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Abstract

Distributed Complex Event Processing (DCEP) is a commonly used paradigm

to detect and act on situational changes of many applications, including the

Internet of Things (IoT). DCEP achieves this using a simple specification of

analytical tasks on data streams called operators and their distributed execu-

tion on a set of infrastructure. The adaptivity of DCEP to the dynamics of IoT

applications is essential and very challenging in the face of changing demands

concerning Quality of Service. In our previous work, we addressed this issue

by enabling transitions, which allow for the adaptive use of multiple operator

placement mechanisms. In this article, we extend the transition methodology

by optimizing the costs of transition and analyzing the behaviour using multiple

operator placement mechanisms. Furthermore, we provide an extensive evalua-

tion on the costs of transition imposed by operator migrations and learning, as

it can inflict overhead on the performance if operated uncoordinatedly.

1. Introduction

The unprecedented growth in IoT devices has enabled multiple applications

in connected vehicles, financial trading, and industrial manufacturing. Cisco

predicts that there will be 29.3 billion IoT devices by 2023, and among those,

connected vehicles will be the fastest-growing application type [1]. IoT applica-

tions, especially involving highly mobile components such as connected vehicles,



incorporate inherent dynamics in the environment and the required Quality of

Service (QoS) demands. Such applications need to continuously adapt their

system’s components to meet specific QoS demands related to environmental

conditions. An essential aspect in the adaptation cycle of IoT applications is

detecting situational changes that trigger actions at the distributed application

components– for instance, detecting and reacting to the change in the density

of the vehicles depending on the time of the day, such as rush hours vs regular

hours.

DCEP is a prevalent and frequently applied paradigm to detect and act on

such situational changes. DCEP analyzes data streams from many distinct data

sources and detects event patterns, named complex events, corresponding to the

situational changes to which IoT applications need to adapt. The logic to detect

such situational changes is modelled using a data flow graph, commonly referred

to as an operator graph. An operator graph represents the computational units

that help detect complex events, named operators, which are interconnected by

data streams. DCEP needs to ensure that events of interest or complex events

are delivered while meeting the specified QoS demands of the IoT application.

For instance, a connected car application that shares contextual information

between multiple vehicles for time-critical and safety-critical decisions has a

latency demand of delivering information in less than 30ms [2]. A central mech-

anism of a DCEP system towards fulfilling such QoS demands is an Operator

Placement (OP) mechanism that dictates the assignment of the operators on the

resources of the IoT infrastructure. The placement of operators on resources,

such as on the things (IoT devices) at the edge, or resources at the fog [3], or

inside data centers, helps accomplish the specified QoS demands, such as low

latency, bandwidth efficiency, or reliable delivery.

Typically, DCEP systems rely on a single OP mechanism optimized for one

QoS demand or combining multiple demands. For instance, OP mechanisms

have been widely researched to minimize latency [4], to reduce load [5, 6, 7], to

minimize network usage (bandwidth-delay product) [8, 9, 10], and to preserve

trust and privacy [11]. Some authors even combine multiple QoS demands in
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a multi-objective optimization formulation to find Pareto-optimal solutions for

operator placement [12, 13]. However, under changing QoS demands, which

are unknown beforehand, current DCEP systems fail to find a suitable OP

mechanism because they are restricted to a single OP mechanism. Furthermore,

the OP mechanisms are specialized for given environmental conditions, such as

the mobility of producers or consumers – stationary or highly mobile.

Current OP mechanisms are known to have trade-offs regarding supported

QoS demands dependent on the given environmental conditions. The reasons

are twofold, (i) the conflicting nature of QoS demands, such as minimizing

latency but limiting the overhead in assigning operators, and (ii) because OP

mechanisms favor specific environmental conditions, such as high mobility vs low

mobility of connected vehicles. Instead of aiming for a single universal mech-

anism supporting all kinds of QoS demands and environmental conditions, we

pursue in this article the idea of dynamically changing mechanisms at runtime

by introducing and analyzing an adaptation technique named transition [14].

The transition facilitates dynamic change of mechanisms to benefit ideally from

the best suitable mechanisms required under specific environmental conditions.

Introducing transitions in a seamless and non-disruptive manner, i.e., with-

out any interruption in the output into DCEP, is a highly challenging task and

requires careful choice of system mechanisms. In this article, we aim to solve

this challenge in the context of OP mechanisms. A critical issue that we ad-

dress is to efficiently migrate operator graphs while maintaining the correctness

of the results and imposing minimum costs into the DCEP system. Naively

approaching the problem will lead to high overhead in terms of state transfer

for stateful operators and communication overhead, which eventually leads to a

failure in terms of fulfilment of QoS demands. Therefore, a systematic selection

of an operator placement mechanism is required to fulfil the QoS demands.
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In this article, we extend our previous findings on Tcep [15]1 by (i) propos-

ing a programming model that enables analysis of distinct OP mechanisms and

their adaptation for various QoS demands, (ii) determining optimal discrete-

time points when to perform operator migrations such that the cost is minimal

as part of the cost-efficient algorithm, and (iii) adaptively selecting OP mecha-

nisms while maintaining a low overhead using genetic learning methods.

In more detail, this article provides the following contributions:

1. We formalize the problem of transitions for operator placement problem in

the DCEP system, considering distinct QoS demands of applications, and

present the definition of the cost that needs to be considered in performing

transitions in OP mechanisms.

2. We present a programming model that enables the development of OP mech-

anisms with specific QoS demands, which is used to support seamless tran-

sitions.

3. We present and analyze the genetic learning-based method for adaptively

planning transitions between OP mechanisms to meet dynamically changing

QoS demands and changes in the network environment.

4. We present and analyze two transition algorithms to facilitate the dynamic

change of OP mechanisms in a non-disruptive and seamless manner while

maintaining the correctness of the results.

5. We present an extensive evaluation to analyze the behaviour of state-of-the-

art OP mechanisms using distinct queries and analyze their performance on

the distributed set of fog-cloud infrastructure, including GENI [16], Cloud-

Lab [17], and MAKI [18] resources. Furthermore, we analyze the performance

of (i) mechanism transitions under dynamics of environmental conditions,

(ii) proposed transition algorithm in terms of costs imposed, and (iii) costs

incurred by genetic learning-based selection algorithm.

1TCEP and its programming model are made publicly available for use. https://

luthramanisha.github.io/TCEP/ [Accessed on 21.04.2021]
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Our extensive evaluations of Tcep show in the context of presented traffic

congestion detection queries that the transitions can be performed in the range

between 0.85 − 2 seconds while maintaining 100% throughput in detecting the

complex event due to the minimal costs in terms of time and overhead.

The remainder of this article is structured as follows. We provide a brief

introduction to DCEP using an example of the traffic control scenario and mo-

tivate mechanism transitions by a preliminary evaluation in Section 2. We

introduce the Tcep system model in Section 3 and present the problem state-

ment in Section 4. We present the design of Tcep in Section 5 and evaluate the

Tcep system in Section 6. Finally, in Sections 7 and 8, we present the related

work and conclude our paper, respectively.

2. The need for transition of OP mechanisms

To demonstrate and motivate the need for exchanging OPmechanisms through

transitions, we first introduce a typical use-case of Complex Event Processing

(CEP) in the context of a traffic control application that is consistently used

in this article until later on as part of the evaluation. Furthermore, we show

significant shortcomings of current CEP systems for the scenario by performing

an initial evaluation study on state-of-the-art placement mechanisms.

2.1. Complex Event Processing

CEP is a powerful paradigm that detects patterns in the incoming data

streams to derive higher-level events such as traffic congestion. Consider a

traffic control application in an IoT scenario that processes information from

different producers such as smart vehicles and radar sensors. These producers

generate continuous data streams comprising of event tuples of the following

form– vehicle sensor : < ts, section id, vehicle id, vehicle speed > and

radar sensor : < ts, section id, no vehicles, avg speed >. CEP allows speci-

fication of the higher-level events such as traffic congestion in the form of a

query. A query comprises computational units called operators such as filter,

join, and sequence that can specify transformations on the data streams. CEP
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operators can be classified as stateless such as filter operator, and stateful such

as window-join, window-aggregate and sequence operators. Stateless operators

perform computation only on the current input tuples, while the stateful oper-

ators perform computation on the current and past input tuples depending on

the semantics of the operator. The number of past tuples considered for com-

putation in a stateful operator is typically formulated using a window based

on time or tuple size. While there exist multiple window types, we consider a

sliding window in our running example in this article2. Here, slide size refers

to the number of event tuples shifted in a given window such that new event

tuples from the data stream are included in the next window cycle. Moreover,

the window size refers to the number of events tuples to be considered for the

computation in the current window cycle.

In the running example, a stateful operation like joining of data streams

observed at SectionV1 (shaded in lines with red) and SectionV2 (shaded in

green), which are two road sections of a crossing, result in composite data streams

seen in Figure 1b: vehiclesAtSectionV1 and vehiclesAtSectionV2. Another

example of a stateful operator used in detecting a traffic congestion event is when

the sequence of Condition 1 followed by Condition 2 as described in Figure 1a

takes place, which is detailed in the next section. We note that traffic detection

in real applications is more complex than the provided example. However, for

simplicity and better understandability, we refer to the above example.

CEP can be realized in two ways: centralized or distributed. While the

processing at a single node (centralized) is beneficial for some scenarios, DCEP

is particularly useful for large scale scenarios as in this work. In this work, we

focus on DCEP that comprises multiple nodes, which collaboratively process

the query. We further detail the problem using the traffic control application in

the next section.

2Yet, the proposed system is not restricted to sliding windows and can be applied to other
types of windows such as tumbling windows.
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SectionV1 :

Input Stream: 

vehiclesAtSectionV1

Condition 1: slow 

speed, high density 

SectionV2:

Input Stream: 

vehiclesAtSectionV2

Condition 2: fast speed, low 

density 

Query: Is the road section congested?  

Output: True or False

Conditions: Either condition 1 or 2 hold 

(a) Congestion detection under dynamic environmental conditions performed by query in (b).

1 case class VehiclesAtSection(sectionId: Int , avgVehiclesDensity:

Long , avgVehiclesSpeed Long , time: Long)

2 val vehiclesAtSectionV1: Stream[VehiclesAtSection] = ...

3 val vehiclesAtSectionV2: Stream[VehiclesAtSection] = ...

4 val congestedAdjacentRoadSections = Query[RoadSections]

5 (( vehiclesAtSectionV1 where { v1 =>

6 v1.avgVehiclesSpeed < NormalSpeedThreshold &&

7 v1.avgVehiclesDensity > HighTrafficThreshold

8 })

9 ->

10 (vehiclesAtSectionV2 where { v2 =>

11 v2.avgVehiclesSpeed > NormalSpeedThreshold &&

12 v2.avgVehiclesDensity < HighTrafficThreshold

13 })

14 within 1.min

15 where { case (v1 , v2) => v2.time > v1.time }

16 demand QOS_DEMAND)

(b) Query to detect congestion at a road section.

Figure 1: Traffic congestion control scenario highlighting the change in environmental condi-
tions at the two road sections SectionV1 and SectionV2 necessitates different OP mechanisms
for dynamic user environments.
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2.2. Case Study: IoT Traffic Control Application

In this section using the traffic control application introduced in the above

Section 2.1, we show that under the dynamics of environmental conditions,

state-of-the-art placement mechanisms [8, 6] fail to fulfil QoS demands while

detecting a traffic congestion event under dynamically changing environmental

conditions.

Let us consider a continuous query3 to detect that a road section on a cross-

ing is congested, as seen in Figure 1b. Any consumer can pose a query for a

specific road section on the crossing, say SectionV1. Examples for a consumer

could be emergency services, traffic lights, and all vehicles near SectionV1,

which are interested in getting traffic updates. The query specifies conditions,

such as high traffic density and low vehicle speed on SectionV1 and its crossed

road section, SectionV2. The query specifies a sequence (Line 9) of such condi-

tions for SectionV1 (Lines 5–7) and SectionV2 (Lines 10–12). The composite

data streams vehiclesAtSectionV1 and vehiclesAtSectionV2 are assumed to

contain information on the average speed and density. This is done by employ-

ing transformation of data streams from heterogeneous sources such as sensor

nodes in the IoT infrastructure, e.g., speed sensors, radar sensors, and road

side units, as seen in the previous section. The complex event: “congestion of

road SectionV1” is successfully detected when the sequence of conditions on

SectionV1 and SectionV2 in a temporal timespan of one minute (Line 14) in-

dicates (i) dense traffic and slow vehicles for SectionV1 and (ii) sparse traffic

and fast vehicles for SectionV2, respectively.

The execution of the query is performed in a distributed manner on the

available resources in the IoT infrastructure, such as vehicles, that can directly

communicate using techniques like V2X [20] and device-to-device communica-

tion [21]. The mapping of the operators to these resources is done through an

OP mechanism, which must account for the QoS DEMAND specified within the

3in the AdaptiveCEP query language written in Scala [19].
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query. As part of the query specification3, these demands such as low latency

can be specified according to the users’ requirements.

