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Abstract—Over the past few years, major hardware vendors
have started offering processors that support Trusted Execution
Environments (TEEs) allowing confidential computations over
sensitive data on untrusted hosts. Unfortunately, developing ap-
plications that use TEEs remains challenging. Current solutions
require using low-level languages (e.g., C/C++) to handle the
TEE management process manually — a complex and error-prone
task. Worse, the separation of the application into components
that run inside and outside the TEE may lead to information
leaks. In summary, TEEs are a powerful means to design secure
applications, but there is still a long way to building secure
software with TEEs alone.

In this work, we present Jr, a programming model for
developing TEE-enabled applications where developers only need
to annotate Java programs to define application-level security
policies and run them securely inside enclaves.

Index Terms—Information Flow Control, Trusted Execution
Environment, Security Type System

I. INTRODUCTION

In cloud computing, cloud service providers offer their
infrastructure as a service, and clients use it on an ad-
hoc basis. This approach ensures on-demand computing
and storage provisioning, but it comes at the price of
trusting the cloud providers with potentially sensitive data.
Nevertheless, the cloud computing paradigm entails many
security and privacy concerns as data is inevitably processed
on third-party machines. For example, the cloud could be
compromised, but also, the cloud infrastructure may not
have strict access control policies to rule out unauthorized
access of data. Traditional privacy-preserving techniques
struggle to mitigate such issues. For example, symmetric and
asymmetric cryptography require encrypted data to be first
decrypted to perform any computations — making plaintext
data accessible to the hosting infrastructure. On the other
hand, homomorphic encryption schemes [1] allow performing
computations directly on the encrypted data, but their high
computation time and large ciphertext size can severely affect
the application’s performance.

Hardware-based Trusted Execution Environments (TEEs)
are hardware enclaves that protect data and code from
the system software. A number of hardware vendors have
introduced TEE technologies including Intel with Software
Guard Extensions (SGX) [2], [3], ARM with TrustZone [4],
MultiZone [5] and others [6], [7], [8], [9], [10]. In TEEs,
data can be processed at native speed ensuring that it remains
protected even on a third-party machine without having to
encrypt it — expensive homomorphic encryption can be avoided
to yield better performance.
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Despite TEE implementations have been used in a number
of industry products [11], [12], programming software that
takes advantage of TEE functionalities remains challenging.

Figure 1 shows the implementation of a simple password
checker using the C/C++ interface for the Intel SGX enclave
(in Microsoft Visual Studio with SGX add-on). With the
current approach, programmers need to deal with the low-
level details of enclave programming, e.g., partitioning the
code into separate files that define the program running outside
the enclave (main.cpp) and the program running inside the
enclave (enclave.cpp), defining a separate interface between
the environments with the semantics of parameter passing
(enclave.edl), and setting up the enclave creation (main.cpp,
Lines 5 to 9) and its disposal after use (main.cpp, Line 14).

Though the enclave environment is protected by the
hardware, an attacker controlling the non-enclave environment
can initiate various attacks on the sensitive data residing
inside the enclave, thus compromising the overall application
security. In Figure 1, an attacker that controls the non-enclave
environment can manipulate the parameters passed to the
checkPassword() call to the enclave code. In such case, the
compiler would not alert the programmer to report a potential
security issue.

This leads us to the following key research questions: (a)
How to enable seamless integration of enclaves and managed
languages like Java? (b) How to check the security of enclave
programs with respect to realistic enclave attackers?

In summary, this paper makes the following contributions:

o We present Jg, a language design to seamlessly support
enclave programming.

o We describe the implementation of Jg and evaluate its
applicability by presenting different case studies.

I1. Jg DESIGN

The goal of the Jg design is twofold. (i) The design
should abstract away the TEE management details allowing
the programmer to easily specify the parts of the program
that must run inside the TEE. (ii) The design should provide
simple means to specify and enforce security policies for
an application. To this end, we provide a set of security
annotations and functions. The Jr compiler leverages these
annotations to automatically partition the application and
generate the logic for the enclave management (creation,
initialization, communication). The Jg compiler uses the
security annotations and functions to verify information flow
policies via a security type system.



enclave {
trusted {
public void checkPassword([in, size=len] char+ guess, [out]
intx result, size t len);
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const charx password = "secret";

void checkPassword(charx guess, intx result, size t len) {
strcmp(guess, password) = 0) ?
sresult = 1 : xresult = 0;

