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Abstract—Function as a Service (FaaS) has grown in popularity
in recent years, with an increasing number of applications
following the Serverless computing model. Serverless computing
supports out of the box autoscaling in a pay-as-you-go manner,
letting developers focus on the application logic rather than wor-
rying about resource management. With the increasing adoption
of the this model, researchers have started studying a wide variety
of aspects of Serverless computing, including communication,
security, performance, and cost optimization. Yet, we still know
very little of how Serverless computing is used in practice.

In this paper, we introduce Wonderless, a novel dataset of
open-source Serverless applications. Wonderless consists of 1,877
real-world Serverless applications extracted from GitHub, and it
can be used as a data source for further research in the Serverless
ecosystem, such as performance evaluation and software mining.
To the best of our knowledge, Wonderless is currently the most
diverse and largest dataset for research on Serverless computing.

Index Terms—FaaS, Function as a Service, Serverless, Cloud
Computing

I. INTRODUCTION

Since the advent of the FaaS model for Serverless com-
puting in 2014 by Amazon, all major cloud service providers,
including Google, Microsoft, and IBM, have introduced equiv-
alent services. In addition to these offers, a growing number of
open-source platforms such as Apache OpenWhisk, OpenFaas,
and Kubeless are being actively developed and maintained to
support the FaaS programming model.

In contrast to the traditional cloud offerings where users
explicitly provision or configure backend services, in FaaS,
infrastructure management is left to the provider, enabling
developers to focus on the application logic.

To develop a Serverless application with the FaaS model,
programmers upload the code of one or more functions to
the cloud and select the trigger events (e.g., a REST request,
a file upload) that activate the functions. The cloud provider
is then responsible for deployment and resource provisioning.
This eliminates the need for over-provisioning to ensure that
peak resource requirements can be met. Thus, the developers
are charged only for the resources that the application actively
requires.

Even though the FaaS approach simplifies programmers’
tasks, it also introduces several challenges. First, developers
are forced to adopt a programming model that despite su-
perficial similarities to the well known imperative and func-
tional models, significantly departs from them in practice. For
example, similar to functional programming, in the Server-
less model, programs are required to be stateless to enable

autoscaling via automated function parallelization [1]. Yet,
function composition, which is the cornerstone of functional
programming, is often considered an antipattern in Serverless
computing [2]. Consequently, developers resort to a program-
ming model that resembles the imperative model but presents
fundamental differences – including the fact that the state
of a function is not preserved across several executions and
distinct functions that belong to the same application may
not even execute on the same machine. As a result, it is a
common solution to use external shared storage systems to
save intermediate data across functions executions [3].

Second, the performance and cost of Serverless applications
are much harder to predict than traditional cloud applications.
A number of aspects concur to this issue. For example, one
of the consequences of the common programming practice
of adopting an external storage system is that cross-function
communication is slower and costlier than point-to-point net-
working. Other issues are inherently due to the characteristics
of Serverless systems, including lack of information on data
locality [4], delays due to containers startup time [5], complex
triggering processes [6], and limited lifetime of functions [1].

Third, we lack tool support for various aspects of Serverless
application development, including testing, debugging and
continuous integration [7], [8]. Like a small monolithic system,
a function can be unit tested locally before deployment.
However, system/integration testing and debugging can be
more complex when more than a single function is involved. In
a Serverless application with several functions, most function
dependencies are only available at runtime, making local in-
tegration testing and debugging impossible in some cases [9].

The issues above, exacerbated by the vendor lock-in that is
currently characterizing vast amount of the Serverless comput-
ing market, pose the major challenges that slower the adoption
of the FaaS model.

A first step to address these challenges is to achieve a
better understanding of how the Serverless computing model is
used in practice. Unfortunately, relatively little is known about
the characteristics and the behavior of real-world Serverless
applications. Existing studies focus on specific aspects, such
as evolution of the Serverless vendors [10] or performance
of Serverless applications across different providers [11], [12],
but they do not provide a general-purpose dataset for research
on Serverless computing. Other researchers either applied
research methodologies, such as developer interviews and
literature surveys [9], or used small datasets containing only
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Fig. 1. Overview of creating Wonderless.

tens of applications [13].
In this work, we bridge this gap by providing a dataset of

1,877 real-world Serverless applications which is ready to use
for researchers who are interested in investigating Serverless
applications. Our dataset, ‘Wonderless’, is publicly available1

and the source code2 is open for replication as well as for
extension.

II. CREATING WONDERLESS

The process of constructing Wonderless consists of two
phases, described in the following (Figure 1).

