
Impact of Programming Languages on Machine Learning Bugs
Sebastian Sztwiertnia∗
Maximilian Grübel∗
Amine Chouchane∗

Technical University of Darmstadt
Germany

firstname.lastname@stud.tu-darmstadt.de

Daniel Sokolowski
Krishna Narasimhan

Mira Mezini
Technical University of Darmstadt

Germany
{sokolowski,kri.nara,mezini}@cs.tu-darmstadt.de

ABSTRACT
Machine learning (ML) is on the rise to be ubiquitous in modern
software. Still, its use is challenging for software developers. So
far, research has focused on the ML libraries to find and mitigate
these challenges. However, there is initial evidence that program-
ming languages also add to the challenges, identifiable in different
distributions of bugs in ML programs. To fill this research gap, we
propose the first empirical study on the impact of programming lan-
guages on bugs in ML programs. We plan to analyze software from
GitHub and related discussions in GitHub issues and Stack Overflow
for bug distributions in ML programs, aiming to identify correla-
tions with the chosen programming language, its features and the
application domain. This study’s results enable better-targeted use
of available programming language technology in ML programs,
preventing bugs, reducing errors and speeding up development.

CCS CONCEPTS
•Computingmethodologies→Machine learning; • Software
and its engineering → General programming languages; •
General and reference → Empirical studies.

KEYWORDS
machine learning, programming languages, empirical study
ACM Reference Format:
Sebastian Sztwiertnia, Maximilian Grübel, Amine Chouchane, Daniel So-
kolowski, Krishna Narasimhan, and Mira Mezini. 2021. Impact of Pro-
gramming Languages on Machine Learning Bugs. In Proceedings of the
1st ACM International Workshop on AI and Software Testing/Analysis (AISTA
’21), July 12, 2021, Virtual, Denmark. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3464968.3468408

1 INTRODUCTION AND BACKGROUND
The popularity and relevance of ML steadily increases. This ubiq-
uity makes code quality and bug prevention in ML programs more
relevant than ever. Bugs increase development costs tremendously
and can lead to severe accidents. Between 40% to 80% of the project
cost can be attributed to software testing [7]. Fixing ML bugs takes
∗The first three authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AISTA ’21, July 12, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8541-1/21/07. . . $15.00
https://doi.org/10.1145/3464968.3468408

a lot of time; timing and optimization bugs on average 72 days and
algorithm and method bugs—most common in ML—require on av-
erage 92 days [29]. Unidentified bugs may lead to reduced model
performance [13], and they can cause real-world accidents, e.g.,
the Soyuz TMA-1 spaceship missed its supposed landing spot [23].
Also, 60% of the bugs analyzed by Islam et al. [13] lead to an appli-
cation crash, enforcing the importance of preventing them. ML also
becomes popular in safety-critical applications, e.g., autonomous
driving [31], making its correctness more relevant than ever.

Existing research on bugs in ML programs focuses on ML li-
braries and investigates the developers’ usage and problems [13, 28,
29, 32]. However, not only libraries but also the used programming
language can impact code quality and encountered bug charac-
teristics. Islam et al. [13] provide first evidence by analyzed bug
distributions in ML programs. They found similar bug character-
istics across the investigated ML libraries, hinting that there are
common problems that might be caused by the language. Yet, so far,
there is no focused investigation of the impact of the programming
language nor its features on bugs in ML programs.

Today Python is central to ML development, especially for model
development and integration. According to a survey on the popular
ML platformKaggle [15], Python is themost often used and themost
recommended language to aspiring data scientists; presumably due
to its perceived user-friendliness. However, Python lacks in speed
compared to other languages, has higher memory consumption,
and is more error-prone due to its dynamic typing, which can be
frustrating [21]. It may well be that a considerable number of bugs
are due to the prevalence of Python. But, we simply do not know.