A premise underlying our work is that the same OP mechanism cannot ac-

commodate conflicting QoS demands. Therefore, we analyze the ability to fulfil

specific QoS demands for the query in Figure 1b for two popular state-of-the-art

OP placement mechanisms: Relaxation [8] and Mobile DCEP [6]. The key idea

of the Relaxation mechanism is to place operators based on a model referred to

as a latency space. The latency space allows determining communication delays

between resources in the IoT environment, and the mechanism uses the relation

to find a near-optimal embedding of an operator graph with respect to end-

to-end latency. In contrast, Mobile DCEP avoids the overhead in maintaining

any topological information, which needs to be updated frequently in a highly

dynamic environment. Instead, the placement decisions are based on devices

within the communication range capable of forming a device-to-device network

closer to the data sources. In this way, the authors achieve a sub-optimal em-

bedding of the operator graph at low control message overhead.

We analyzed the above two mechanisms in an IoT environment with mobile

IoT resources (i.e., vehicles in this scenario) under the two crucial QoS demands

(i) end-to-end latency defined as the total time required to detect events, and

(ii) control message overhead needed to establish stable communication be-

tween the placed operators.

Figure 2 shows the measurements on end-to-end latency and control message

overhead achieved by the OP mechanisms in a dynamic mobile environment for

50 incrementally deployed queries given in Figure 1b. The details on the evalu-

ation configuration can be found later in Section 6. The cumulative distribution

function (CDF) of latency under an increasing number of deployed queries con-

firms that Relaxation achieves consistently very low latency less than 100ms

for most of the queries, i.e., 80% of the query workload, as seen in Figure 2a.

This is consistent with the findings of Pietzuch et al. [8]. However, the control

message overhead to coordinate the placement, in this case, to build the latency

space, is increasing quickly with the number of deployed queries up to 1500KB
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Figure 2: Performance comparison of Relaxation [8] and Mobile DCEP [6] OP mechanisms
for 50 incrementally deployed queries.

on average, as seen in Figure 2b. In contrast, Mobile DCEP achieves little mes-

sage overhead for all queries in the order of few bytes allowing for a very stable

OP, but many queries suffer a long end-to-end latency of ∼7.5 s on average.

The above preliminary evaluation shows that different QoS demands re-

quire building on different OP mechanisms. Most importantly, depending on

the changing environmental conditions – high or low mobility and high or low

query workload – different mechanisms must fulfil the specific QoS demands. In

a less dynamic environment concerning node mobility, such as with slow-moving

vehicles, we measured a significantly lower control overhead for Relaxation, and

hence it can be used to achieve low latency in condition 1. However, when

changing from condition 1 (with lower dynamics) to condition 2 (with higher

dynamics), a transition from Relaxation to Mobile DCEP is essential. Control-

ling the overhead improves the stability of the OP under the increased dynamics.

In the presence of a dynamic environment and conflicting QoS demands, it be-

comes imperative to adapt OP mechanisms, which is the focus of this work.

3. System Model

In this section, we introduce the system model we use in describing the

concepts of Tcep. In particular, we introduce the operator graph that models

event processing to detect complex events, the IoT resource model that describes
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Notation Meaning

P Set of event producers (p ∈ P )
C Set of event consumers (c ∈ C)
B Set of brokers (b ∈ B)
D Continuous data stream
E Set of event tuples (e ∈ E)
Ω Set of CEP operators (ω ∈ Ω)
G Operator graph
fω Processing logic of an operator
BI Input buffer of an operator
BO Output buffer of an operator
M1 . . .MN OP mechanisms
α Mapping function of the operator ω
T Transition function defining a dynamic change of

mechanisms
en(t) Environmental conditions dependent on time t

Table 1: Notations and their meaning.

the placement infrastructure, the node model that describes the entities partic-

ipating in the processing of events, OP mechanisms and transition model for

adapting DCEP, and QoS demand model which IoT applications use to express

their requirements.

3.1. Tcep Model

Tcep consists of (i) a set of event producers (P ), which produce continuous

data streams (D), (ii) a set of event consumers (C), which express a complex

event on the incoming data streams, and (iii) a set of event brokers (B), which

host a set of operators (Ω) to process and forward events. Event consumers

specify complex events that represent an event pattern by means of a continuous

DCEP query. The query induces a directed acyclic operator graph G = (Ω ∪
P ∪ C, D), comprising of operators, producers, consumers and data streams,

s.t., D ⊆ (P ∪ Ω)× (C ∪ Ω).

The operator graph dictates the execution plan specific to the query given

by the event consumer. Figure 3 illustrates an operator graph for detecting

traffic congestion at road sections corresponding to the query in Figure 1b.

The data flow of the events in the operator graph is given from bottom to

top of the graph. Here, the operators down the hierarchy are the predeces-

sors (producers are at the last level), while the operators up the hierarchy are
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the successors (consumers are at the top level). Operators ωV 1 and ωV 2 cor-

respond to the window-aggregate operators of the two input streams from the

road sections V 1 and V 2. Operators ω→ and ωσ denote sequence and selection

operators, respectively. Each operator ω dictates a processing logic fω. The

data stream encapsulates a set of event tuples E, where each tuple is of the

form e = {(k1, v1), . . . , (klaste , vlaste)}. Here, k refers to the name of the tuple

and v refers to the tuple value. In Tcep, we assume that the data streams

arrive in the order indicated by the timestamp in the event tuple [22] and the

system nodes are equipped with clocks that can be synchronized using a clock

synchronization protocol such as Network Time Protocol [23].

IoT Applications

ωσ 

ω

ωV1 ωV2

Operator Graph

Things/IoT devices

1 min 1 min

e
1
s e

2
s e

3
s e

4
s

speed events density events

Speed and density 

patterns

Traffic congestion 

detection
e

ω

window

selection

event

operator

ωσ 

ω

ωV1 ωV2

Predecessor

Successor

e
1
d e

2
d e

3
d e

4
d

e5
s,d

Figure 3: Operator graph for the query in Figure 1b.

Definition 3.1. Operator Buffers and State. The function fω processes ordered
input data streams from the operator’s input buffer BI and produce output
events stored in the operator’s output buffer BO. An operator either works
based on the fixed computational parameters that are immutable (e.g., filter
and stream operators) or it works on a dynamically changing computational
state that is mutable (e.g., window and sequence operators), depending on the
internal logic of the operator [24]. A mutable operator can dynamically change
the selection of events determined by an operator-specific selection policy and
consumption policy of window and sequence operators [25].

For instance, in Figure 3, the operator ωV 1 specifies a selection policy for a

sliding window size of three subsequent speed events {es1, es2, es3} on the incoming

speed data stream. In a subsequent transformation step, operator ωV 1 applies

the processing function on the updated selection of events {es2, es3, es4} after slid-
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Figure 4: Example operator graph deployment and Tcep execution environment on the IoT
network resources.

ing one event. Each transformation step produces zero or more events as output.

Events are evicted from the incoming data streams after each transformation

step by means of a consumption policy. In this example, the slide size defines

the consumption policy, e.g., es1 is evicted when the subsequent transformation

step with {es2, es3, es4} is performed.

3.2. IoT Resource Model

Although Tcep is not limited to a specific network topology and resource

model, we will focus on the resources commonly considered in the context of IoT.

Consider a hierarchical network infrastructure illustrated in Figure 4. The figure

presents three layers: (i) (mobile) Things referring to IoT devices interconnected

over wireless communication, (ii) a layer of resources at the fog that offer a low-

latency link to the Things in physical proximity, (iii) and a fixed network layer

comprising distributed resources in data centers or cloud. It is important to

note that cloud and fog resources are assumed to communicate via a fixed IP

infrastructure or novel ICN architectures [26]. In contrast, IoT devices and

edge resources can form different wireless network topologies, including device-

to-device communication [21] between IoT devices or V2X [20] between vehicles.

Things represent producers and consumers in the IoT scenario, while opera-

tors can be placed on any three layers. The end-to-end latency for this resource

model is influenced by the physical proximity of resources and the computa-

tional power of resources. In general, we assume higher resource availability

and processing power in the cloud. In contrast, IoT devices have resource con-

straints because they are battery-powered. Fog nodes are computationally more
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powerful than mobile nodes. For things, the availability of spatially nearby fog

resources is restricted. For instance, IoT devices like Raspberry Pis and smart-

phones are resource-constrained and less powerful than computational resources

at the fog locations such as micro data centers. Moreover, the availability of a

fog location nearby an IoT device is not ascertained. Each operator ω is encap-

sulated in a container on the computational resources of the IoT infrastructure,

as defined in Definition 3.2.

3.3. Node Model

A node acts as a host to the system entities producers, consumers, or bro-

kers. Nodes refer to resources of the IoT resource model over which a producer,

consumer, or broker can be executed. Note that the mapping of brokers on the

node can change dynamically due to the dynamics in the environment. The

nodes form an overlay network imposed by the interconnection of the operator

graph on top of the IoT resource model. Figure 5 illustrates such an overlay

network for the query and operator graph introduced in Section 2.2. Here,

the rectangular boxes denote the nodes, and the operator graph is executed on

them.

Filter 

Producer

Producer

Empty 

App

Empty 

App

Empty 

App

Sequence

Consumer

Stream

Stream 

ωV1

ωV2 ω

ωσ

Figure 5: Tcep node model. The solid contour indicates pinned operators, while the dotted
indicates unpinned operators.

Definition 3.2. Containers. A Tcep container enables the flexible movement
of nodes in the IoT resource model.

Tcep differentiates between pinned entities, i.e., producers and consumers,

from unpinned entities, i.e., DCEP operators. This is accomplished using static

and dynamic containers. As the name suggests, the static containers are pinned
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to one node, while the dynamic containers are unpinned, meaning these support

migration of operators on different nodes at runtime. An example of a static

container is a producer and consumer, while a broker can be pinned or unpinned

to a dynamic container named Empty App (cf. Figure 5). Although EmptyApp

can hold more than one operator, they are free to move between other EmptyApp

without harming the other operators being executed on the same node. In this

way, we enable flexible operator deployment and operator migrations on the

fog-cloud infrastructure.

3.4. OP Mechanism and Transition Model

The Tcep follows a modular design as a composition of multiple OP mech-

anisms M1,M2, . . . ,MN .

Definition 3.3. OP mechanism. An OP mechanism determines where and how
to map an operator graph G on a set of given brokers B = {b1, b2, . . . , blastB}
in the IoT resource model. The mapped network of brokers is well known as an
operator network. We define the mapping of the operator network as follows:

α : Ω×B → {0, 1}, s.t.

αi,j =











1, if ωi is placed on bj

0, if ωi is not placed on bj .

(1)

Definition 3.4. Transition. In this work, we define the concept of a transition
for OP mechanisms, denoted as T : MA → MB . A transition T performs a
switch from a mechanism MA to MB , e.g., OP mechanisms at run time.

The goal is to perform a transition in a seamless or non-disruptive manner

and to avoid oscillations during a transition. By seamless execution of transi-

tion, we mean no disruption in delivering complex events during the lifecycle

of a continuous query (cf. Section 4). By oscillations, we mean that given the

dynamics in the environmental conditions, the system may decide in a short

interval to transit to a different mechanism multiple times. Tcep prevents

oscillations by maintaining a balance in exploring multiple OP mechanism vs

exploiting best OP mechanisms (cf. Section 5.2).

15



3.5. QoS Demand Model

An essential principle of an OP mechanism is to find a mapping of an op-

erator graph to brokers that optimally satisfies an objective function of QoS

demands, such as end-to-end latency, bandwidth, and control message over-

head. Tcep allows specification of one or more QoS demands (QoS) and

changing them at run time. The dynamics in the environmental conditions

(en1, en2, . . . , enlasten), such as varying workload and mobility, influence the

fulfilment of such QoS demands.

In this work, we consider two crucial performance metrics influencing the

decision of operator placement in a dynamic environment: end-to-end latency

and control message overhead.

Definition 3.5. End-to-end latency. It is the time taken to (i) receive the
required primary events for the query at the placed nodes, (ii) process the
query, (iii) emit a complex event, and (iv) transmit the complex event through
the network path between the given event producers P to the given consumers
C.

It is important to note that end-to-end latency can be time-varying due to

the dynamic nature of the network and the placement update of the operators.

In case multiple producers or consumers are involved, then latency is measured

from the producer with the maximum network delay to the consumer, as ex-

plained in the example below.

To better understand, let us revisit the example scenario introduced in Sec-

tion 2. We assume that two producers vehiclesAtSectionV1 and vehiclesAtSectionV2,

and a single consumer is interested in detecting congestion. Now, consider the

path from p1 : vehiclesAtSectionV1 and p2 : vehiclesAtSectionV2 via some

broker vehicles b1, b2, . . . , blastB to the consumer c. We assume the position of

the consumer is at Section V1 when the query is triggered, and the OP was de-

termined at the aforementioned producer and broker network path. In this case,

the end-to-end latency is the sum of the network delay observed on the path

p2, p1, b1, b2, . . . , blastB , c and the execution time of the query on these nodes in

the path. In case multiple consumers, say c1 and c2, are interested in the same

query, the end-to-end latency is given by the interval between the first primary
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event production at p1 and the complex event reception at the consumer c1 or

c2. Note, even when the query has been placed at the same set of brokers, the

end-to-end latency for the different consumers will depend on the consumer’s

location, and hence it could be different for each consumer.