A. Construction of the initial dataset

To construct the initial dataset of Serverless applications,
we chose GitHub projects devloped using the Serverless
Framework3 – we discuss this decision in section IV. This
framework uses a default YAML configuration file, named
serverless.yml, and it allows developers to deploy applica-
tions to cloud providers like AWS, Microsoft Azure, Google
Cloud Platform, Apache OpenWhisk, Cloudflare Workers, or a
Kubernetes-based solution like Kubeless. Listing 1 provides an
example of a serverless.yml file. Depending on the provider,
this file can list different properties. The example shows the
configuration properties for a Telegram bot including name of
the provider, runtime of the application, name of the function,
and type of the event that triggers the function.

We used the GitHub API to search for all the
serverless.yml files in GitHub. We discarded files smaller
than 0.5 KB which are mostly empty (Figure 1.a). As the
result of our search on July 29, 2020, we collected the URLs

1https://doi.org/10.5281/zenodo.4451387
2https://github.com/prg-grp/wonderless
3https://www.serverless.com

of 41,862 unique files, corresponded to 30,078 repositories.
We cloned the main branch of each repositories to create the
initial version of the dataset resulting in about 400 GB of data.

1 service: azure-telegram-bot
2

3 provider:
4 name: azure
5 runtime: nodejs12.x
6

7 plugins:
8 - serverless-azure-functions
9

10 functions:
11 hello:
12 handler: handler.hello
13 events:
14 - http: true
15 x-azure-settings:
16 authLevel: anonymous

Listing 1. An example of a serverless.yml configuration file.

B. Real-world Serverless applications

The initial dataset includes a number of spurious data points
such as inactive and toy projects. For this reason, we applied
several rounds of filtering to the dataset.

As the first step, to remove bias in the dataset, we removed
a repository if it was developed by the Serverless Framework
community. This was done by checking if the application was
developed by the serverless or serverless-components GitHub
usernames. Next, to filter out the applications that served just
as showcases, we removed a repository if its configuration
file was in a directory with one of the labels example, demo,
template, or test.

Then, we considered I) if the configuration file is executable,
II) if the configuration file has the name of the provider in the
provider property and III) if the configuration file contains the
information for at least one function. We removed a repository
when the configuration file does not meet all these criteria. At
the end of this step, the dataset had 371 GB of data, consisting
of 27,812 unique repositories.

To eliminate unstable projects, we removed the repositories
with a lifetime (difference between the date of the last and of
the first commit) of less than a year. Figure 1.b demonstrates
the lifetime distribution of the projects in the dataset: more
than 70% of the projects were active for less than a month.
Overall, more than 90% of the project did not have a new
commit a year after the initial one. This step dramatically
reduced the size of the dataset to 2,364 repositories.

To remove educational projects, we applied a keyword
search to the labels, topics, and descriptions of repositories.
We extracted the description and topics of each repository
using the mercy-preview media type provided by GitHub API.
We removed a repository if the repository contained one of
the following keywords: example, demo, tutorial, playground,
learn, teach, exercise, course, practice, template, sample,
workshop, lecture, study.

Finally, to avoid duplications, we removed a repository if
it was forked or copied from other repositories in the dataset.
To do this, we searched for the projects with the same name
and different developers. Then we manually checked if those

https://doi.org/10.5281/zenodo.4451387
https://github.com/prg-grp/wonderless
https://www.serverless.com


repositories were actually the same or they accidentally had
the same name. If two repositories were the same, we removed
the one with fewer commits. If the number of commits were
also the same, we removed the one with fewer contributors.

III. DATASET OVERVIEW

The steps in Section II led to the construction of the
Wonderless Serverless computing dataset, consisting of 1,877
real-world Serverless applications worthing 44 GB of data.
The dataset is available in the two following formats.

First, a CSV file that contains the URL of each repository.
With this format one can clone the latest version of the
repositories at any time; However, the repositories can change
access to private, be removed entirely, or drop the services
related to Serverless computing over time.

To overcome these issues, we provide a snapshot of the
repositories taken on November 8, 2020. In the snapshot, each
repository is assigned a directory named ‘a b’ where ‘a’ is the
GitHub username of the developer and ‘b’ is the name of the
repository. The directories are categorized into seven groups
based on the provider of the application, retrieved from the
serverless.yml configuration file. The categories are AWS,
Azure, Google, OpenWhisk, Cloudflare, Kubeless, and Other.
The Other category contains providers supporting less than
three applications in the dataset. If an application used multiple
providers, we placed the repository in all the related groups.