For general purpose software on GitHub repositories, studies
investigated the impact of programming languages on code qual-
ity [3, 24]. While these studies come to different findings regarding
a programming language’s impact, they underline the complexity
of this question, where already finding suitable metrics is challeng-
ing [10]. Further, ML programs are different, making it hard to apply
engineering know-how from general software programs or utilizing
standard static analyzers to find bugs. The ML development pro-
cess is data-driven in contrast to traditional code-driven software
development [1] and requires closer collaboration between sepa-
rate professions, including domain experts, data scientists, software
engineers, operators and more [19].

In this paper, we aim to fill this gap by designing and conduct-
ing a systematic analysis of the effect of the chosen different pro-
gramming language on bugs in ML programs. Gaining insight into
whether and how programming languages influence bugs in ML
programs will steer language development towards preventing ML
bugs. Further, it can improve the language selection, which reduces
the probability to face bugs, speeding up development and saving

9

https://orcid.org/0000-0001-8532-4319
https://orcid.org/0000-0002-2429-7369
https://orcid.org/0000-0001-5071-8860
https://orcid.org/0000-0003-2911-8304
https://doi.org/10.1145/3464968.3468408
https://doi.org/10.1145/3464968.3468408

AISTA ’21, July 12, 2021, Virtual, Denmark S. Sztwiertnia, M. Grübel, A. Chouchane, D. Sokolowski, K. Narasimhan, M. Mezini

cost. Also, the ML community can benefit as a whole by receiving
tools and features better tailored to their needs.

Therefore, in this paper:
• We propose an empirical study on bugs in ML programs on
GitHub and Stack Overflow (§2), correlating bug distributions
with (1) the chosen programming language, (2) the application
domain, and (3) the programming language’s features.

• We present initial evidence for our research objectives (§3).
• We analyze the potential impact of our study, enabling better
application of programming languages to ML programs (§4).

2 INVESTIGATING THE PROGRAMMING
LANGUAGE IMPACT ON ML BUGS

To shed light on the impact of programming languages on bug
characteristics in ML programs, we propose to study existing ML
programs on GitHub and related problem discussions in GitHub
issues and Stack Overflow questions and answers. We first ask:

RQ1: Do the bug characteristics depend on the chosen pro-
gramming language? We assess whether the problems and pecu-
liarities in the data can be attributed to the chosen programming lan-
guage. We expect that the bug characteristics of ML programs can
be grouped into significantly different clusters, which are mapped
to their programming languages. Then we ask:

RQ2: Does the application domain influence the bug char-
acteristicswithin a chosenprogramming language?To achieve
guidance in choosing the right language, we aim to identify whether
the application domain, e.g., computer vision or email filtering, cor-
relates with the bug characteristics. In case, we provide evidence
that future research on languages for ML must consider the appli-
cation domain. Otherwise, likely, language improvements for one
domain generalize well to other domains. To further detail, we ask:

RQ3: Are differences in the bug distribution explainable
by the features of the chosen programming language? We
assess bugs present in one language but unlikely in another and
analyze correlations with the languages’ features. This includes
finding misuses of features and identifying the lacking features to
prevent bugs. As Python is the most common ML language, we
especially expect to find bugs that could be prevented by features
available in other languages that are absent in Python.

2.1 Impact of the Language Choice
To answer RQ1, we first collect a sufficiently big dataset from
Stack Overflow and GitHub, common sources for such studies
[3, 11, 13, 24, 33]. Stack Overflow is a questions and answers plat-
form for developers seeking help with programming problems. Its
tagging system assigns a programming language to each question,
making it easy to extract data. GitHub is a hosting platform for code
repositories. Like Stack Overflow, GitHub has a tagging system for
programming languages and a public API to download the data.