(LN SRR

Mmain.onp ]
main.cpp

#include "sgx urts.h"
#include "enclave_u.h"
#define BUF_LEN 100
int main() {
sgx_enclave_id t eid;
sgx_status_t ret = SGX_SUCCESS;
sgx_launch_token_t token = {0};
int updated = 0;
ret = sgx_create_enclave(ENCLAVE_FILE, SGX_DEBUG_FLAG, &token,
&updated, &eid, NULL);
10 if (ret != SGX_SUCCESS) { ... /* exception =/ }
1 charx guess = ... // read guess from stdin
12 int result = 0;
13 checkPassword(eid, guess, &result, BUF_LEN);
14 if (SGX_SUCCESS != sgx destroy_enclave(eid)) {...}
15 return 0;

16 }
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Figure 1: Password checker, C++

We illustrate the Jg features using the password checker
routine provided in Figure 2. In Jg, a class can be annotated
with the @Enclave annotation (dubbed enclave class). Both

code and data of enclave classes are stored inside the enclave.

To ensure that data and computations concerning encryption
take place within the enclave, the Password Checker class in
Figure 2 is annotated with the @Enclave annotation. Within
an enclave class, the @Secret annotation identifies secret
fields. The portions of a program influenced by a secret are
also considered secret to prevent flows of sensitive data that
may leak outside the enclave. The password field (Line 3)
is annotated with the @Secret annotation to denote that its

value should not be leaked to the non-enclave environment.

The static methods of enclave classes annotated with the
@Gateway annotation (gateway methods) act as the interface

between the enclave and the non-enclave environments.

The checkPassword method (Line 6) is annotated with the
@Gateway annotation. The checkPassword method accepts a
string from the non-enclave environment and compares it with
the password field, the result of the comparison is returned to
the non-enclave environment as a boolean value. The return
value of the gateway methods must not be influenced by secret
information.

In addition to annotations, we introduce two operators.

The declassify is a unary operator to downgrade a secret
value into a public one to release sensitive information. The
result of the equality comparison of password and guess
is stored in the result field (Line 8). Since the result
field is influenced by the password secret field, it is also
considered as a sensitive. We apply the declassify operator

- PasswordChecker.java

1 @Enclave
2 class PasswordChecker {
@Secret static String password = ...;

3
4
5 @Gateway

6 public static boolean checkPassword(String guess) {
7 String guesskE = endorse(guess);

8 boolean result = guessE.equals(password);

9 return declassify(result);

0} }
_ J
- Main.java N

class Main {
public static void main(String[] args) {
String guess = ... // read guess from stdin
PasswordChecker.checkPassword(guess) ;
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Figure 2: Password checker, Jg

to the result variable (Line 9) to ensure that result can
be released to the non-enclave environment. The declassify
operator can only declassify the trusted values. The operator
endorse endorses an untrusted value into a trusted one. The
arguments of gateway methods come from the non-enclave
environment and are considered untrusted by default. We
apply the endorse operator to the guess argument (Line 7).
The trusted value is stored in the variable guessE. Hence
result variable is not influenced by any untrusted value and
is declassified successfully (Line 9).

III. ATTACKER MODEL AND ENFORCEMENT

In this section we discuss the attacker models considered
in Jg, and provide an overview of the security type system
used in Jg to enforce security against these attackers.

A. Attacker Model

We assume that the application has two parts — one running
inside and the other running outside the enclave. The attacker
controls the non-enclave environment by: (1) controlling the
non-enclave data memory, or (2) controlling the non-enclave
code and data memory. These attacker capabilities induce
two attacker models of interest.

Listing 1 illustrates the attacker models. The program stores
a list of secret integers called secretData, and provides
methods to access single elements of secretData and to
release the average of these secret integers whenever the trigger
genAvg is set. In the traditional setting without enclaves, where
we trust everything in the system, this program is secure, since
the secret values are written to the public variables of the
main method only after declassification.

Now, consider a scenario where we need to run this code
on an untrusted system. The traditional security assumptions
are no longer sufficient, because the attacker can now access
the system and learn the secretData by simply inspecting
the memory.