Wonderless comprises 197,993 files developed in various
programming languages. Other than Serverless services, an ap-
plication can have non-Serverless parts developed in different
programming languages. We define the runtime of a Serverless
application based on the runtime specified in the configuration
file of that application. We used CLOC4 to count the number
of files and lines of code for each language. Table I presents
an overview, including the occurrence of the runtimes in the
dataset. Node.js, with 72.2% occurrences in Wonderless, is the
most popular runtime.

TABLE I
DISTRIBUTION OF PROGRAMMING LANGUAGES IN WONDERLESS.

Language Files Lines of Code Occurrence%
JavaScript 44,279 7,332,365 72.2%TypeScript 22,517 1,429,896

Python 15,875 2,083,442 19%

Java 11,556 415,665 2.7%

Ruby 3,001 91,499 0.5%

Go 2,283 489,636 2.4%

Other 98,482 28,281,135 3.2%

Total 197,993 40,123,638 100%

Wonderless includes the Git history of each repository.
According to the results from git log, there are 374,922
commits in total, and 13,984 developers contributed to these
applications. More than 48% of the repositories have at least
one GitHub star, and more than 96% have less than 100 stars.

4https://github.com/AlDanial/cloc

IV. DISCUSSION

A. Identifying Serverless applications
The starting point for constructing the Wonderless is iden-

tifying Serverless applications. We discuss two alternatives to
our approach.

First, one can use services like GHTorrent [14], an offline
mirror of the GitHub public event timeline, to search for repos-
itories that contain specific keywords in their descriptions,
topics, commits or other related attributes. Yet, the presence
of a keyword does not guarantee that an application is Server-
less. Analogously, an application may be Serverless without
containing a specific keyword in the repository attributes. Our
approach is more precise in these regards, but it is limited to
a specific framework. Serverless Framework is widely used
with more than 36 K GitHub stars and 15 M downloads. Ac-
cording to a review of Serverless frameworks [15], Serverless
Framework, with the highest number of supported providers
and programming languages, and with the deployment, testing,
monitoring, and security offerings is the most comprehensive
existing framework.

Second, one can search for a configuration file that is
specific to Serverless applications in the GitHub API. Unfortu-
nately, to consider several vendors, one needs to find specific
configuration files for each provider. Worse, the Serverless
configuration files are hardly distinguishable from other cloud
setups. For example, one of the default Serverless configura-
tion files in Amazon Web Services (AWS) is index.js. On
January 28, 2021, there were more than 202 M files with this
name on GitHub, most not related to Serverless applications.
In our approach, instead, we rely on a configuration file
that is exclusively for Serverless applications, and has the
same default name across different providers and platforms.
Serverless Framework satisfies both these criteria.

B. Use cases for Wonderless
We envision using Wonderless in future studies concerning

different directions.
First, Wonderless can be used to study several aspects that

so far have not been considered or have been only marginally
touched by researchers. For example, to the best of our
knowledge, there is no comprehensive empirical analysis of
security of Serverless applications. As a starting point, Hong at
al. [16] proposed a catalogue of security patterns for Serverless
computing which could be used to assess the security design
of the applications in Wonderless.

Recently, Rahman et al. [17] developed a catalogue of
antipatterns for Infrastructure as Code. We believe that an anal-
ogous study of antipatterns for Serverless computing would be
beneficial. Similarly, Obetz et al. have proposed a novel static
analysis technique that is specific to Serverless computing and
they demonstrated it on seven Serverless applications [18].

Second, as Wonderless includes the full history of each
Serverless application, it provides developers the opportu-
nity to study how Serverless computing projects evolve over
time [19]–[21]. It would be interesting to compare the results
with analogous studies in Wonderless.

https://github.com/AlDanial/cloc


Finally, Wonderless, with 1,877 data points, can be used to
extend existing studies along several dimensions. Concerning
number of applications, studies that have focused on datasets
in the order of tens of applications [13] can be extended to a
much larger scale. Along the methodology axes, Wonderless
can be used to complement the knowledge collected with
surveys, and developer interviews with first-hand analysis of
Serverless applications [9]. Along the technology axes, since
Wonderless does not focus on a specific vendor, it can be
used to discover whether existing analyses carried out for one
vendor generalize to others [10].

V. THREATS TO VALIDITY

First, we limited the dataset to public projects available
in GitHub; Nevertheless, we believe that such projects are
representative of how Serverless computing is adopted in
practice. As of December 2020, GitHub with more than 64 M5

developers and 36 M6 public repositories, is the home for the
largest open-source communities.

Second, Wonderless is restricted to the applications devel-
oped with Serverless Framework; However, not every devel-
oper uses a framework to program Serverless applications.
They may directly use a provider, or they may adopt self-
hosted solutions. As discussed in section IV-A, Serverless
Framework is the most popular open-source solution for
Serverless applications – based on GitHub stars and the results
of a prior study [15]. Hence, we believe that the issue above
does not significantly diminish the possibility of generalizing
the results obtained from the dataset.