First, we download all GitHub repositories by using the same
methodology as Gonzalez et al. [11] as it resulted in a sufficient
amount of repositories (4.524) and excludes irrelevant repositories
such as tutorials, homework assignments, etc. Stack Overflow ques-
tions and answers related to ML projects are gathered using the
methodology of Islam et al. [13]. In this study, we focus on Python,
C++, JavaScript, Java, R and Go as these are the main programming
languages represented in the data of Gonzalez et al. [11]. We are

aware of programming languages offering ML capabilities inher-
ently, e.g., Julia and Swift. Due to these special capabilities, we
suspect an impact on bug distributions that is too unique to com-
pare to the prior mentioned general-purpose languages. Therefore,
we do not include Swift and Julia in our proposed study.

In the next step, we will apply the pre-processing procedure
proposed by Islam et al. [13], filtering and labeling the data. We
reduce the data to bug-related content by selecting only the GitHub
commits whose message includes "fix". For GitHub issues and Stack
Overflow questions and answers, we will filter by keywords, too,
extracting all posts containing "bug", "error" or "fail". For our study,
the bug type, bug effect, root cause and programming language are
the necessary attributes that we will extract. To categorize bugs, we
will use the taxonomy of Beizer [2], also used by Islam et al. [13].

In the analysis phase, we identify the distributions of bug charac-
teristics for each programming language. To compare the discrete
distributions pairwise, we will use the Kolmogorov-Smirnov test
(KS test) [18]. It prevents the unjustified assumption of normal
distribution and comparing means, in contrast to the t-test statistic
used by Islam et al. [13]. We chose the significance level 𝛼 = 5%.

For instance, for the characteristic bug type, we will find the
language pairs that have significantly different occurrence of these
bugs. Finding these differences would support our hypothesis that
the choice of the programming language impacts the correctness
of ML programs. Also, the findings can indicate which languages
are better suited for the development of ML-related applications as
their choice is likely to reduce the number of bugs.

2.2 Impact of the Application Domain
To answer RQ2, we reuse the dataset collected in §2.1. However,
for the analysis of the application domain’s impact, we add the
application domain attribute by tagging the data accordingly. Based
on Shinde and Shah [27] we will categorize into the five domains
Computer Vision, Prediction, Semantic Analysis, Natural Language
Processing and Information Retrieval.

The analysis will follow the same procedure as in §2.1, however,
we now test the impact of the application domain on the observed
bug characteristics distribution instead of the programming lan-
guage. We apply the KS test to each pair of domains across all pro-
gramming languages and within each language. This obtains the
domain pairs with significantly different bug characteristics across
all languages and separately for each programming language.

If we observe that bug distributions are significantly different
between domains across languages, we show that programming
language research for ML must take the application domains into
account. If the insights differ for the programming languages, we
find the languages that are least and most error-prone for each
investigated domain. This would illustrate that an ML project’s
language selection should take the application domain into account
and provides qualified guidance during this process.

2.3 Impact of Programming Language Features
To answer RQ3, we reuse the dataset from §2.1 and combine it with
a dataset of programming language features available in each of the
investigated languages. Based on [8], we propose using the taxon-
omy introduced by Jordan et al. [14] with the addition of the class
of programming language. This taxonomy includes type checking,

10

Impact of Programming Languages on Machine Learning Bugs AISTA ’21, July 12, 2021, Virtual, Denmark

state cell assignment, state cell deletion, high order types, single assign-
ment, modularity unit, functions and interactive input/output. These
features are complemented, as described, by the differentiation of
programming language classes: scripting language, object-oriented
language and functional language based on Scott [25]. To distin-
guish between language classes is reasonable as it was found that
certain language classes are less prone to error than others [24].

In the analysis, we reuse the method used in §2.1, but this time,
we assess for each language feature separately the impact of its
availability on the bug characteristics distribution. We will find the
language features whose availability correlates with the bugs in ML
programs. For these, we repeat the KS test for each bug category
individually and apply further manual analysis, finding which bugs
are prevented by the feature and explanations why.

With the knowledge gained through this study, a set of language
features could be found that potentially minimizes bugs in ML
programs. This can be used to guide language selection and to
shape future language and ML library development, suggesting to
support language features that are likely to prevent bugs.