Definition 3.6. Control message overhead The number of control messages
sent to assign all the operators ω ∈ Ω of a query to the brokers b ∈ B. In
essence, it is given by the overhead caused in exchanging messages to place the
query on the IoT resource model.

Using the above definition of control message overhead and the assumptions

on the traffic control scenario in Definition 3.5, let us demonstrate the meaning

of control message overhead. To fulfil an objective, such as end-to-end latency,

an OP mechanism such as Relaxation [8] maintains a latency cost space to find

out network paths with minimum end-to-end latency. However, to build such a

cost space, many messages have to be exchanged between the considered nodes

for placement and the OP coordinator. Furthermore, to place an operator graph,

acknowledgements on the assignment of operators on nodes are sent. We refer to

the number of such control messages for OP as control message overhead. Some

OP mechanisms like MDCEP [6] aim to minimize this metric on the cost of sub-

optimal OP concerning metrics, like end-to-end latency, to prevent overhead on

resource-constrained IoT nodes.

4. Problem Statement

Consider the availability of N -different OP mechanisms that can be selected

to execute and place a query on the IoT network resources. Dependent on the

environmental conditions en(t) at time t, the QoS demands of consumers, say

QoS|en(t) are changing. Furthermore, the ability and cost of an OP in terms of

resource requirements to fulfil the QoS demands are changing over time.

The Tcep system aims to ensure that the QoS demands of queries are ful-

filled despite changing environmental conditions using the IoT resource model.

Therefore, we determine for changing environmental conditions en(t) and corre-

sponding QoS|en(t) demands a sequence of points in time, say t1, . . . , tn and a se-

quence of OP mechanisms M(t1), . . . ,M(tn) on which a transition Ti : M(ti) →
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M(ti+1) is initiated at time ti. It is important to note that while performing

a transition, several operator migrations must take place. The operator mi-

grations impose a high cost because of state migrations in terms of time and

overhead. Moreover, the transition needs to be performed in a non-disruptive

manner, i.e., even during the transition, the QoS demands of a query need to

be satisfied. Consequently, state migrations have to take place in a cost-efficient

manner.

We define the objective function of the transition problem considering two

key cost factors, namely, the costs imposed in terms of transition time CTime(Ti)

and transition overhead COverhead(Ti). The transition time is defined as the

time it takes to select a new target placement mechanism M(ti+1) (T imeselect),

to find a placement α dependent on M(ti+1) (T imeα), and to migrate j opera-

tors ωj ∈ Ω, ∀j ∈ [1, numj ] to the target brokers (T imemig.(ωj)) dependent on

α. Thus, we define the cost in terms of transition time as:

CTime(Ti) = T imeselect + T imeα +

numj

∑

j=1

T imemig.(ωj) . (2)

Similarly, the transition overhead is given by the overall number of mes-

sages exchanged in order to perform a transition, including the (i) selection

of a placement mechanism (Overheadselect), (ii) the placement (Overheadα),

(iii) and migration of the operators including their state (Overheadmig.(ωj)).

Formally, it is defined as follows:

COverhead(Ti) = Overheadselect +Overheadα +

numj

∑

j=1

Overheadmig.(ωj) . (3)

The transition problem in this paper, therefore, is to minimize a weighted

sum of normalized values4 transition time (ĈTime(Ti)) and transition overhead

4using mean normalization method.
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(ĈOverhead(Ti)) in order to meet the QoS demands under the execution of tran-

sitions as stated below:

min
[

wt ∗ ĈTime(Ti) + wo ∗ ĈOverhead(Ti)
]

s.t. α(t) satisfies QoS|en(t) under the execution of Ti

CTime(Ti), COverhead(Ti), QoS|en(t) ∈ R
+ .

(4)

Here, wt, wo ≥ 0, wt + wo = 1, denote weights for transition time and

overhead, respectively.

5. The TCEP System Design

Conceptual Overview. The four key components of the Tcep system are rep-

resented in Figure 6. The IoT resources layer includes event consumers, which

can pose queries with specific QoS demands; event producers, which generates

continuous data streams that are to be processed; and event brokers, which

process the data streams to derive results. The TCEP engine layer provides a

programming environment to create and execute queries and OP mechanisms

on the infrastructure of the IoT resources layer. Moreover, the Tcep engine

provides mechanisms for monitoring the performance of the OP mechanism and

the environmental conditions. The TCEP control layer utilizes and manages a

library of state-of-the-art OP mechanisms in a so-called placement library. Here,

the Transition engine decides when and how to perform a transition. It is also

responsible for coordinating the transition, i.e., performing operator migrations

building on the proposed transition execution algorithms.

Furthermore, the placement performance evaluator decides which placement

mechanism to select for a transition. The deploy operator graph component

performs the deployment of the operator graph on the infrastructure resources.

Finally, Managed Resources represent the resources monitored and controlled

by the Tcep system, such as environmental conditions, performance metrics,

and OP mechanisms.
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Figure 6: The TCEP system design.

A brief overview on the execution of a continuous query and its adaptation

using transitions in Tcep is presented as follows. An event consumer poses a

query using the query interface of the Tcep engine programming interfaces.

The query is then transformed into an operator graph. The placement interface

could be used to develop an OP mechanism. After transforming the query into

an operator graph and selecting an OP mechanism, the placement performance

evaluator deploys the query on the IoT resources based on the previously col-

lected statistics on the query. If the environment monitor finds a change in the

environmental conditions or the QoS requirements, a transition is triggered. The

transition engine manages the adaptation, and the operator graph is redeployed

by the deploy operator graph component.

Decentralized MAPE-K adaptation loop. Tcep follows the well-known

MAPE-K [27] loop for adaptation. The four processes of the loop, Monitor

(M), Analyze (A), Plan (P), Execute (E), and Knowledge (K) are realized in a

decentralized manner (cf. Figure 6) in the control layer and within the Tcep

engine to manage the resources depicted in the lowest layer. In the following,

we provide the definitions of these components for the Tcep system.

Monitor (M): This function provides mechanisms to collect, aggregate, fil-

ter, and report details on the managed resources. Examples of monitoring in-
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formation are environmental conditions such as mobility of cars and workload,

performance metrics related to a query such as QoS metrics latency and band-

width observed on the links, and performance metrics related to the transition

of an OP mechanism: transition time and overhead. Hence, the decentralized

monitoring components lie within the environment monitor and placement per-

formance evaluator, responsible for collecting and aggregating the above moni-

toring information.

Analyze (A): This provides mechanisms that correlate and model complex

situations. These mechanisms allow the transition engine to learn about the

managed resources and predict future situations. For instance, the placement

performance evaluator implements a fitness score mechanism that measures the

performance of the OP mechanism, which is used to predict the next suitable

operator placement for the respective environmental conditions.

Plan (P): It provides mechanisms that construct the actions needed to

achieve the goals and objectives. For instance, the placement performance eval-

uator determines if a change to a new OP mechanism would help fulfil the QoS

demands.

Execute (E): It provides mechanisms to manage the necessary changes re-

quired for the adaptation. It is responsible for carrying out the transition itself.

For instance, the transition coordinator generates a plan on the operator graph

transition, and the transition engine performs the transition.

Knowledge (K): The data shared across the above four functions are stored

as shared knowledge. This includes OP mechanisms in the placement library,

monitoring information on the performance, among others.

In the following sections, we will focus on four research questions, namely:

RQ 1 How to specify an operator placement and its performance characteris-

tics?

RQ 2 How to adaptively select an OP mechanism for a transition?

RQ 3 How to realize transitions in a seamless manner?
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RQ 4 How to decide when to perform a transition?

Structure. The following sections detail on the functionality of the aforemen-

tioned MAPE-K processes handled by the different components of Tcep in a

decentralized manner. Section 5.1 presents (RQ 1) a programming model for

specifying QoS demands in a query and OP mechanisms. Section 5.2 presents

(RQ 2) the genetic learning algorithm for an adaptive selection of OP mecha-

nism such that the QoS demands are satisfied. Section 5.3 addresses (RQ 3) and

(RQ 4) by presenting seamless and concurrent execution of a transition while

considering a minimal state for a cost-efficient transition.

In Figure 6, Section 5.1 is illustrated as the Programming interfaces com-

ponent, Section 5.2 as Placement performance evaluator, and Section 5.3 as

Transition engine.

5.1. Programming Model

The programming model provides a means for developers to implement novel

OP mechanisms while utilizing IoT resources. Existing works [13, 28, 29] focus

on proposing OP mechanisms for a diversity of QoS demands. However, none

of them provides a common API for the development of novel OP mechanisms5.

This section introduces the major components of the Tcep programming model:

(i) QoS monitors that is an integral part of the programming model as each

OP mechanism observes some QoS metrics (cf. Section 5.1.1), and (ii) OP

interface that provides methods to develop unique OP mechanism.

5.1.1. QoS Monitors

As prominently discussed in the literature [29, 28, 30], our programming

model characterizes the existing OP mechanisms based on the placement deci-

sion into two main categories: (i) centralized and (ii) decentralized. A central-

ized OP mechanism assumes global knowledge on the network and the nodes

(specific QoS demands) to host an operator on a physical node. In contrast, a

5For a detailed discussion on related work, we refer the readers to Section 7.
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Method Description

getPlacementMetrics() Determines the QoS demands that must be op-
timized

configurePlacement() Resets placement parameters. It is called ini-
tially and on reconfiguration

findPlacementNode() Finds placement node determined based on the
QoS metrics

findPossibleNodes() Retrieves all nodes that can host operators
initialVirtualOperatorPlacement() Centralized mechanisms treat all operators at

once during the initial placement instead of
one by one by using a heuristic to find opti-
mal locations in the virtual space

Table 2: Tcep placement API for developing OP mechanisms.

decentralized mechanism assumes only partial knowledge of the network, and

hence the placement decision is decentralized. For instance, a cluster head as-

signs an operator on each node of the cluster. It is known that finding an

optimal placement from the number of possible resources is an NP-complete

problem [31]. Furthermore, the assignment varies with the QoS demands in

consideration for the cost objective function. Hence, there exist many solutions

and heuristics towards the OP problem.

Both kinds of placement heuristics assume monitoring knowledge on the

network and host information. The Tcep programming model provides explicit

extensible monitors for commonly used network and host information metrics

such as latency, bandwidth and CPU load. These metrics are measured from

end-to-end, meaning the cumulative latency or bandwidth observed while data

streams traverse the path from producer to consumer. The measurements are ac-

cumulated step by step, and hence individual measurements can also be fetched

easily. The monitoring information is collected by every node separately and

aggregated on the decision node based on the placement characteristics. In cen-

tralized OP mechanisms, the QoS monitors transfer the observed metric to a

centralized node responsible for the placement decision. While for decentralized

mechanisms, we provide decentralized monitoring solutions such as Vivaldi [32],

which is prominently used in several OP mechanisms [8, 9, 33, 13] that handles

the dissemination of monitoring information for placement decision.
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5.1.2. OP Interface

Table 2 lists the foremost API of the Tcep programming model used to im-

plement OP mechanisms in TCEP. PlacementStrategy API defines these meth-

ods for OP mechanisms in order (i) to formulate a single objective and multi-

objective optimization function for centralized OP mechanisms, (ii) to define

heuristics for decentralized OP mechanisms, and finally, (iii) to make OP mech-

anisms exchangeable at runtime to enable transitions.

An OP mechanism needs to represent a cost objective function dictating the

QoS demands. An example of a cost objective function is to minimize the end-to-

end latency from the producers to the consumers. Each mechanism, centralized

and decentralized, must define a cost objective function for the QoS demands

that need be optimized. The cost objective function can comprise a single or

multiple QoS demands, e.g., latency, CPU load and bandwidth utilization. The

objective function depends on the runtime measurements from the QoS monitors

defined above, which are used to determine placement decisions on physical

hosts of IoT resources. getPlacementMetrics() method is used (cf. Table 2) to

fetch monitoring information related to the objective function. Consequently,

this helps in formulating the cost function. The specific way of solving the

placement problem (optimally or sub-optimally) using heuristics is defined in

the specific implementations of the OP mechanisms.

In Table 3, we define the currently available implementations of OP in Tcep.

We define the heuristic approaches used by the respective OP mechanism–for

example, the Relaxation mechanism [8] uses a spring relaxation technique, while

the MOPA mechanism [9] uses an approximation for the Weber problem, though

both aim for the same QoS metric: bandwidth-delay product. Also, in optimal

solutions of OP, the optimization problem can be solved using different methods.

The heuristic used also varies based on the nature of the objective function

(convex or concave) and the scenario at hand. Hence, the in Tcep programming

model, we segregate the implementation of a specific optimization approach of

the OP mechanism from the common interfaces.
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OP Mecha-
nism

Placement
Decision

Optimization
Goal

Approach § 6.1.1

Relaxation [8] Centralized bandwidth-
delay2 product
(BDP)

Spring relaxation technique (1)

MOPA [9] Centralized bandwidth-
delay product

Approximation for Weber
Problem

(2)

Global Op-
timal

Centralized bandwidth-
delay product

Optimally finds node with
minimum BDP

(3)

MDCEP [6] Decentralized control mes-
sage overhead,
latency

Place on nearest neighbours
unless producer or consumer

(4)

Producer-
Consumer

Decentralized hops Always host on the producer or
consumer

(5)

Random Decentralized - Random allocation (6)

Table 3: Design space of OP mechanisms.

