.java

1 class Main {
2 public static void main(String[] args) {
3 String guess = ... // read guess from stdin
4 PasswordChecker.checkPassword(guess);
5 } }

Main.java

Figure 2: Password checker, JE

by the password secret field, it is also considered as sensitive.
We apply the declassify operator to the result variable
(Line 9) to ensure that result can be released to the non-
enclave environment. The declassify operator can only
declassify the trusted values. The operator endorse endorses
an untrusted value into a trusted one. The arguments of
gateway methods come from the non-enclave environment and
are considered untrusted by default. We apply the endorse

operator to the guess argument (Line 7). The trusted value
is stored in the variable guessE. Hence result variable is
not influenced by any untrusted value and is declassified
successfully (Line 9).

III. ATTACKER MODEL AND ENFORCEMENT

A. Attacker Model

We assume that the application has two parts – one running
inside and the other running outside the enclave. The attacker
controls the non-enclave environment by: (1) controlling the
non-enclave data memory, or (2) controlling the non-enclave
code and data memory. These attacker capabilities induce
two attacker models of interest.

Listing 1 illustrates the attacker models. The program stores
a list of secret integers called secretData, and provides
methods to access single elements of secretData and to
release the average of these secret integers whenever the trigger
genAvg is set. In the traditional setting without enclaves, where
we trust everything in the system, this program is secure, since
the secret values are written to the public variables of the
main method only after declassification.

Now, consider a scenario where we need to run this code
on an untrusted system. The traditional security assumptions
are no longer sufficient, because the attacker can now access
the system and learn the secretData by simply inspecting the
memory. One way to protect this data on an untrusted system
is to use enclaves, thus relying on the hardware features to
prevent the attacker from inspecting the enclave memory, and
thus, protect the secretData. The naive way of achieving this
would be to partition the program in Listing 1 into secret and
public parts, and put the secretData and all the methods that
interact with it in a separate class Storage (Listing 2), and put

Listing 1: Before partitioning
1 class Main {
2 static int[] secretData;
3 static boolean genAvg = false;
4

5 public static void main(String[] args) {
6 int data1 = getData(1);
7 // ...
8 releaseAvg();
9 float avg = getAverage();

10 }
11

12 public static int getData(int input) {
13 return declassify(secretData[input]);
14 }
15

16 public static void releaseAvg() {genAvg = true;}
17

18 public static float getAverage() {
19 if (genAvg) {
20 float avg = doAverage(secretData);
21 return declassify(avg); }
22 else { return 0.0f; }
23 } }

Listing 2: Inside enclave
1 // inside of enclave
2 class Storage {
3 static int[] secretData;
4 static boolean genAvg = false;
5

6 // gateway
7 public static int getData(int input) {
8 return declassify(secretData[input]);
9 }

10

11 // gateway
12 public static void releaseAvg() {genAvg = true;}
13

14 // gateway
15 public static float getAverage() {
16 if (genAvg) {
17 float avg = doAverage(secretData);
18 return declassify(avg);
19 }
20 else { return 0.0f };
21 } }

Listing 3: Outside enclave
1 // outside of enclave
2 class Main {
3 public static void main(String[] args) {
4 int data1 = Storage.getData(1);
5 // ...
6 Storage.releaseAvg();
7 float avg = Storage.getAverage();
8 } }

it inside the enclave. The main (public) part of the program
remains outside of the enclave (Listing 3). However, this naive
partitioning is not enough to protect the secretData stored
inside the enclave against different types of attacks from the
non-enclave environment. In this work, we investigate two
types of attackers that can exploit the enclave−non-enclave
interface to learn the secrets stored inside of the enclave.

The first attacker controls the data memory outside the
enclave: they can manipulate the parameters passed to getData

method and learn all of the elements of secretData. The
second attacker controls both the data and code mem-
ory: they can change the order of method calls, e.g., call
Storage.releaseAvg() in any order, and control the release
of value avg.