3 INITIAL EVIDENCE
ML Programs Are Different. The development of ML-driven applica-
tions does not follow the traditional software development work-
flow and strongly focuses on data [1]. Islam et al. [13] show that
data bugs are most common in ML programs, further supporting
that ML faces new problems that do not exist in traditional software
development. Additionally, current debugging practices do not sup-
port identifying bugs in ML code well [32], indicating differences
in the bugs and their distribution between ML and non-ML pro-
grams. Humbatova et al. [12] analyzed projects using popular deep
learning frameworks, derive a bug taxonomy and validate it with a
user study. While they did not investigate the impact of the used
programming language, they give evidence to the relevance and
difference of ML bugs. Also, the development of ML programs is dif-
ferent. Traditionally, the software design is secured from unsolicited
change, hindering ML data scientists in their exploration [26]. Data
scientists today also rely on informal versioning, consisting of com-
menting out parts of the code to keep it for later reference [16]. This
approach of exploratory programming leads to new code quality
trade-offs [4]. These insights show that ML programs are different
from programs discussed in software engineering so far and, thus,
provide evidence that this ML-focused study is needed.

Programming Languages Impact Bug Characteristics.Various stud-
ies analyzed code quality based on the programming language
choice for general programs by, e.g., relating the language choice
to the programs’ bug distribution. Ray et al. [24] found a correla-
tion between the chosen language and software bug distributions.
However, Berger et al. [3] could only partly reproduce these re-
sults. Programming languages also impact bugs in projects utilizing
multiple languages. Kochhar et al. [17] showed that the degree of
error-proneness changes when specific programming languages
are added to a project. In particular, the error-proneness increased
when adding C++, Objective-C, Java, TypeScript, Clojure or Scala.
This indicates that the languages may have different bug character-
istics, providing initial evidence to RQ1. However, detailed insight
for ML-related programs is not available yet.

Application Domains Impact Bug Characteristics. Linares-Vásquez
et al. [20] analyzed the code quality of Java projects for different ap-
plication domains. They used object-oriented metrics [6] as a proxy
for code quality and found a negative correlation between anti-
patterns and object-oriented metrics. Linares-Vásquez et al. [20]
found that anti-patterns varied across application domains. Further,
Islam et al. [13] identified that bug patterns in ML programs are
different compared to other software domains. This provides ini-
tial evidence to RQ2, showing for general programs that their bug
characteristics depend on the application domain and that ML pro-
grams have different characteristics than non-ML ones. However, a
detailed analysis for application domains within ML is missing yet.

Programming Language Features Prevent Bugs. Programming lan-
guages differ in their set of supported features. Some of these can
reduce the amount of bugs as shown, e.g., for type systems [22].
In contrast, dynamically typed languages like Python detect these
errors at run time, giving less guarantee that a program will work.
E.g., Islam et al. [13] confirm by identifying that Python is prone to
data bugs and that type and shape mismatches are common prob-
lems. Programming language research is focused on developing
language features preventing the introduction of bugs. For instance,
gradual type systems have been explored recently for dynamically
typed languages, including Python [30] and JavaScript [5]. E.g.,
TypeScript is a superset of JavaScript with static type system fea-
tures and Gao et al. [9] observed that it could have prevented 15%
of bugs in the investigated code on GitHub. These efforts to prevent
common errors by adding a feature to the language give initial
evidence to RQ3. However, the relationship between present errors
in ML programs and language features is yet to be discovered.

4 IMPACT ANALYSIS
The presented study potentially impacts all future ML programs
and, due to ML’s ubiquity, a huge share of future systems. The
improved understanding of the languages’ impact and flaws for ML
programs can help to select better suiting ones for the faced problem
as well as improving the languages themselves. Both potentially
improve ML program correctness and eases development, which
can speed up ML development and further propel its ubiquity.