One way to protect this data on an untrusted system is
to use enclaves, thus relying on the hardware features to
prevent the attacker from inspecting the enclave memory, and
thus, protect the secretData. The naive way of achieving



this would be to partition the program in Listing 1 into secret
and public parts, and put the secretData and all the methods
that interact with it in a separate class Storage (Listing 2),
and put it inside the enclave. The main (public) part of the
program remains outside of the enclave (Listing 3).

However, this naive partitioning is not enough to protect
the secretData stored inside the enclave against different
types of attacks from the non-enclave environment. In this
work, we investigate two types of attackers that can exploit
the enclave—non-enclave interface to learn the secrets stored
inside of the enclave.

The first attacker controls the data memory outside of the
enclave, hence they can manipulate the parameters passed to
getData method, and learn all of the elements of secretData
one by one. The second attacker controls both the data and
code memory, hence they can change the order of method
calls, e.g., call Storage.releaseAvg() in any order, and thus
control the release of value avg. The enforcement mechanisms
implemented in Jg enforce security against these types of
active attackers and ensure that enclave programs do not leak
secret data.

B. Type System

JE uses security labels to specify application-level policies.
The security labels are not part of the language but are inferred
automatically by Jg. A security label is a 2-tuple consisting
a confidentiality and an integrity label. We consider two
labels Public and Secret for confidentiality, and two labels
Trusted and Untrusted for integrity. Security labels form a
standard (product) security lattice [13] and the order relation
among the labels determines the allowed information flows
for confidentiality and integrity.

The security type system tracks the implicit and explicit
flows of information within the program by checking the
security labels at each command, and propagating the security
labels accordingly.

The programmer should explicitly specify the data inside
the enclave that is considered secret. A secret field is labeled
with a Secret and Trusted security label (2-tuple) as it contains
sensitive information originating from inside an enclave class
and hence, it is considered not tampered with by an attacker.
The rules of the type system prevent storing secret data outside
the enclave, prohibit information flow of enclave’s secret
data to non-enclave environment (unless secret information
is intentionally declassified by the programmer in a secure
manner), and ensure that gateway methods can only return
values having the Public confidentiality level.

The type system prevents classes inside of the enclave to
call into classes outside of the enclave. This is to control the
flow of information and ensure that the only way for passing
data to the non-enclave environment is through the return
values of gateways.

The type system is mainly standard, but adds some extra
safeguards to ensure security against active attackers. To
enforce security against data memory attacker, we have
to make sure that manipulating the parameters of gateway

methods does not leak secret data. To achieve this, the type
system assigns Public and Untrusted security label to the
data coming from the non-enclave environment, and checks
that the declassification of secret data is not influenced by
untrusted values, thus ensuring that only the developer controls
the decision to release secret data and not the active attacker.

The data and code memory attacker is more powerful
than the data memory attacker. In order to enforce security
against this attacker, we have to make sure that changing
the order and frequency of calling gateways, or even calling
new gateways, does not leak secret data (i.e., it does not lead
to declassifying new secrets). To this end, the type system
generates a list of all the gateways that declassify secret values
and makes sure that all of these gateways are called in all
possible executions of the program. This approach ensures
that no new declassifying gateways can be called by the active
attacker unless it has already been called in some way by the
developer. Additionally, to prevent data leaks through changing
the order and frequency of gateway calls, the type system
marks all of the variables and fields shared between gateways
as Untrusted. Similar to the parameters of gateway methods,
these untrusted values cannot influence declassifications. The
formal details of Jg’s security type system are presented
in [14].

IV. CoDE COMPILATION AND IMPLEMENTATION

The Jr compilation process involves multiple steps. Fig-
ure 4 shows how a Jg program (Listing 4) is partitioned
(Listing 5 and 6), translated to Jif to check security (Listing 7
and 8), and augmented with RMI communication (Listing 9
and 10). We now describe these individual compilation steps
followed by the implementation details.

Code PFartitioning: A Jg program is first analyzed and,
based on the annotations, it is split into two partitions —
the enclave and the non-enclave partition. All the classes
annotated with the @Enclave annotation and all their required
dependencies belong to the enclave partition. All the remaining
classes belong to the non-enclave partition. Listing 4 shows
a complete Jp program that encrypts string data using the
secret key field. The complete program includes a Main class
(Line 1) and an Encrypter class (Line 7). The Encrypter
class is annotated with the @Enclave annotation hence it
belongs to the enclave partition. Listing 6 and 5 show the
partitioned Jg programs. In this phase, the Jg compiler also
performs some correctness checks and collects information
required for conversion into an equivalent Jif program (see
next section).