B. Type System

JE uses security labels to specify application-level policies.
The security labels are not part of the language but are inferred
automatically by JE . A security label is a 2-tuple consisting a
confidentiality and an integrity label. We consider two labels
Public and Secret for confidentiality, and two labels Trusted
and Untrusted for integrity [18]. The security type system
tracks the implicit and explicit flows of information within
the program by checking the security labels at each command,
and propagating the security labels accordingly.

The programmer should explicitly specify the data inside
the enclave that is considered secret. A secret field is labeled
with a Secret and Trusted security label (2-tuple) as it contains
sensitive information originating from inside an enclave class
and hence, it is considered not tampered with by an attacker.
The rules of the type system prevent storing secret data outside
the enclave, prohibit information flow of enclave’s secret
data to non-enclave environment (unless secret information
is intentionally declassified by the programmer in a secure
manner), and ensure that gateway methods can only return
values having the Public confidentiality level. The type system
prevents classes inside of the enclave to call into classes
outside of the enclave.

To enforce security against data memory attacker, we ensure
that manipulating the parameters of gateway methods does not
leak secret data. To achieve this, the type system assigns Public
and Untrusted security label to the data coming from the non-
enclave environment, and checks that the declassification of
secret data is not influenced by untrusted values, thus ensuring
that only the developer controls the decision to release secret
data and not the active attacker.

For the data and code memory attacker, we ensure that
changing the order and frequency of calling gateways, or even
calling new gateways, does not leak secret data (i.e., it does
not lead to declassifying new secrets). To this end, the type
system generates a list of all the gateways that declassify secret
values and makes sure that all of these gateways are called
in all possible executions of the program. This way, no new
declassifying gateways can be called by the active attacker
unless it has already been called in some way by the developer.
Additionally, to prevent data leaks through changing the order
and frequency of gateway calls, the type system marks all of
the variables and fields shared between gateways as Untrusted.
Similar to the parameters of gateway methods, these untrusted
values cannot influence declassifications. The details of JE’s
security type system are presented in [16].

IV. CODE COMPILATION AND IMPLEMENTATION

The JE compilation process involves multiple steps.
Code Partitioning: A JE program is first analyzed and,

based on the annotations, it is split into two partitions –
the enclave and the non-enclave partition. All the classes
annotated with the @Enclave annotation and all their required
dependencies belong to the enclave partition. All the remaining
classes belong to the non-enclave partition.

Conversion to Jif: Next, the partition to run inside the
enclave is converted into an equivalent Jif [19] program.
Jif extends Java with security labels to statically enforce
information flow control. A Jif security label is a pair
consisting of a confidentiality level and an integrity level.
The obtained Jif program is compiled using the Jif compiler
to ensure proper label propagation and checking.

JE code

 Code
partitioning

Conversion to
 Jif

 Jif compiler

 Remote
communication

 JVM

SGX

Regular

JVM

Code inside TEE

 Code outside TEE

Packaging

Jif verification

Runtime

Figure 3: JE compilation phases

Remote Communication: The next step introduces the
communication via Java RMI [20] between the enclave and
the non-enclave partition. For each class annotated with the
@Enclave annotation, the JE compiler generates a remote
interface containing all the gateway methods. Next, the JE
compiler creates a wrapper class implementing the interface
above for each enclave class. This way, all the gateway
methods of an enclave class are exposed remotely. to the
non-enclave environment through the remote interface. Finally,
the method calls to the enclave class from the non-enclave
environment are replaced with an RMI lookup that returns a
remote reference to the interface of the wrapper class.

Packaging: All the classes to be placed inside and outside
the enclave are packaged into two separate executable JAR
files. Both JAR files contain an executable class, which
includes code for initialization to set up the RMI registry and
to publish remote objects required for communication. The
user code executes after the initialization phase is complete.
The compilation flow is illustrated in figure 3.