The placement parameters are initialized using the configurePlacement()

method, which is invoked in the beginning and each reconfiguration, e.g., dur-

ing periodic updates of the same OP mechanism. findPossibleNodes() and

findPlacementNode() methods determine the possible nodes where the operator

can be deployed depending on the cost function and the optimal or sub-optimal

(depending on the placement mechanism) node for the deployment, respectively.

Some centralized mechanisms behave differently when performing OP initially

and on reconfiguration, such as the Relaxation [8] mechanism. This mecha-

nism places all operators of the query at once based on the virtual coordinate

space using initialVirtualOperatorPlacement(), and the physical placement is

performed using findHost() since no operator is physically deployed only using

virtual placement. However, on reconfiguration, only the physical placement is

changed. In contrast, decentralized mechanisms only implement the findHost()

since their behaviour is the same during initial placement and transitions. Hav-

ing understood the functionality of the programming model and the monitors

of the Tcep engine layer, we detail the placement performance evaluator com-

ponent in the following subsection.

5.2. Placement Performance Evaluator

This component measures the performance of the OP mechanisms continu-

ously and analyze their behavior. A lightweight online learning algorithm is em-
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ployed to statistically determine which mechanism best meets the QoS demands,

building on a selection strategy of genetic algorithms [34]. Lightweight refers to

the fact that learning does not rely on any training set but only uses statistics

collected online during the execution. This component uses the online learned

model to select an appropriate OP mechanism with the best performance based

on the ranking provided by the learning algorithm. The environment monitor

component keeps track of the performance behaviour (QoS demands and en-

vironmental conditions via QoS monitor and other monitors, respectively) and

reports any changes to this component – e.g., if the QoS demand specified in the

query is violated. When no empirical statistics are available during initializa-

tion, the target placement mechanism is determined by comparing the respec-

tive QoS demand with the specified optimization objective(s) of the placement

mechanism. If more than one placement mechanism exists for the respective

QoS demand, then the selection is performed in a round-robin fashion.

In the remaining section, we first define a heuristic fitness function to evalu-

ate the performance of an OP mechanism during its execution. Then, we define

an adaptive selection of an OP mechanism based on the observed statistics and

the fitness function.

Heuristic Fitness Score for OP Mechanism.

We measure the performance of the current OP mechanism in execution for

each continuous query at regular intervals. The collected performance statistics

are then used for comparison between different OP mechanisms. To quantify

the performance, we measure the fitness of each OP mechanism that is in ex-

ecution per query. We define the heuristic fitness function with the objective

to maximize the number of times an OP mechanism fulfils the current QoS de-

mands. This means that if an OP mechanism fulfils QoS demands x > max

times between the time interval ts (when the query was first submitted) and

tt (when the transition is triggered), then this mechanism is selected for the

next execution. For each QoS demand, we update the fitness score at regu-

lar intervals until the next transition. The score provides information on how
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well the OP mechanism had performed over time, compared to the mechanisms

that were in an execution before (when the query was first submitted). The

goal is to find the best mechanism for the respective QoS demands by utilizing

the collected statistical information. This goal is accomplished by maintaining

the scores of the respective OP mechanisms Mi,qosj (tt) for each QoS demand

qosj , and updating the score at the occurrence of a transition at time tt. Since

an OP mechanism can incorporate multiple QoS demands, for instance, in a

multi-objective optimization function, the score is determined separately for

each QoS demand. For each OP mechanism Mi, we maintain a score function

Score(Mi,qosj
)(tt) obtained based on the evaluation of each QoS demand qosj .

The score Mi,qosj (tt) is normalized for each OP mechanism Mi, based on the

mean normalization method to make the scores comparable. We compute the

fitness score based on the statistics collected from executing OP mechanism i

(with subscript i), which is then compared to other mechanisms executed from

time ts (when the query was first submitted) until time tt (when the transition

is triggered), given as ts,t:

Mi,qosj (tt) =
µi,qosj (ts,t)− µqosj (ts,t)

maxqosj (ts,t)−minqosj (ts,t)
· (1− decay)+

Mi,qosj (tt − 1) · decay .

(5)

In Equation 5, µqosj (ts,t), maxqosj (ts,t), and minqosj (ts,t) denote the mean,

maximum and minimum score values for all the OP mechanisms, respectively,

that have been used until time tt considering the QoS demand j. µi,qosj (ts,t)

represents the mean score value of OP mechanism Mi until time tt considering

the QoS demand qosj . Mi,qosj (tt − 1) is the last score of OP mechanism Mi,

and a decay factor is used to exponentially reduce the effect of old statistics to

prioritize the data that is recently collected. The decay factor ranges of [0, 0.5],

such that more preference is given to current statistics. The initial value of

decay is set to 0 , and it is updated once a transition is performed by a factor

dependent on the number of OP mechanisms to be explored. For instance, if

there are 10 OP mechanisms, then the decay is incremented by 0.05. The overall
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score of an OP mechanism is computed based on all the statistics collected on

the QoS demands fulfilled by the OP mechanism. The score is the sum of the

normalized scores for each QoS demand qosj ∈ [qos1, qos2, . . . , qosk], where k is

the maximum possible QoS demands considered by OP mechanism Mi:

Score(Mi)(tt) =

k
∑

j=1

Mi,qosj (ts,t) .

Adaptive Selection of OP Mechanism.

The adaptive selection of an OP mechanism is performed once each OP

mechanism has been defined with a fitness score. We adopt the Linear Rank-

ing Selection Strategy [34], a selection method from Genetic Algorithms (GA).

The ranking based method is suitable for our OP mechanism selection problem

since it allows us (i) to perform a relative analysis suitable for the heuristic

fitness function that indicates which OP mechanism is better, and (ii) by an

appropriate selection pressure it favours exploitation over exploration avoiding

selecting worse OP mechanisms. More specifically, by only using the fitness

values of the OP mechanisms, the linear ranking method selects the best OP

mechanism for the given QoS demands, which is a perfect choice since our goal

is to compare OP mechanism relatively. The selection pressure defines the in-

tensity of search focused towards the best OP mechanism. By reducing the

selection pressure, the diversity of the OP mechanism increases, while increas-

ing the selection pressure focuses on the reduced search space of selected best

OP mechanisms. This explains the idea of exploration vs exploitation using

the ranking method. Theoretically, using the linear ranking method, we can

compute the appropriate selection pressure S using the average fitness distribu-

tion M before selection and expected average fitness distribution M∗ for given

fitness values f1, . . . , fF , (F ≤ N ) as follows:

M =
1

N

fF
∑

k=f1

s(f),
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M∗ =
1

N

fF
∑

k=f1

s∗(f),

S =
M∗ −M

σ
. (6)

Here, s(f) and s∗(f) are the fitness distribution and expected fitness distri-

bution of the OP mechanisms, respectively. The notation N denotes the size

of fitness distribution and σ denotes the standard deviation of the fitness dis-

tribution s(f). All functions assumed to be continuous are denoted with an

overline, and the fitness values for the OP mechanisms are assumed to be sorted

(f1 < f ≤ fF ) [35].

After OP mechanisms are sorted according to their fitness values, the ranks

are assigned to them. Rank R is assigned to the best OP mechanism, while

rank 1 is assigned to the worst. The selection probability Pi is linearly assigned

according to the rank as follows:

Pi =
1

R

(

η− + (η+ − η−)
i− 1

R− 1

)

; i ∈ [1, R] . (7)

In Equation 7, η−

R
is the probability that the worst OP mechanism is selected

and η+

R
the probability that the best OP mechanism is selected. Since OP

mechanisms in the placement library are constant during runtime, the conditions

η+ = 2−η− and η− ≥ 0 must be fulfilled. Also, note that all the OP mechanisms

are ranked differently, i.e., they have distinct selection probability – although

they can have the same fitness score [35]. The probability of the OP mechanism

to be selected is proportional to its fitness function score. The worst probability

and the best probability are calculated as the minimum and maximum of the

probability distribution function η:

ηi =
Score(Mi)

∑

i Score(Mi)
. (8)

The selection of the mechanism means the inclusion of it in the reduced

search space, which gives well-performing OP mechanism a higher probability

29



than the lower ones, i.e., we prefer OP mechanisms that were classified to per-

form better (exploitation of the learning algorithm). However, sometimes we

also select worse OP mechanisms to update their score (exploration). Assuming

that the fitness distribution follows a Gaussian distribution, and using Equa-

tion (10), it can be proved (cf. Proof in Appendix A) that the selection pressure

for the ranking method can be computed as follows:

SR(η−) = (1− η−)
1√
π

. (9)

Once all the OP mechanisms get assigned a rank based on their performance

for a query, the Tcep system can decide whether the currently running mech-

anism Mi should be used again or changing to another OP mechanism yields

better performance. We use a simple Radix sort to rank the OP mechanisms in

linear time so that the comparison is cheap. The complexity of the sorting dom-

inates the complexity of the selection algorithm, i.e., O(N ), where N is the size

of the fitness distribution function of OP mechanisms. Furthermore, the follow-

ing challenges are considered while selecting the next OP mechanism: (i) In the

beginning, we allow some degree of exploration so that all the OP mechanisms

get a chance to prove themselves. Therefore, a round-robin selection is used for

the adaptive selection of an OP mechanism initially. Furthermore, we allow ex-

ploration of alternate OP mechanisms at random intervals during the execution

to give a chance to perhaps better-performing OP mechanism. (ii) Adapting

too often might cause oscillations (back and forth) while also skewing the results

of the used OP mechanism. Therefore, we empirically set the delay threshold

between consecutive transitions to give the new OP mechanism enough time so

that the performance evaluator can correctly assess its behaviour.

5.3. Transition Engine

The Tcep transition engine coordinates how a transition is performed over

the life cycle of a transition [36], i.e., from its invocation to its completion. The

two transition algorithms define the life cycle of a transition. This component,

therefore, is a core of the Tcep system.
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We first provide a high-level view of the requirements for the transition

phase. A transition from one OP mechanism to another involves several dis-

tributed entities of Tcep. The transition execution must be coordinated such

that it is consistently performed across these entities. Thus, the transition co-

ordinator maintains and orchestrates the transition life cycle. Tcep currently

supports two transition algorithms (detailed below). The difference in the life

cycle of the proposed transition algorithms lies in the seamlessness, i.e., how

smooth the transition is performed and how much is the cost in terms of time

and overhead (CTime(T ) and COverhead(T )) as defined below.

During the execution of a transition, the target OP mechanism determines

a set of target brokers for the new placement. As a result, all the operators

have to migrate to the target brokers to comply with the new placement logic.

While the coordinator performs operator migrations, it must continue satisfying

the QoS demands by the event consumers, which is the primary goal. Opera-

tor migrations in this realm have been widely studied in the literature, such as

stop and restart strategies [37, 38] as well as partial pause and resume strate-

gies [22, 39]. Here, the former completely stops the execution to migrate the

operator to start executing at a target broker, while the latter partially pauses

the execution of the concerned operator only. However, none of the approaches

addresses seamless and cost-efficient operator migrations while using multiple

OP mechanisms. To do this, we specifically look into costs associated with per-

forming a transition in terms of time and overhead. The transition execution

algorithm dictates how cost-efficient operator migrations are performed while

fulfilling the QoS demands. Considering these requirements, we present two

transition execution algorithms that (i) coordinate the transition, (ii) perform

operator migrations while ensuring the correctness and completeness of the de-

livered complex events to the consumers, and (iii) perform the live and seamless

transition.
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Moving Fine-Grained State (MFGS) Sequential Transition.

In this algorithm, the transition coordinator initiates operator migrations

in a specific order, i.e., in a bottom-up fashion (cf. Algorithm 1: Lines 1-

14). This means an operator is only migrated after all its predecessors were

successfully migrated. Here, the dependency of operators follows a bottom-up

fashion, where leaf operators are predecessors of their successors or dependent

operators as we go level up in the operator graph. The operator migrations are

performed in a sequential and breadth-first manner one at a time to the target

brokers (Lines 2-3).

In the next step, the coordinator determines the target broker with the help

of the newly selected OP mechanism (Line 5). It is important to note that the

target OP mechanism is predetermined by the placement performance evaluator

component (cf. Section 5.2). Consequently, an operator ω may need to be

migrated to a new target broker (Line 6-7). For operator migrations, a minimum

state is extracted, which corresponds to the intermediate state discussed in detail

in the next paragraph (Line 8). Afterwards, this state is sent to the target broker

to start executing the operator with the minimum migrated state.

The target broker subscribes to its producers or predecessors to receive data

streams starting from the time of reception of the intermediate state (Line 9).

When the migration is complete, the target broker will send an acknowledge-

ment, including the sequence number of the first output event to the source

broker and the coordinator (Line 10). After the source broker has been acknowl-

edged, it will stop its execution, and the target OP mechanism will continue at

the target broker (Line 11). We start the transition at time ti, to sequentially

perform m operator migrations until the transition is completed at time te. The

recursive function performs the operator migration by traversing bottom-up the

operator graph (Line 12). If the operator migration is not successful for some

reason– the IoT resource becomes unavailable– and the acknowledgement is not

received, the process is repeated until a new target broker is found and the

operator is migrated. (Line 14). In Line 14, we assume a consumer specified
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parameter m that determines the maximum number of repetitions6 of this loop

and guarantees termination after m tries.