Another issue is that the filtering procedure may not have
removed all uninteresting cases, including toy software and
stub applications. To this end, we randomly selected 10% of
the projects, and we manually checked them. Only 11 of the
180 projects were template or example projects.

VI. RELATED WORK

A. Related datasets

Eismann et al. [13] analyze 32 open-source projects. These
projects are a subset of an existing dataset introduced by
Pavlov et al. [22]. The initial dataset was extracted from
GitHub using GHTorrent based on keyword search and repos-
itories’ creation date. Eismann et al. applied several additional
filters to this dataset to take out active and real-world Server-
less applications resulting in only 32 projects. These filters
are based on the number of files, commits, contributors, and
watchers of the projects, along with the manual inspection of
the repositories.

The Amazon Web Services Serverless Application Repos-
itory (AWS SAR)7 enables developers to store and share
reusable applications. This repository can also be used as a
dataset to investigate Serverless applications. Yet, it is limited
to AWS: it only contains applications provided by AWS and
applications developed by AWS verified authors.

5https://github.com/search
6https://github.com/search?q=is:public
7https://aws.amazon.com/serverless/serverlessrepo/

B. Studies on Serverless computing

With the increasing popularity of Serverless applications,
more and more studies have been conducted on a broad range
of topics in Serverless computing.

Eismann et al. [13] provide a high-level picture of Serverless
computing, including company adoption, suitable application
context, and implementation of Serverless applications. In the
study, the authors analyze 32 open-source Serverless projects
along with 57 Serverless sources including industrial sources,
academic literature, and scientific computing.

Leitner et al. [9] present the results of a mixed-method
study consisting of interviews, a literature review, and a Web-
based survey to identify best practices for building Serverless
applications. The authors collect the data based on the pro-
grammer’s experience while developing the application.

Spillner [10] investigates the evolution of Lambda functions
through AWS SAR. In this study, the evolution of function-
level metadata, code-level metadata, and code-level imple-
mentation of Lambda functions is investigated by continuous
observation, extraction, mining and conflation of repositories
in AWS SAR.

Several studies [11], [12], [23]–[27] have evaluated the
performance of popular Serverless solutions by running bench-
mark functions across platforms. The metrics include time,
memory, network, and I/O. Another class of studies inves-
tigates the cost of Serverless platforms based on different
utilization metrics. Lenarduzzi and Panichella [28] study the
migration of two industrial cases of early adopters and show
how Lambda deployment architectures reduces hosting costs.
Jackson and Clynch [29] study the impact of language runtime
on the cost of Serverless functions in AWS Lambda and Azure
Functions. Bortolini and Obelheiro [30] investigate the cost
variations within and across Serverless platforms based on
memory allocation, provider, and programming language.

VII. SUMMARY AND CONCLUSION

In this paper, we introduce Wonderless, a dataset of real-
world Serverless applications. Wonderless is available in two
formats: a CSV file containing the links to the selected
repositories in GitHub and a directory containing a snapshot
of the mentioned repositories grouped into seven different
categories based on their providers. We believe that Wonder-
less can enable researchers to explore the characteristics of
the Serverless computing model based on a large corpus of
Serverless applications.

ACKNOWLEDGMENT

This work has been co-funded by the LOEWE initiative
(Hesse, Germany) within the emergenCITY center, and by
the German Research Foundation (DFG) within projects SA
2918/2-1 and SA 2918/3-1.

REFERENCES

[1] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One step
forward, two steps back,” arXiv preprint arXiv:1812.03651, 2018.

https://github.com/search
https://github.com/search?q=is:public
https://aws.amazon.com/serverless/serverlessrepo/


[2] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah,
P. Suter, and O. Tardieu, “The serverless trilemma: Function composition
for serverless computing,” in Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, 2017, pp. 89–103.

[3] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and
A. Trivedi, “Understanding ephemeral storage for serverless analytics,”
in 2018 USENIX Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, Jul. 2018, pp. 789–794. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/klimo
vic-serverless

[4] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar,
J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson,
“Cloud programming simplified: A Berkeley view on serverless
computing,” CoRR, vol. abs/1902.03383, 2019. [Online]. Available:
http://arxiv.org/abs/1902.03383

[5] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing
factors in function as a service,” in 2018 IEEE/ACM International Con-
ference on Utility and Cloud Computing Companion (UCC Companion).
IEEE, 2018, pp. 181–188.
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