In detail, the insights through RQ1, RQ2 and RQ3 can help al-
ready today to identify preferable languages for ML problems from
a bug prevention perspective. RQ2 guides programming language
researchers for ML languages on how central the application do-
main is for their contributions, i.e., how probable it is that their
evaluated improvements generalize to other domains. Further, RQ2
and especially RQ3 are valuable sources to guide the development
of programming languages and libraries for future ML programs.
ML library authors can leverage the identified shortcomings and
apply language-level solutions as their library APIs themselves usu-
ally can be seen as a language within the programming language
(an embedded DSL). Even without altering their APIs, library au-
thors can improve their documentation and training through the
improved awareness of mishaps not prevented by the language.

Reducing the number of introduced bugs also reduces friction
and frustration during the development of ML programs. Thus,
based on RQ2 and RQ3, easier-to-learn languages may be selected
for teaching. This helps the community to grow fast and shapes the
shared knowledge and standards within the community.

11

AISTA ’21, July 12, 2021, Virtual, Denmark S. Sztwiertnia, M. Grübel, A. Chouchane, D. Sokolowski, K. Narasimhan, M. Mezini

5 CONCLUSION
In this paper, we propose an empirical study on programming lan-
guages and PL bugs based on data from Stack Overflow and GitHub.
First, we assess the impact of the programming language choice on
bug distributions in ML programs. Second, we investigate the effect
application domains have on language-specific and general bug
distributions in ML programs. Lastly, we examine the programming
language features’ impact. We outline the method and research plan
and identify initial evidence. The results will impact practitioners
and scientists, revealing the code quality effects of programming
languages in ML, potentially guiding language choice and feature
design, preventing bugs in future ML programs.

ACKNOWLEDGMENTS
This work has been co-funded by the German Research Foundation
(SFB 1119), by the Hessian LOEWE initiative (Software-Factory 4.0),
and by the German Federal Ministry of Education and Research
(BMBF) and the Hessian Ministry of Higher Education, Research
and the Arts (HMKW) within their joint support of the National
Research Center for Applied Cybersecurity ATHENE.

REFERENCES
[1] SaleemaAmershi, Andrew Begel, Christian Bird, et al. 2019. Software Engineering

for Machine Learning: A Case Study. In Proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice (Montreal,
Quebec, Canada) (ICSE-SEIP ’19). IEEE Press, 291–300. https://doi.org/10.1109/
ICSE-SEIP.2019.00042

[2] Boris Beizer. 1984. Software System Testing and Quality Assurance. Van Nostrand
Reinhold Co., USA.

[3] Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019.
On the Impact of Programming Languages on Code Quality: A Reproduction
Study. ACM Trans. Program. Lang. Syst. 41, 4, Article 21 (Oct. 2019), 24 pages.
https://doi.org/10.1145/3340571

[4] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 25–29. https://doi.org/10.1109/VLHCC.2017.8103446

[5] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding
TypeScript. In Proceedings of the 28th European Conference on ECOOP 2014 —
Object-Oriented Programming - Volume 8586. Springer-Verlag, Berlin, Heidelberg,
257–281. https://doi.org/10.1007/978-3-662-44202-9_11

[6] S.R. Chidamber and C.F. Kemerer. 1994. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering 20, 6 (1994), 476–493. https:
//doi.org/10.1109/32.295895

[7] S. Eldh, H. Hansson, S. Punnekkat, et al. 2006. A Framework for Comparing
Efficiency, Effectiveness and Applicability of Software Testing Techniques. In
Testing: Academic Industrial Conference - Practice And Research Techniques (TAIC
PART’06). 159–170. https://doi.org/10.1109/TAIC-PART.2006.1

[8] Onyeka Ezenwoye. 2018. What Language? - The Choice of an Introductory
Programming Language. In 2018 IEEE Frontiers in Education Conference (FIE). 1–8.
https://doi.org/10.1109/FIE.2018.8658592