Algorithm 1: Moving Fine-Grained State Sequential Transition.

Variables :

OList ← bottom-up list of set of operators
ω ← current operator to be migrated
producers ← list of producers connected to ω

targetMechanism ← target OP mechanism
targetBroker ← target broker host of ω
φInt ← intermediate state of ω

1 function Init-MFGS-SequentialTransition()
2 OList ← bottomUpAsList(Ω);
3 MFGS-Sequentialalgorithm(OList .head, targetMechanism)

4 function MFGS-SequentialTransition(ω, targetMechanism)
5 targetBroker ← targetMechanism.findtargetBroker(ω);
6 if targetBroker 6= ω.sourceBroker then

7 ω.copyExecutionEnvironment(targetBroker);
8 φInt. ← ω.computeIntermediateState();
9 targetBroker .StartExecutionWithData(producers,

φInt.);
10 if ω.next().receivedACK(timeout , retries) then

11 StopExecution(ω.sourceBroker);
12 MFGS-SequentialTransition(ω.next(),

targetMechanism);

13 else

14 MFGS-SequentialTransition(ω,
targetMechanism);

Cost-efficient Operator Migrations. The Tcep transition engine computes the

fine-grained computational state of an operator for cost-efficient operator mi-

grations. We improve on the operator state model introduced in [21, 40] by

proposing cost-efficient and seamless operator migrations such that minimal

state is transferred at discrete time steps, which are optimal for costs as we

explain in the following subsection in seamless and minimal state concurrent

transition. Furthermore, our migration model considers dependencies between

operators during migration, hence providing a means to migrate an entire op-

erator graph consistently. In the operator state model (cf. Figure 7), the input

events are cached in the input buffer (BI) selected by the selector to map the

output events determined by the correlation function of the operator (fω). Next,

the selector handles the removal of events from the input buffer Bi when the

6This is very unlikely to happen that the target node is not found again and again.
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same are either consumed or discarded by the correlation function fω. The

resulting output or complex events are stamped with a sequence number (SN)

by the sequencer and appended into the output buffer BO which is then for-

warded to the ω’s successor. The events which the successor operators have

already acknowledged are removed from the output buffer BO. Although the

state model is applicable to many modern CEP systems, such as Apache Flink7,

which assumes the presence of buffers, with a few adaptations in the internal

structures, it can be applied to other CEP system, e.g., those that do not assume

buffers [41].

fωselector sequencerBI BOInt.
B

ω

Figure 7: Intermediate buffer represented in the operator state model [40].

Conventionally, a CEP system transfers the internal state φω that comprise

the input buffer BI , the selector, the correlation function fω, the sequencer, and

the output buffer BO. Tcep transfers the content of the intermediate buffer

BInt instead of the entire state φω. The content of BInt contains those events

on which the correlation function fω is applied to obtain the complex events.

For example, for a window-aggregate operator, the content of BInt will be the

events contained in the window, and those are selected to be aggregated by

the correlation function (sum, min, or max). This set of events are updated

each time the output events are generated, e.g., once the window slides (for a

7Apache Flink network stack. https://flink.apache.org/2019/06/05/

flink-network-stack.html [Accessed on 18.4.2021]
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sliding window operator) or the related event is either consumed (inserted into

the output buffer BO) or discarded by the correlation function.

The target broker must subscribe timely to the required incoming data

streams to optimize the migration cost and completion time. Consider the

intermediate state φω(ti) of operator ω migrated at time ti comprises BInt, the

correlation function fω, and the state of the sequencer (Line 9). Here, BInt re-

plays the events that were selected for correlation before the source broker went

down (Line 9). At time ti−δM , the target broker subscribes to the input events

from the producers or the predecessor operator. Here, δM is a small value to

ensure that the target broker receives input events before the processing starts.

All input events to the target broker until the source broker is executing are

discarded (Line 10). It is important to note that a careful selection of δM value

is essential so that the target broker does not miss any input event. In case

the value is very big, there will be an overlap in the execution of the source

and the target broker. The duplicates are discarded; however, it results in an

unnecessary overhead that should be avoided.

Contrarily, if the δM value is very small, there is a slight chance that the

target broker might miss some of the input events. However, this is very unlikely

to happen. Nevertheless, we address this problem by proposing a seamless

transition algorithm where the state overhead is further minimized and the

correctness of the events is guaranteed, as discussed in the subsection of seamless

minimal state concurrent transition.

Properties. We analyze the transition time and present an asymptotic upper

bound on the cost (CTime(T )). The transition time is bounded by the time

required by the algorithm to iterate over all operators sequentially and to trans-

fer the intermediate state of each operator (Lines 9 to 12). Therefore, the

overall transfer time can be bounded by the transfer time of the entire interme-

diate operator state φΩ and the time to iterate over all operators, which yields
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O (|Ω|+ |φΩ|). Here, φΩ denotes the intermediate state of the set of operators

Ω within the operator graph8.

In this algorithm, we reduce the time required to perform an operator graph

transition by transferring a minimum amount of state. However, the processing

of an operator at the target broker does not occur unless the source broker is

in execution. This means that while the selected state is being transferred (i.e.,

it is on the wire), some events sent to the target broker remains unprocessed.

No output events are produced unless the intermediate state is transferred. Al-

though with this transition algorithm, a minimum amount of state is achieved

yet, state transfer involves costs in terms of time and resources. Another prob-

lem is the sequential transfer of operators. While sequential transfer does not

consume much network resources, it is very time-consuming. To solve these

issues, we propose a second transition algorithm.

Seamless Minimal State (SMS) Concurrent Transition.

In contrast to the above algorithm, this algorithm allows for more than one

operator migrations simultaneously (cf. Algorithm 2: Lines 1-16). At each

level l = 0 to m of the operator graph G, the coordinator triggers at most

2l operator migrations (for binary operator graph) performed in a bottom-up

fashion (Line 2). The benefit of concurrent operator migrations is perceived in

the cost computation that is later analyzed in the properties of the algorithm.

The operator migrations begin when the coordinator transfers the execution

environment (Line 5). The coordinator determines an optimal time ti for each

operator ω when the operator state is minimal so that the transition consumes

minimum resources (Line 7). For this, we assume the events follow a time order

of arrival [37]. The selection of time ti is such that for each operator ω, SMS

algorithm waits until the operator ω is purged from its old state (Line 8), i.e.,

until BInt and fω are purged from their old state.

8Ω here stands for the set of operators as previously defined in the notations, not to be
confused with the generic notation on asymptotic lower bound of an algorithm.
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Algorithm 2: Seamless Minimal State Concurrent Transition.

Variables :

producers ← list of the event producers
OGlevel ← operator graph level for migration
targetMechanism ← target OP mechanism
targetBroker ← target broker host of current operator
φsequencer ← state of sequencer
waitTime ← time taken until current operator is purged

from its state

1 function SMS-ConcurrentTransition(OGlevel , targetMechanism)
2 for all ω ∈ OGlevel do in parallel

3 targetBroker ← targetMechanism.findtargetBroker(ω);
4 if targetBroker 6= ω.sourceBroker then

5 ω.copyExecutionEnvironment(targetBroker);
6 NTPClockSynchronization,(targetBroker ,

ω.sourceBroker);
7 minimalStateTime ← ω.determineMinimalStateTime();
8 waitTime ← waitUntil(minimalStateTime));
9 φsequencer ← ω.lastSN;

10 targetBroker .StartExecutionWithData(producers,
φsequencer );

11 targetBroker .determineReferencePoint
(minimalStateTime);

12 if ω.parent().receivedACK(timeout , retries) then

13 StopExecution(ω.sourceBroker);
14 SMS-ConcurrentTransition(OGlevel .next(),

targetMechanism);

15 else

16 SMS-ConcurrentTransition(OGlevel ,
targetMechanism);

For example, in a window-aggregate operator, the target broker waits until

the last event of the window is processed, w + δS , where w is the window size,

and δS is a small value to ensure that ti is greater than any time instant of

input events to the source broker. Time ti is chosen as the transition start time.

We call this time the minimal state time of an operator (timin(ω)). The target

broker starts its execution with the minimal state (the last SN) simultaneously

at the transition start time, while the successor operators at the higher level are

still under execution by the former OP mechanism. Thus, in this algorithm, the

transition coordinator allows the execution of two OP mechanisms concurrently.

This allows us to deal with the output disruption discussed as follows.

Seamless and Concurrent Operator Migrations. To explain the concurrent op-

erator migrations, we refer to the operator graph from our example scenario in

Figure 8. Src box refers to the placement of an operator at the source broker,
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and the Trg box refers to the placement at the target broker. Steps 3 and 4 show

the BInt buffer of the sequence operator with the event tuples being processed.

The first step shows the initial placement, while the last one shows the final

placement after migration. The concurrent execution of two OP mechanisms

(cf. step 2 to 3 in Figure 8) enables seamless execution in this algorithm. How-

ever, migrations do not interfere with each other, while the operator network

gradually transforms the placement (cf. step 4). The transition coordination is

accomplished atomically in the Tcep transition engine.
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Figure 8: Sequence of operator migrations in the operator graph for SMS transition algorithm.

To better understand the cost of concurrent operator migrations, we analyze

the reception of input events at both source and target brokers after transition

start time ti. For an operator ω, the state ϕω(ti) at transition time will only

comprise the state of the sequencer (containing the SN of the first event to

be produced at the target broker) (Line 9). The basic idea of this transition

algorithm is that at the transition start time timin(ω), the input buffer BI and

the output buffer BO are shared among the source and the target brokers until

it is safe to discard the source broker. Both source and target broker for a

stateful operator ω run concurrently while all the old tuples in the intermediate
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buffer BInt of the source broker are gradually purged (cf. step 3 and 4). For

instance, in a sliding window operator, with a window size of S events and slide

size of 1 event, the old tuples still have to be retrieved until the target broker

has received a full window size of S events. During this time, the output is

continually produced by both the brokers, while duplicates are discarded using

the reference point method later explained. When the intermediate buffer is

purged completely, then the source broker is discarded. This is because the

target broker now has all the new tuples that exist in the source broker. The

source brokers of stateless operators are gradually replaced by their targets, as

illustrated in the figure with a red cross (✕).

To deal with the clock drift between the two clocks of the source and the

target brokers, we perform distributed clock synchronization using standard

Network Time Protocol (NTP) [23] at both ends (Line 6). To avoid duplicates

in the output events due to concurrent processing, we use the reference point

method [42] (Line 11). We treat the start timestamp of the results of the target

broker as a reference point. Such timestamp is then compared to the transition

start time ti. If the reference point is larger than ti, then the complex event is

sent to the output buffer BO.

Correctness of the results. We assess correctness on two aspects as widely done

in the literature [37, 43]: the output is complete, and there are no duplicates in

the output. Figure 8 shows the transfer of the operator graph in 1) through 5)

steps using the SMS algorithm. The stateless operators are transferred straight-

away, while stateful operators run in parallel using the SMS algorithm until all

the old tuples are purged. Furthermore, while the predecessor operators are

migrated, successors still use the former OP mechanism for resolving the query.

We must also ensure that there are no duplicate output tuples, as we can see in

step 3): the sequence operator leads to duplicate output tuples from the source

and target operator, respectively. A naive approach is to discard all the input

as old tuples that results from the source broker. However, this would lead to

incorrect results, as seen in step 3): the old tuple might be a true sequence
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that will remain undetected if dropped. To solve this issue, though we have the

source and target brokers in execution concurrently, we drop events from target

brokers unless all the events in the BInt buffer are new and the source broker

could be stopped. For instance, in Step 3, we retrieve the output result from

the source broker holding the sequence operator, while in step 4, we can safely

discard the source broker since all the tuples in the state are new.

Properties. In this algorithm, we partition the transition at discrete time steps

such that for each operator migration Mi, we determine the minimal state time

as described before. This approach ensures a live and seamless transition with-

out service disruption, thanks to minimal consumption of resources. Due to the

concurrent transfer, the number of nodes in the new operator network increases

exponentially over time with the increase of the size of the operator graph G.

Therefore, the total transition time of this algorithm is within O (log(|Ω|) + C),

here C = |ϕΩ| that is constant (state of the sequencer) for a given set of opera-

tors Ω.

6. Evaluation

In the evaluation of Tcep, we aim to answer the following questions:

1. Is the programming model able to simply express existing operator placement

mechanisms?

2. Does the mechanism transition concept satisfy changing QoS demands for

dynamic environmental conditions?

3. Can a transition for the OP mechanism be performed in a live and seamless

manner?

4. What is the cost involved in the execution of a transition, and is the cost

acceptable?

To answer the above questions, we evaluate Tcep in four ways: (i) In Sec-

tion 6.2, we evaluate the Tcep programming model in terms of the development
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Number of producers 1− 9
Number of brokers 1− 9
Number of consumers 1− 2
Number of queries 1− 50
Type of queries Stream (Q1), Filter (Q2), Conjunction (Q3), Join

(Q4), Congestion detection (Q5) (Figure 10)
QOS DEMANDS latency, message overhead, network usage, hops

OP mechanisms Relaxation [8], MOPA algorithm [9], MDCEP [28],
Global Optimal, Producer-Consumer, Random

Transition execution algorithms MFGS-Sequential, MFGS-Concurrent,
SMS-Sequential, SMS-Concurrent

Placement selection algorithm Genetic learning-based, Requirement-based

Table 4: Configuration parameters for the evaluation. The default/mostly used parameters
are underlined.