Implementation: We employ JavaParser [21] for the code
analysis and source code transformation. The enclave program
is deployed inside an Intel SGX enclave and executed using
a JVM (Figure 3). We use the SGX-LKL framework [22] for
the JVM execution inside the enclave.

V. CONCLUSION

In this invited talk, we presented JE , a programming
framework for enclave-enabled applications that provides
language-level abstractions to the developers to specify and
guide the application partitioning and security policies. JE
presents a developer-friendly approach to integrating TEE
security properties with managed languages.

ACKNOWLEDGMENTS

This work is partially supported by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297,

the BRF Project 1025524 from the University of St.Gallen,
the Swedish Foundation for Strategic Research (SSF), the
Swedish Research Council (VR), and Digital Futures.

REFERENCES

[1] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Comput. Surv., 2018.

[2] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” ser. HASP ’13, 2013.

[3] Intel, “Intel® software guard extensions developer
guide,” 2014, accessed 2021-05-20. [Online]. Avail-
able: https://software.intel.com/content/dam/develop/public/us/en/
documents/intel-sgx-developer-guide.pdf

[4] ARM, “Building a secure system using trustzone® technology,” 2009.
[5] S. Pinto and C. Garlati, “Multi zone security for arm cortex-

m devices,” 2020, https://hex-five.com/wp-content/uploads/2020/02/
Multi-Zone-Security-White-Paper-20200224.pdf.

[6] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” 2016, pp. 857–874.

[7] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” 2016.
[8] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,

“Mi6: Secure enclaves in a speculative out-of-order processor,” in
MICRO’52, 2019, p. 42–56.

[9] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: An open framework for architecting trusted execution
environments,” in EuroSys’20, 2020.

[10] Apple, “Apple platform security,” https://manuals.info.apple.com/
MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf,
2020, accessed 2021-05-20.

[11] Fortanix, “The fortanix runtime encryption,” https://fortanix.com/
products/runtime-encryption, accessed 2021-05-20.

[12] Anjuna, “Anjuna enterprise enclaves,” https://www.anjuna.io/
enterprise-enclaves, accessed 2021-05-20.

[13] P. Weisenburger, J. Wirth, and G. Salvaneschi, “A survey of multitier
programming,” ACM Comput. Surv., Sep. 2020.

[14] P. Weisenburger, M. Köhler, and G. Salvaneschi, “Distributed
system development with scalaloci,” Proc. ACM Program. Lang.,
vol. 2, no. OOPSLA, Oct. 2018. [Online]. Available: https:
//doi.org/10.1145/3276499

[15] M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Sal-
vaneschi, “Rethinking safe consistency in distributed object-oriented
programming,” Proceedings of the ACM on Programming Languages,
vol. 4, no. OOPSLA, pp. 188:1–188:30, Nov. 2020.

[16] A. Oak, A. M. Ahmadian, M. Balliu, and G. Salvaneschi, “Language
Support for Secure Software Development with Enclaves,” in CSF 2021.
IEEE, 2021, pp. 1–16.

[17] ——, “Enclave-Based Secure Programming with JE,” in 2021 IEEE
Secure Development, ser. SecDev ’21. Piscataway, NJ, USA: IEEE
Press, Oct. 2021.

[18] D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, no. 5, p. 236–243, May 1976.

[19] A. C. Myers, “JFlow: Practical Mostly-static Information Flow Control,”
in POPL’99, 1999, pp. 228–241.

[20] Oracle, “Java remote method invocation - distributed comput-
ing for java,” https://www.oracle.com/technetwork/java/javase/tech/
index-jsp-138781.html, accessed 2021-05-20.

[21] JavaParser, “Javaparser,” https://javaparser.org, accessed 2021-08-24.
[22] SGX-LKL, “Sgx-lkl library os for running linux applications inside of

intel sgx enclaves,” https://github.com/lsds/sgx-lkl, accessed 2021-05-
20.