[9] Zheng Gao, Christian Bird, and Earl T. Barr. 2017. To Type or Not to Type:
Quantifying Detectable Bugs in JavaScript. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). 758–769. https://doi.org/10.1109/
ICSE.2017.75

[10] M. Garkavtsev, N. Lamonova, and A. Gostev. 2018. Chosing a Programming
Language for a New Project from a Code Quality Perspective. In 2018 IEEE
Second International Conference on Data Stream Mining Processing (DSMP). 75–78.
https://doi.org/10.1109/DSMP.2018.8478454

[11] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. 2020.
The State of the ML-Universe: 10 Years of Artificial Intelligence & Machine
Learning Software Development on GitHub. In Proceedings of the 17th Inter-
national Conference on Mining Software Repositories (Seoul, Republic of Korea)
(MSR ’20). Association for Computing Machinery, New York, NY, USA, 431–442.
https://doi.org/10.1145/3379597.3387473

[12] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning Sys-
tems. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Machin-
ery, New York, NY, USA, 1110–1121. https://doi.org/10.1145/3377811.3380395

[13] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
510–520. https://doi.org/10.1145/3338906.3338955

[14] Howell Jordan, Goetz Botterweck, John Noll, et al. 2015. A feature model of actor,
agent, functional, object, and procedural programming languages. Science of
Computer Programming 98 (2015), 120–139. https://doi.org/10.1016/j.scico.2014.
02.009

[15] Kaggle. 2019. State of Data Science and Machine Learning 2019. https://www.
kaggle.com/c/kaggle-survey-2019/data, last accessed on 2021-06-03.

[16] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[17] P. S. Kochhar, D. Wijedasa, and D. Lo. 2016. A Large Scale Study of Multi-
ple Programming Languages and Code Quality. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1.
563–573. https://doi.org/10.1109/SANER.2016.112

[18] Andrey Kolmogorov. 1933. Sulla determinazione empirica di una lgge di dis-
tribuzione. Inst. Ital. Attuari, Giorn. 4 (1933), 83–91.

[19] Grace A. Lewis, Stephany Bellomo, and Ipek Ozkaya. 2021. Characterizing and
Detecting Mismatch in Machine-Learning-Enabled Systems. arXiv:2103.14101
https://arxiv.org/abs/2103.14101

[20] Mario Linares-Vásquez, Sam Klock, Collin McMillan, et al. 2014. Domain Matters:
Bringing Further Evidence of the Relationships among Anti-Patterns, Application
Domains, and Quality-Related Metrics in Java Mobile Apps. In Proceedings of
the 22nd International Conference on Program Comprehension (Hyderabad, India)
(ICPC 2014). Association for Computing Machinery, New York, NY, USA, 232–243.
https://doi.org/10.1145/2597008.2597144

[21] Abhinav Nagpal and Goldie Gabrani. 2019. Python for Data Analytics, Scientific
and Technical Applications. In 2019 Amity International Conference on Artificial
Intelligence (AICAI). 140–145. https://doi.org/10.1109/AICAI.2019.8701341

[22] S. Nanz and C. A. Furia. 2015. A Comparative Study of Programming Languages
in Rosetta Code. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 1. 778–788. https://doi.org/10.1109/ICSE.2015.90

[23] D.L. Parnas and M. Lawford. 2003. The role of inspection in software quality
assurance. IEEE Transactions on Software Engineering 29, 8 (2003), 674–676.
https://doi.org/10.1109/TSE.2003.1223642

[24] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A
Large Scale Study of Programming Languages and Code Quality in Github. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (Hong Kong, China) (FSE 2014). Association for Computing Ma-
chinery, New York, NY, USA, 155–165. https://doi.org/10.1145/2635868.2635922

[25] Michael L. Scott. 2009. 1 - Introduction. In Programming Language Pragmatics
(Third Edition) (third edition ed.), Michael L. Scott (Ed.). Morgan Kaufmann,
Boston, 5–39. https://doi.org/10.1016/B978-0-12-374514-9.00010-0