´

of OP mechanisms and validating their performance. (ii) In Section 6.3, we

evaluate the ability of Tcep to meet QoS demands with respect to latency and

message overhead. (iii) In Section 6.4, we evaluate the stability of the system

subject to transitions and the cost imposed by the distinct transition algorithms

proposed in Section 5. (iv) In Section 6.5, we evaluate the costs of the genetic

learning algorithm in terms of selection and performing a transition.

In the following sections, we first describe our evaluation execution environ-

ment, including details on the implementation of Tcep, the evaluation setup,

and then present our evaluation findings.

6.1. Evaluation Environment and Setup

Implementation. The implementation of Tcep builds on an adaptive com-

plex event processing system proposed in [19]. In particular, Tcep builds on

the AdaptiveCEP programming model for specifying QoS demands at run time

(cf. the query in Figure 1b). We provide the runtime environment based on

the Akka actor system [44] and Akka Cluster to build a distributed network of

containers for easy deployment in the edge-IoT scenario. The Docker container

helps encapsulate a runtime environment to enable the deployment of opera-

tors on the IoT resources. Furthermore, we realized extensions in the form of

a placement module that integrates state-of-the-art OP mechanisms [8, 6] and

measure the resulting OP performance.
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Figure 9: Our setup comprises 8 physical machines of publicly available network infrastruc-
tures running our virtualized DCEP system in docker containers.
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Figure 10: Operator graph for queries Q1 to Q5.

We build Tcep’s Docker image upon the Alpine Linux distribution,9 which

is much smaller in size (base image size of only 5 MB) and lightweight than other

9Docker image upon Alpine Linux distribution. https://github.com/gliderlabs/

docker-alpine [Accessed on 18.04.2021]
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Linux based images. For instance, a standard Ubuntu docker image is 129 MB

in size. Furthermore, the lightweight Docker-based execution environment is

contained such that it does not exceed 2 GiB of allocated memory which is a

reasonable assumption for small devices available nowadays as in the edge IoT

scenario. The Docker containers communicate over an overlay network using

TCP (Transmission Control Protocol) as an underlying transport protocol. We

use Akka v. 2.6.0 [44], the Esper CEP engine v. 5.5.0 [45] and Docker v.

19.03.8-ce [46].

Platform and Setup. We deploy Docker services on 8 VMs with 8 GiB of

memory and 8 processors per physical machine, as denoted in Figure 9. We

consider different physical machines comprising of network infrastructures of

Geni [16], CloudLab [17], and our onsite MAKI [47] compute machines. To-

gether, these resources provide a realistic deployment environment similar to

the IoT-fog-cloud infrastructure resource model introduced in Section 3.2 and

hierarchically illustrated in Figure 9. With resources dispersed in North America

(Ohio and UCLA) and Europe (Darmstadt), we have introduced geographical

diversity and realistic network latencies, and packet loss environment for our

experiments. The Docker network is setup based on the services that connect

using an overlay network.

Queries. We use multiple standard CEP queries defined below10 (cf. Table 4

and illustrated in Figure 10: Q1-Q4). Besides the standard CEP queries, we

use a traffic congestion detection query presented in Section 2: Figure 1b.

We elaborate on the query, such as the generation of complex data streams

vehiclesAtSectionV1 and vehiclesAtSectionV2 for the average values re-

lated to speed and density. We illustrate the operator graph in Figure 10: Q5,

comprising 8 publishers, each representing a Stream operator (ωS1 to ωS8). In

the operator graph, the speed information related to the vehicle from the Stream

operators is analyzed to get the average speed of the two road sections. An-

10The queries are specified in AdaptiveCEP DSL in Scala programming language.
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other Stream operator (ωSD) contributes the density information related to the

two road sections, which is combined to detect a sequence for the congestion

detection using a Sequence-Filter operator (ω→).

(i) Stream Operator

1 Stream => stream[StreamData ]( speedPublishers (1), demand

QoS_DEMANDS)

(ii) Filter Operator

1 Filter => stream[StreamData ]( speedPublishers (1), demand

QoS_DEMANDS).where { v1 =>

2 v1.avgVehiclesSpeed < NormalSpeedThreshold}

(iii) Conjunction Operator

1 Conjunction => stream[StreamData ]( speedPublishers (0)).and(

stream[StreamData ]( speedPublishers (1)), demand

QoS_DEMANDS)

(iv) Join Operator

1 Join => stream[StreamData ]( speedPublishers (0)).join(stream[

StreamData ]( speedPublishers (1)), slidingWindow (5. seconds

), slidingWindow (5. seconds)).where{ case (v1 , v2) =>

2 v2.time > v1.time }, demand QoS_DEMANDS)

Dataset. We used a realistic dataset of the vehicular network scenario from

Madrid [48] comprising the input data stream of the form< time, position, lane, speed >.

This is used to generate complex data streams of vehiclesAtSectionV1 and

vehiclesAtSectionV2 and evaluate further the congestion detection query.

Similarly, for other queries as well the same dataset is used. We run each exe-

cution for 20 minutes and initiate the measurements after 2 minutes warm-up.

Each measurement is taken at a regular interval of 5 seconds. For some evalu-

ations, we incrementally increase the query workload for up to 50 queries. The

evaluation metrics are influenced by multiple parameters such as the number

of queries and the window size. To consider different environmental conditions,

we perform a variability analysis on these parameters according to the ranges

in Table 4.
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6.1.1. Operator Placement Mechanisms

To understand how the performance of OP mechanisms, including those

taken from the literature, differs in terms of QoS fulfilment, we implemented

several OP mechanisms. In the following, we give a brief description of the

design characteristics of the implemented mechanisms.

1. Relaxation [8]. It is based on a so-called cost space that considers la-

tency and bandwidth together as two dimensions. In the first step, the

virtual operator placement is performed using the cost space, and in the

second step, physical operator mapping is performed on the topology us-

ing KNN (K-nearest neighbours algorithm). The basic idea behind the

first step, i.e., virtual operator placement, is a physics analogy revolving

around springs. The distance by which a spring is extended resembles a

link’s latency, and the spring constant (specifying its stiffness) is the band-

width of the link. The product of spring extension and spring constant

is the force needed to extend the spring (Hooke’s Law); the product of

latency and bandwidth is the bandwidth-delay product (BDP). Note that

Relaxation uses the squared latency to ensure a unique solution if the

bandwidth observed is equal. Operators are connected by springs that

pull and push them into place inside the virtual coordinate space until the

system has ”relaxed” completely, i.e., until the sum of forces inside the

operator graph is zero. The operators are then mapped to the nodes clos-

est to their respective virtual locations that are not overloaded. Through

this heuristic, the overall BDP, i.e., the total amount of data in transit

through the network at a given moment, is minimized, better known as

network usage.

2. MOPA Algorithm [9]. MOP is a variant of the Relaxation algorithm to

minimize the bandwidth-delay product; hence instead of squared delay,

this algorithm considers delay as an optimization criterion. Besides the

optimization goal, this algorithm finds the local optimal solution using a
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gradient method, terminating when the current network usage (given by

the above optimization criteria) becomes smaller than a threshold.

3. Global Optimal. Compared to the above two algorithms that find a sub-

optimal solution, we implemented a global optimal mechanism that chooses

the best possible operator placement with minimum network usage (bandwidth-

delay product) based on an exhaustive search of the possible placements.

This OP mechanism requires global knowledge of the entire network.

4. MDCEP [6]. The placement decision in MDCEP is made locally, and no

cost information is shared among the nodes resulting in lower communi-

cation overhead and achieving a stable operator placement near the data

sources. The authors consider a scenario of highly mobile nodes for op-

erator placement. Hence, a decentralized mechanism with optimization

criteria of minimizing message overhead and latency is considered.

5. Producer-Consumer. For comparison to the above approaches, we consider

placement on the randomly chosen producer or consumer only. This is

because the MDCEP mechanism considers stable operator placement that

can be achieved by placing operators on producers or consumers where

message loss can be minimal. Hence, this approach is also considered for

comparison.

6. Random. This mechanism chooses a physical host for each operator ran-

domly and serves as a naive comparison.

6.2. Performance of OP mechanisms

To understand the design space of OP mechanisms with distinct and con-

flicting optimization criteria, we evaluate them using the Tcep programming

model presented in Section 5.1. We consider the QoS demands, queries, and OP

mechanisms as stated in Table 4 for comparison. The performance metrics, in-

cluding the QoS demands, are defined as follows: (i) Mean end-to-end latency

or simply latency: It is the time taken from the query subscription was first

received at the consumer end until the complex event was received back to the
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consumer (cf. Definition 3.5). (ii) Mean message control overhead or message

overhead: The number of messages (in MB) exchanged to perform the operator

placement. This includes establishing the broker network, exchanging network

or node information for placement, and performing the placement (cf. Defini-

tion 3.6). (iii) Mean network usage: The amount of data in transit through the

network given by the bandwidth-delay product as introduced in the Relaxation

mechanism above. (iv) Mean number of hops: The number of hops or physical

hosts used for an operator placement.
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Figure 11: Performance evaluation of OP mechanisms (CDF) using programming model of
Tcep in terms of latency, message overhead, network usage, and the number of hops for the
standard CEP queries listed in Table 4. Here, for all the metrics the more to the left is the
distribution, the better it is.

Figure 11 presents the cumulative distribution function (CDF) for the differ-

ent QoS metrics using the given OP mechanisms (cf. Section 6.1.1) and standard

CEP queries Q1 - Q4 (cf. Figure 10). It can be seen that each OP mechanism

behaves differently for different queries. For instance, in terms of latency, Relax-

47



ation and Global Optimal mechanisms perform best for Stream and Conjunction

operators, Producer-Consumer supersedes them when executing Filter and Join

queries. This is because the main objective of Relaxation and Global Opti-

mal OP mechanisms is to minimize overall latency. The Producer-Consumer

mechanism can also achieve similar performance because of its proximity to the

event sources and the end-users. In terms of message overhead, MDCEP and

Random mechanisms perform the best because of the low management over-

head in both OP mechanisms. In terms of network usage or the BDP product,

we again see a difference in the performance of Relaxation and Global Optimal

mechanisms in different queries. While for simple operators like Stream, the

Producer-Consumer mechanism supersedes the former by a small magnitude

for more complex queries like Conjunction, the Global Optimal and Relaxation

mechanisms are better. Since we are focused on more complex queries, those

applied in IoT application scenarios, we further look into their performance for

a traffic congestion detection query introduced in the setup (cf. Section 6.1) in

the next paragraph.

Figure 12 presents the cumulative distribution function (CDF) for the differ-

ent metrics using the given OP mechanisms while executing a traffic congestion

query. Similar to the other queries analyzed above, Relaxation performs well

in terms of latency. However, it possesses much high message overhead due

to the maintenance of the latency cost space. In contrast, MDCEP possesses

much low message overhead while it suffers from very high latency for a high

workload of queries. The variant of Relaxation, the MOPA and Optimal mech-

anisms also suffer in performance in terms of message overhead. Contrarily,

the Producer-Consumer and Random mechanism suffer in terms of network us-

age. This further solidifies our belief that no mechanism can satisfy both the

optimization criterion network usage and message overhead at the same time

because these two are inherently conflicting. Table 6 in Appendix B summa-

rizes the mean, minimum, maximum, and quantiles (90, 95, 99%) of the metrics

latency and message overhead important for the considered scenario. The ta-

ble presents the results for Q1, Q4, and Q5 execution using the different OP
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mechanisms. It can be derived from Figure 12 and Table 6 that Relaxation and

MDCEP mechanisms stand representatives for the metrics latency and message

overhead, respectively. Furthermore, as assumed in our hypothesis, there is no

one size fits all mechanism [12].
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Figure 12: Performance evaluation of OP mechanisms (CDF) using programming model of
Tcep in terms of latency, message overhead, network usage, and the number of hops for the
congestion detection query. Here, for all the metrics the more to the left is the distribution,
the better it is.

We have proposed mechanism transitions for such scenarios with dynamic

environmental conditions and changing QoS demands. In the rest of the evalu-

ation, we will focus on the two representative OP mechanisms, Relaxation and

MDCEP and investigate the performance of mechanism transitions.

6.3. Performance of OP Mechanism Transitions

To understand whether the mechanism transition can fulfil changing QoS

demands for dynamic environmental conditions, we evaluate the performance of
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Figure 13: Network usage (y1-axis) and message overhead (y2-axis) measurement over a
transition from MDCEP to Relaxation OP mechanism. Tcep system seamlessly transits to a
fresh OP mechanism without incurring any overhead in terms of the specified QoS demands.

Tcep. We consider the following metrics: mean network usage (objective func-

tion for Relaxation), and mean control message overhead (objective function

for MDCEP) as defined before. Furthermore, we consider a traffic congestion

detection query for the rest of the evaluations because (i) it is representative

of our scenario (Section 2), (ii) it captures the major standard CEP opera-

tors, (iii) and since for this query, we have observed significant variation in the

performance of the OP mechanisms as shown in Figures 11 and 12. Figure 13

shows mean network usage on the first y-axis and control message overhead on

the second for 5 runs in Tcep. At around 45 seconds (shown with an arrow),

we observe a change in QoS demand from message overhead to network usage.

Tcep handles this by executing a dynamic transition between MDCEP to Re-

laxation. Tcep triggers a transition automatically by selecting an appropriate

placement mechanism that fulfils the QoS demand. It is noticeable that Tcep

does not induce any interruption or costs in terms of optimized metrics and

while performing a transition to a completely new OP mechanism. We further

investigate the transition cost for the different algorithms for transition and

selection of placement mechanism in the next sections.
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6.4. Performance of transition algorithms

This section aims to understand how far the transitions are disruptive and

the imposed cost in performing the transitions. In the evaluation, we consider:

(i) the output event rate, (ii) the required time for the transition, and (iii) the

transition overhead. To evaluate the transition execution algorithms reasonably,

we extend Algorithm 1 to migrate the operators concurrently. Similarly, we ex-

tend Algorithm 2 to migrate the operators sequentially. The four approaches are

enlisted in Table 4. Furthermore, we increase the query load to up to 10 queries

to impose changes in the environmental conditions that trigger transitions in

the Tcep system.

Cost of transition algorithms with learning-based selection

We analyze the cost of the different transition algorithms proposed in Sec-

tion 5.3. The transition algorithm works together with the learning algorithm

responsible for selecting the OP mechanism for a transition.

Besides the different transition algorithms, we implemented a requirement-

based algorithm that selects a placement mechanism by matching the QoS de-

mand with the optimization criteria for comparison with our learning algorithm.

If there exists more than one mechanism matching the QoS demand, there is

a random selection. In contrast, the genetic learning-based selection algorithm

takes into account the performance of the OP mechanism, as explained in the

design section.

Figure 14 shows the transition time (a) and overhead (b) incurred by the

transition algorithms using different selection algorithms. Here the costs of

transition include the cost in time and overhead as represented earlier in Equa-

tion (2) and Equation (3), respectively, in Section 4. It is noticeable that MFGS

algorithms possess higher transition times than SMS algorithms. This is due to

the state involved that is to be transferred by the MFGS algorithms, while the

SMS algorithms optimize for the minimal amount of state transfer (cf. Equa-

tion (4)). There is a substantial improvement in the transition time between
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Figure 14: The plot shows the transition cost in terms of time and overhead for the proposed
transition algorithms. SMS transition algorithms require minimal state transfer during opera-
tor migrations, and hence, can perform the transition in a mean time of 1.82 seconds compared
to 6.29 seconds required by MFGS Sequential algorithm. Moreover, the SMS Concurrent al-
gorithm has only a negligible overhead of 0.72 bits, thanks to the cost-optimal algorithm (cf.
Section 5.3).

Sequential and Concurrent algorithms. This is because operators are migrated

concurrently, which leads to lesser transition time. Finally, using the SMS Con-

current algorithm, we achieve an effective mean transition time of 1.82 seconds

for the load of 10 complex congestion detection queries involving multiple state-

ful operators. We see an effective reduction of around 4 seconds compared to

MFGS Sequential transition algorithm that takes 6.29 seconds to finish a tran-

sition with state transfer. The only cost parameter involved in SMS transition

algorithms is in terms of selection of the OP mechanism and transition coordi-

nation costs in terms of communication between the distributed nodes. This is

because there are no costs involved in terms of state migrations.

In the second plot, we observe the total transition overhead in terms of

selecting an OP mechanism, transition coordination, and operator migrations

due to transition (Equation (3) in Section 4). In consistent with the transition

time, we observe a lower overhead of SMS algorithms due to the low amount of
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state involved in migration. Note the scale of the y-axis is logarithmic to show

the amount of overhead involved for SMS algorithms that is substantially lower.

In particular, we have only a mean overhead of 0.72 bits for SMS Concurrent

and 379.79 bits for SMS Sequential algorithm, where the former is more than

2000× better and the latter is 5× better than the MFGS Concurrent algorithm.

A second observation from these plots is that the genetic learning-based

selection algorithm equally performs like a requirement-based algorithm because

of no training and minimal learning costs involved. In Section 6.5, we elaborate

on the learning costs of the algorithm. In conclusion, our results show that the

SMS-Sequential and Concurrent algorithms perform better in both transition

time and overhead, with the time within a range of 0.85− 2.83 seconds (for 10

queries) in comparison to 35 seconds (if the transition is performed naively using

the stop and start migration algorithm) for the congestion detection query. We

analyze costs per operator in the next section.

Cost of transition algorithms for different operators

In this section, we analyze the cost incurred by the transition algorithms

in detail. The transition time comprises operator migration time and the time

an operator has to wait for migration until the predecessor starts its operation

at the target broker (cf. Section 5.3). For example, Conjunction operator waits

for migration until Average and Stream operators start their operation at the

target brokers. Leaf operators (Stream or producers) have no wait time as

they have no predecessors. The operator transition overhead involves the cost

for (i) first and foremost the state involved in migration for stateful operators

like Window-Aggregates, Joins and Sequences, and (ii) second the coordination

overhead for the operator graph migration in terms of communication, such as

acknowledgements (cf. Section 5.3: Algorithm 1 and Algorithm 2). Stateful

operators have costs in both dimensions, communication as well as migration

costs depending on the transition algorithm – MFGS or SMS, while stateless

operators like Filter and Stream do not have any state migration costs, but do
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have a small communication cost again depending on the transition algorithm

– Sequential or Concurrent.
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Figure 15: Operator transitions are performed in the order of few milliseconds and with very
low overhead using our transition algorithms.

Figure 15 shows the mean transition time (a) and overhead (b) using the

transition algorithms for all the operators using 10 incrementally deployed con-

gestion detection queries Q5 (cf. Figure 10). The total migration time correlates

to the number of operators, and the transition state denoted as transition over-

head in the second plot. It can be seen that the stateless operators like Stream,

although high in number (90 operators), can be transited in 245.3 ms. While

other operators like Conjunction and Sequence need slightly higher mean tran-

sition times of 356.89 and 185.32 ms, respectively, with a mean and maximum

transition overhead of 6.2 − 130.98 MBs, and 15.06 − 129.9 MBs, respectively.

Table 7 in Appendix B summarizes the mean, minimum, and maximum values

of the distribution.

Figure 16 classifies the transition costs further based on the transition algo-

rithms. MFGS Sequential algorithm performs the worst clearly because of the

high amount of transition overhead (mean value for Sequence operator 60.12

MB). In contrast, the SMS algorithms require a very short time to transit, a

mean time of 41.1 ms for 30 Average operators and 85.1 ms for 90 Stream

operators.

Table 5 shows the number of respective operators per congestion detection

query and the total number of operators in a single run. The Conjunction op-
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Figure 16: Transition time and overhead measurement
for different operators for 10 incrementally deployed Q5
queries. SMS algorithms possess minimum migration time
and overhead due to the minimal amount of transition
overhead.

Operator # pQ5. # tot.

Stream 9 90
Conjunction 8 80
Average 3 30
Sequence 1 10

Table 5: Number of operators
per congestion detection query
(Q5 in Figure 10) and total in
a single simulation run for 10
queries.
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erator takes the highest amount of time to migrate, although the state involved

is less due to a high number of operators involved. The same applies to the

Stream operator. The number of Sequence operators to be migrated is less;

however, it takes longer to transit due to the high amount of state (˜60 MB)

transfer. Table 8 in Appendix B summarizes the mean transition time and

overhead required by the different algorithms shown earlier in Figure 16.

In Figure 16, we analyze the cost per operator for the transition algorithms.

In consistent with our findings in the previous section, with MFGS algorithms,

operators take longer to migrate than SMS algorithms. The SMS Concurrent

algorithm performs the best.

Seamless execution of transitions

To verify the seamless execution of transitions, we measured the throughput

rate produced while Tcep’s transition algorithms were executed (cf. Figure 17).

A minor output disruption for MFGS-Sequential and Concurrent algorithms was

observed in Figure 17 (around 0.02%). However, SMS-Sequential and Concur-

rent algorithms do not exhibit any disruption and continuously deliver output

events with an output event rate of 100% for both the selection algorithms.
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Figure 17: Throughput measurements using the different transition algorithms and selection
algorithms for OP mechanisms. SMS transition algorithms consistently deliver output events
enabling seamless execution of a transition.

6.5. Learning Costs of Placement Selection

This section aims to understand the learning costs of the adaptive placement

selection algorithm introduced in Section 5.2. We consider the following metrics
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to determine the costs: (i) the time taken to learn the performance character-

istics, in other words, to update the learning model, and (ii) communication

cost for the placement selection. The genetic learning-based learning algorithm

has no training costs since the algorithm is based on online learning. Hence, it

induces only a negligible overhead in time within a range of 2.5− 3.15 ms (95%

confidence interval). Often the update of the learning model induces no over-

head at all. Furthermore, the algorithm does not induce any communication

overhead due to the local handling of operator placement selection.
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Figure 18: Transition cost comparison with a requirement-based selection algorithm. The
genetic learning-based algorithm does not impose high cost in terms of learning and is at par
to the requirement-based algorithm.

Finally, to understand the influence of genetic learning-based selection algo-

rithm on the performance mechanisms transitions, in Figure 18, we analyze the

transition costs in time (a) and overhead (b). We compare the learning algo-

rithm with a requirement-based algorithm where the selection of a mechanism

is based on QoS demands.

From the figure, we observe that due to the negligible overhead of the ge-

netic learning-based algorithm, the cost induced by it is comparable to the

requirement-based algorithm. In fact, the transition time observed using the

genetic learning-based is slightly less than the requirement-based algorithm. In

terms of overhead, we see a slight increase due to the exploration of a suitable

placement algorithm that is not performed in the requirement-based algorithm.
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7. Related Work

It is highly important to fulfil QoS demands in a DCEP system for a wide

range of application domains [49]. By enabling transitions, Tcep allows chang-

ing OP mechanisms, and in this way, fulfil QoS demands under dynamic environ-

mental conditions. In this section, we analyze and compare related work in four

key areas: programming models, operator placement and migration, adaptive

event processing systems, and existing methods for mechanism transitions.

7.1. CEP Programming models

Many CEP languages have been developed in the past years, such as CQL [50],

Cayuga [51], SASE [52], TESLA [53] for specifying complex events and detecting

them by triggering notifications. Modern CEP programming models like Apache

Flink [54], Heron [55], and Beam [56] provides extensive APIs to specify complex

events for both batch and stream processing. Recently proposed benchmarking

frameworks such as [57] and DCEP-Sim [28] unify CEP systems [58] and simu-

late CEP environment and operator placement, respectively. However, none of

the above programming models has enabled the specification of distinct opera-

tor placement mechanisms in a heterogeneous environment of physical machines

we do in this work. DCEP-Sim [28] has enabled the development of operator

placement but only in a simulation environment. While we study the effect of

distinct operator placement mechanisms, perform adaptations between them,

and analyze the cost of adaptations in real-world network infrastructure and

dynamic environment.

7.2. Operator Placement and Migration

OP mechanisms are widely studied to fulfil QoS demands while incurring

minimum cost in performance [29, 28]. A wide range of OP mechanisms has been

proposed considering different QoS demands, such as to achieve low latency [4],

to minimize bandwidth [8, 9, 10], to lower message overhead [6], as well as to

preserve trust and privacy [40].

The fulfilment of QoS demands, however, is only feasible under limited

changes in environmental conditions. For instance, most existing work [12,

58



13, 4, 33, 9, 3] builds on stationary networks. Approaches considering dynamic

changes, e.g., in the cause of mobility, introduces (i) redundancy by means of du-

plication [6] or checkpointing [59], (ii) placement update at regular intervals [8],

or (iii) operator migrations when changing the placement [60, 61, 62, 40].

Overall, it is essential to note that current approaches for DCEP, so far,

build on a single placement mechanism. In contrast, Tcep enables to benefit

from adaptive use of multiple existing OP mechanisms by supporting transitions

while increasing the range at which a DCEP system can adapt to meet a specific

QoS demand.

Another critical mechanism that contributes to the cost in mechanism tran-

sitions is the operator migration mechanism. Operator migration has been

extensively studied for data stream processing and complex event processing

systems. Existing work can be characterized into the following three state mi-

gration strategies:

(i) Stop and restart. A naive way to proceed with state migration is to stop

the execution of the source broker, safely transfer the state, and start the exe-

cution on the target source broker. Such strategies were used in early stream

processing systems like CAPE [37] for dynamic query plan migration or run-

time query optimization. Moreover, this method is most commonly used across

fault-tolerance mechanisms, such as global state checkpoints. It is widely used

by modern stream processing systems like Spark [38] and Flink [63].

(ii) Partial pause and resume. In the face of dynamic environmental conditions,

streaming systems only have to migrate state for stateful operators, and hence

stopping the entire streaming system is not necessary. This approach was in-

troduced by a streaming system called Flux [64], which was later adopted and

improved by multiple streaming systems, including StreamCloud [22], Chi [39],

Seep [65], and FUGU [66] that only pauses the stateful operator in the operator

graph.