[26] Beau Sheil. 1986. Datamation®: Power Tools for Programmers. In Readings
in Artificial Intelligence and Software Engineering, Charles Rich and Richard C.
Waters (Eds.). Morgan Kaufmann, 573–580. https://doi.org/10.1016/B978-0-
934613-12-5.50048-3

[27] Pramila P. Shinde and Seema Shah. 2018. A Review ofMachine Learning and Deep
Learning Applications. In 2018 Fourth International Conference on Computing
Communication Control and Automation (ICCUBEA). 1–6. https://doi.org/10.
1109/ICCUBEA.2018.8697857

[28] X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, and B. Li. 2017. An Empirical Study on
Real Bugs for Machine Learning Programs. In 2017 24th Asia-Pacific Software
Engineering Conference (APSEC). 348–357. https://doi.org/10.1109/APSEC.2017.41

[29] F. Thung, S. Wang, D. Lo, and L. Jiang. 2012. An Empirical Study of Bugs in
Machine Learning Systems. In 2012 IEEE 23rd International Symposium on Software
Reliability Engineering. 271–280. https://doi.org/10.1109/ISSRE.2012.22

[30] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014.
Design and Evaluation of Gradual Typing for Python. SIGPLAN Not. 50, 2 (Oct.
2014), 45–56. https://doi.org/10.1145/2775052.2661101

[31] Jianxiong Xiao. 2017. Learning Affordance for Autonomous Driving. In Proceed-
ings of the 2nd ACM International Workshop on Smart, Autonomous, and Connected
Vehicular Systems and Services (Snowbird, Utah, USA). Association for Computing
Machinery, New York, NY, USA, 1. https://doi.org/10.1145/3131944.3133941

[32] Ru Zhang, Wencong Xiao, Hongyu Zhang, et al. 2020. An Empirical Study on
Program Failures of Deep Learning Jobs. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 1159–1170. https://doi.org/10.1145/
3377811.3380362

[33] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, et al. 2018. Are Code
Examples on an Online Q A Forum Reliable?: A Study of API Misuse on Stack
Overflow. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). 886–896. https://doi.org/10.1145/3180155.3180260

12

https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1145/3340571
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/TAIC-PART.2006.1
https://doi.org/10.1109/FIE.2018.8658592
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1109/DSMP.2018.8478454
https://doi.org/10.1145/3379597.3387473
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1016/j.scico.2014.02.009
https://doi.org/10.1016/j.scico.2014.02.009
https://www.kaggle.com/c/kaggle-survey-2019/data
https://www.kaggle.com/c/kaggle-survey-2019/data
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1109/SANER.2016.112
https://arxiv.org/abs/2103.14101
https://arxiv.org/abs/2103.14101
https://doi.org/10.1145/2597008.2597144
https://doi.org/10.1109/AICAI.2019.8701341
https://doi.org/10.1109/ICSE.2015.90
https://doi.org/10.1109/TSE.2003.1223642
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1016/B978-0-12-374514-9.00010-0
https://doi.org/10.1016/B978-0-934613-12-5.50048-3
https://doi.org/10.1016/B978-0-934613-12-5.50048-3
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1109/APSEC.2017.41
https://doi.org/10.1109/ISSRE.2012.22
https://doi.org/10.1145/2775052.2661101
https://doi.org/10.1145/3131944.3133941
https://doi.org/10.1145/3377811.3380362
https://doi.org/10.1145/3377811.3380362
https://doi.org/10.1145/3180155.3180260

	Abstract
	1 Introduction and Background
	2 Investigating the Programming Language Impact on ML Bugs
	2.1 Impact of the Language Choice
	2.2 Impact of the Application Domain
	2.3 Impact of Programming Language Features

	3 Initial Evidence
	4 Impact Analysis
	5 Conclusion
	Acknowledgments
	References