(iii) Seamless migration. After our initial work on seamless operator migra-

tion for transitions [15], several other authors addressed similar concerns for

different problems for state recovery [40], state migrations in streaming sys-
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tems [67, 43, 68]. In contrast to the above mechanisms, we aim towards a

cost-efficient transition capable system that integrates and benefits from multi-

ple OP mechanisms through operator migrations.

7.3. Adaptive Event Processing Systems

In this section, we review approaches that have so far considered the adap-

tive exchange of mechanisms in the context of event processing systems. For

example, Weisenburger et al. [19] proposed AdaptiveCEP, a programming

model and CEP system that supports specifying QoS demands at run time.

This work is complementary to Tcep since AdaptiveCEP does not focus on

the adaptive selection and execution of transition strategies. However, in Tcep,

the query language is used to specify changes in the QoS demands to instantiate

a transition.

Heinze et al. proposed an elastic data stream processing system (DSPS) [66],

where the number of active hosts can be scaled up and down, and operator mi-

gration is coordinated accordingly. Later, authors utilized an online learning

approach [69] for auto-scaling. Based on this work, the same authors pro-

posed an adaptive replication scheme for DSPS [70] that performs adaptation

at runtime between active replication and upstream backup schemes for fault

tolerance. Furthermore, the authors looked into the trade-off between mone-

tary costs against the offered QoS [71]. Similar to the work of Heinze et al. [70],

Martin et al. [72] also looked into the trade-off of active vs passive replication

techniques for a fault-tolerant and elastic stream processing system. Proactivity

in elasticity was proposed by Matteis et al. [73] using the Model Predictive Con-

trol method, which accounts for system behaviour over a future time horizon to

predict the best reconfiguration to be executed.

Several surveys on elasticity [74, 72, 75, 76] highlight the importance of

adaptivity of a streaming system towards the changing workload in terms of

adding and removing resources on runtime. For instance, Lorido et al. [74] argue

that the auto-scaling process in elastic streaming systems resembles the MAPE

loop for autonomous systems similar to our work. Assunção et al. [76] discuss the
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advantages of the online approach over static approaches in adaptivity. Finally,

Röger et al. [75] highlight the importance of distributed elasticity solutions using

multiple operator approaches.

Furthermore, adaptivity in the OP mechanism has been investigated before.

Aniello et al. [77] proposed an adaptive online scheduling algorithm for Apache

Storm using two placement mechanisms. Sutherland et al. [78] developed an

adaptive scheduling selection framework for continuous queries in DSPS. Liu

et al. [79] advance the work on state migration to look into the problem of

colocating stateful and stateless operators.

Although the aforementioned approaches benefit from integrating multiple

mechanisms, the adaptation between the mechanisms is heavily dependent on

the internals of the specific mechanisms in use. Therefore, integrating new alter-

native mechanisms is a complex task. By offering the abstraction of a transition,

Tcep is highly extensible and can easily integrate new mechanisms. Further-

more, no previous work up today has studied the idea of adapting between

distinct OP mechanisms.

7.4. Mechanism Transitions

The idea of mechanism transitions origins from the collaborative research

centre MAKI, in which researchers investigate mechanism transitions for the Fu-

ture Internet [18]. Within MAKI, mechanism transitions are investigated in the

context of a wide range of communication mechanisms [80, 81, 82, 36, 83]. For

example, in publish-subscribe systems, mechanism transitions between filtering

schemes [80] and event dissemination mechanisms [81] are studied. Another

line of work by Froemmgen et al. [84, 36] proposed transition strategies that al-

ways execute the best suitable search overlay. Richerzhagen et al. [83] recently

proposed a transition-enabled monitoring service that executes transition on

different monitoring mechanisms. Our work builds on and extends the concept

of transitions proposed in prior work [80, 84]. By focusing on transitions for

OP mechanism, our contribution is the design and understanding of transition

strategies that can support highly dynamic and stateful mechanism transitions
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comprising many dependent distributed entities. The proposed strategies deal

with the specific challenges for coordinated state migration as part of the SMS

and MFGS transition strategies.

8. Conclusion and Future Work

In this work, we proposed Tcep, a transition-capable CEP system. Tcep is

capable of dealing with changing QoS demands caused by dynamic network envi-

ronment conditions. Tcep allows integration of state-of-the-art OP mechanisms

using the programming model and dynamically executes the best matching OP

mechanism to meet the QoS demands of IoT applications. To this end, we have

explored how to perform transitions and analyzed their cost and performance.

We proposed two transition execution algorithms for efficient migrations of oper-

ator state during a transition that is adaptively selected using the online learning

algorithm. The learning algorithm possesses very low learning costs due to the

online nature of performance analysis of operator placement mechanism. Our

evaluation in the context of an IoT scenario and based on the state-of-the-art

OP mechanisms shows that Tcep fulfils changing QoS demands by seamlessly

performing transitions, i.e., without any output disruption.

The cost analysis shows that the transition execution time and overhead can

be decreased to the range of 0.85−2 seconds for the presented use case using our

proposed transition strategies. Moreover, the learning cost of the lightweight

selection algorithm proposed in this work is negligible. As future work, we con-

sider trade-offs between different learning algorithms for the adaptive selection

of an optimal learning algorithm.
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[9] S. Rizou, F. Dürr, K. Rothermel, Solving the multi-operator placement

problem in large-scale operator networks, in: Proceedings of the 19th In-

ternational Conference on Computer Communications and Networks (IC-

CCN), 2010, pp. 1–6.

[10] B. Schilling, B. Koldehofe, K. Rothermel, Efficient and distributed rule

placement in heavy constraint-driven event systems, in: Proceedings of the

13th IEEE International Conference on High Performance Computing and

Communications (HPCC), 2011, pp. 355–364.

[11] R. Dwarakanath, B. Koldehofe, Y. Bharadwaj, T. A. B. Nguyen, D. M.

Eyers, R. Steinmetz, TrustCEP: Adopting a Trust-Based Approach for

Distributed Complex Event Processing, in: Proceedings of the IEEE In-

ternational Conference on Mobile Data Management (MDM), 2017, pp.

30–39.

[12] M. Nardelli, V. Cardellini, V. Grassi, F. L. Presti, Efficient operator place-

ment for distributed data stream processing applications, IEEE Transac-

tions on Parallel and Distributed Systems 30 (8) (2019) 1753–1767.

[13] V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal operator repli-

cation and placement for distributed stream processing systems, SIGMET-

RICS Performance Evaluation Review 44 (4) (2017) 11–22.

[14] B. Alt, M. Weckesser, C. Becker, M. Hollick, S. Kar, A. Klein, R. Klose,

R. Kluge, H. Koeppl, B. Koldehofe, W. R. Khudabukhsh, M. Luthra,
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[26] M. Luthra, B. Koldehofe, J. Höchst, P. Lampe, A. Rizvi, R. Kun-

del, B. Freisleben, INetCEP: In-Network Complex Event Processing for

Information-Centric Networking, in: Proceedings of the 15th ACM/IEEE

Symposium on Architectures for Networking and Communications Sys-

tems, 2019, pp. 1–13.

[27] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer

36 (1) (2003) 41–50.

[28] F. Starks, V. Goebel, S. Kristiansen, T. Plagemann, Mobile distributed

complex event processing—ubi sumus? quo vadimus?, in: Mobile Big Data,

2018, pp. 147–180.

[29] G. T. Lakshmanan, Y. Li, R. Strom, Placement strategies for internet-scale

data stream systems, IEEE Internet Computing 12 (6) (2008) 50–60.

[30] X. Liu, R. Buyya, Resource management and scheduling in distributed

stream processing systems: A taxonomy, review, and future directions,

ACM Computing Surveys 53 (3) (2020).

[31] U. Srivastava, K. Munagala, J. Widom, Operator placement for in-network

stream query processing, in: Proceedings of the 24th ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (PODS),

2005, pp. 250–258.

66



[32] F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi, ACM SIGCOMM

Computer Communication Review 34 (4) (2004) 15.

[33] V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal operator place-

ment for distributed stream processing applications, in: Proceedings of the

10th ACM International Conference on Distributed and Event-Based Sys-

tems (DEBS), 2016, pp. 69–80.

[34] D. Whitley, The genitor algorithm and selection pressure: Why rank-based

allocation of reproductive trials is best, in: Proceedings of the 3rd Interna-

tional Conference on Genetic Algorithms (GA), 1989, pp. 116–121.

[35] T. Blickle, L. Thiele, A comparison of selection schemes used in evolution-

ary algorithms, Evolutionary Computation 4 (4) (1996) 361–394.
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Appendix A Selection Method for OP mechanism

Definition A.1. Selection pressure (S). It is used to characterize the strong or
high respectively weaker or small emphasis of selection on the best OP mecha-
nisms. The selection pressure S for the fitness disrtribution s(f) is defined as
follows.

S =
M∗ −M

σ
(10)

In Equation (10), the selection pressure depends on the fitness distribution
of the population. Therefore, for different fitness distributions will generally
lead to different selection pressure even for the same selection method. In or-
der to define it specifically, we assume that the fitness distribution follows a
Gaussian distribution G(0, 1). In our evaluation, we have empirically validated
this fact that the fitness distribution of all OP mechanisms follows a Guassian
distribution, which leads to the following definition.

Definition A.2. Standardized Selection Pressure (SR). The standardized se-
lection pressure SR is the expected average fitness value of the OP mechanism
distribution after applying the linear ranking based selection method to the

normalized Guassion distribution G(0, 1)(f) = 1√
2π

e−
f2

2

SR =

∫ ∞

−∞
f(R

∗
)(G(0, 1))(f)df (11)

The effective and average fitness value of a Gaussian distribution with mean µ

and variance σ2 can be easily derived as M∗ = σSR + µ.
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Theorem A.1. The selection pressure using a linear ranking method can be
derived as follows.

SR(η−) = (1− η−)
1√
π

(12)

Proof. Using the definition of standardized selection pressure in Definition A.2
and the Gaussian function for the initial fitness distribution, one can obtain

SR(η−) =

∫ ∞

−∞
x

1√
2π

exp

(

−x2

2

)(

η− + 2(1− η−)

∫ x

−∞

1√
2π

exp

(

−y2

2

)

dy

)

dx

=
η−√
2π

∫ ∞

−∞
x exp

(

−x2

2

)

dx+
1− η−

π

∫ ∞

−∞
x exp

(

−x2

2

)
∫ x

−∞
exp

(

−y2

2

)

dydx

Using
∫ ∞

−∞
x exp

(

−x2

2

)

= 0

and

∫ ∞

−∞
x exp

(

−x2

2

)(
∫ x

−∞
exp

(

−y2

2

)

dy

)2

dx =
√
2π

Equation (9) (and Equation (12)) follows.

Appendix B Additional Insights into the Performance Evaluation

OP mechanism. In this section, we report additional insights into the perfor-

mance of OP mechanisms analysed in Section 6.2: Figure 11. Table 6 sum-

marizes the mean, minimum, maximum, and quantiles (90, 95, 99%) of the

metrics latency and message overhead for the different OP mechanisms. The

table presents the results for Q1, Q4, and Q5 (cf. Table 4) execution using the

different OP mechanisms.
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Transition cost per operator. Table 7 elaborates on the statistics of the tran-

sition cost for different operators presented in Section 6.4. It summarizes the

mean, minimum and maximum values for the transition cost in time and over-

head for the different operators in Q5: congestion detection query (cf. Fig-

ure 15). Intuitively, the stateful operators like Sequence require a higher amount

of state to be migrated compared to stateless operators like Stream.

Operator
Transition time (in ms) Transition overhead (in MB)
mean min max mean min max

Average 59.43 15 411 5.02 13.679 bytes 64.72
Conjunction 356.89 119 1404 6.2 5.53 bytes 130.98

Sequence 185.32 15 556 15.06 35.507 bytes 129.9

Stream 245.38 8 913 1.67 1.315 bytes 64.72

Table 7: Mean, min and max values of transition time and overhead per operator for 10
incrementally deployed Q5 queries.

Transition cost for different transition algorithms. Table 8 elaborates on the

statistics of transition cost for different transitions algorithms as presented in

Figure 16. It summarizes the mean transition time and overhead required by

the different algorithms. Clearly, the SMS strategies supersede both in terms of

cost in time and overhead.

Operator
Mean transition time
(in ms)

Mean transition
overhead (in MB)

MFGS Sequential

Average 105.13 20
Conjunction 607.49 24.74
Sequence 287.50 60.12
Stream 676.50 6.67

MFGS Concurrent

Average 37.06 0.05
Conjunction 445.98 0.05
Sequence 210.30 0.107
Stream 163.78 0.005

SMS Sequential

Average 66.66 0.007
Conjunction 219.56 0.009
Sequence 243.7 0.023
Stream 352.6 0.002

SMS Concurrent

Average 41.1 23.74 Bytes

Conjunction 158.2 21.13 Bytes

Sequence 158.3 41.86 Bytes

Stream 85.1 2.41 Bytes

Table 8: Mean values for transition time and overhead for MFGS and SMS strategies. SMS
strategies clearly supersede both time and overhead required to transfer the operator.
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