Conversion to Jif: Next, the partition to run inside the
enclave is converted into an equivalent Jif [15] program.
Jif extends Java with security labels to statically enforce
information flow control. A Jif security label is a pair
consisting of a confidentiality level and an integrity level.
In the example, Listing 8 is the equivalent Jif program
of Listing 6. The non-enclave partition remains unchanged
(Listing 5 and Listing 7). Conversion of the Jg program
into Jif involves the following steps. (1) Jg secret fields are



Listing 1: Before partitioning
class Main {

Listing 2: Inside enclave

1 // inside of enclave

Listing 3: Outside enclave

1 // outside of enclave
2 class Main {

1

2 static int[] secretData; 2 class Storage {

3 static boolean genAvg = false; 3 static int[] secretData; 3 public static void main(String[] args) {
4 4 static boolean genAvg = false; 4 int datal = Storage.getData(1);
5 public static void main(String[] args) { 5 5 // ...

6 int datal = getData(1); 6 // gateway 6 Storage.releaseAvg();

7 /] ... 7 public static int getData(int input) { 7 float avg = Storage.getAverage();
8 releaseAvg(); 8 return declassify(secretData[input]); s } }

9 float avg = getAverage(); 9 }

10 } 10

1 1 // gateway

12 public static int getData(int input) { 12 public static void releaseAvg() {genAvg = true;}

13 return declassify(secretData[input]); 13

14 } 14 // gateway

15 15 public static float getAverage() {

16 public static void releaseAvg() {genAvg = true;} 16 if (genAvg) {

17 17 float avg = doAverage(secretData);

18 public static float getAverage() { 18 return declassify(avg);

19 if (genAvg) { 19 }

20 float avg = doAverage(secretData) ; 20 else { return 0.0f };

21 return declassify(avg); } a1} 0}

2 else { return 0.0f; }

23} o}

converted into Jif fields with {Enclave->x;Enclave<-x*} label
(Listing 6, Line 3 and Listing 8, Line 2). Such label represents
values that are secret and trusted. (2) For gateway methods,
the arguments and the return value are labeled with the Jif’s
{} and {Enclave->_;Enclave<-x} labels respectively. The
{} label denotes public and untrusted information while the
{Enclave->_;Enclave<-x} label represents the public and
trusted information (Listing 8, Line 4). (3) The declassify
operator in Jg corresponds to the declassify operator in
Jif (Listing 8, Line 7). The obtained Jif program is compiled
using the Jif compiler to ensure proper label propagation and
checking.

Remote Communication: The next step introduces the
code required for the communication via Java RMI [16]
between the enclave and the non-enclave partition. As in
RMI, remote objects are reachable only through an interface,
for each class annotated with the @Enclave annotation, the
JE compiler generates a remote interface containing all the
gateway methods. Next, the Jg compiler creates a wrapper
class implementing the interface above for each enclave class.
This way, all the gateway methods of an enclave class are
exposed remotely to the non-enclave environment through
the remote interface. Finally, the method calls to the enclave
class from the non-enclave environment are replaced with an
RMI lookup that returns a remote reference to the interface
of the wrapper class. Note that, we prohibit remote calls from
the enclave to the non-enclave environment. For example,
in Listing 10, the Jg compiler generates the RemoteEncr
interface (Line 2) and the EncrypterWrapper class, which
acts as a wrapper for the class Encrypter, and implements
the RemoteEncr interface (Line 5). The EncrypterWrapper
class defines a method wrapEncrypt which calls the static
method Encrypter.encrypt (Line 9). In the non-enclave
environment (Listing 9), the Jg compiler transforms the direct
calls Encrypter.encrypt(plaintext) to a lookup of enclave
remote class (Line 6) and to a call the wrapEncrypt method
of the remote interface EncrypterWrapper (Line 8).

Packaging: All the classes to be placed inside and outside
the enclave are packaged into two separate executable JAR

files. Both JAR files contain an executable class, which
includes code for initialization to set up the RMI registry and
to publish remote objects required for communication. The
user code executes after the initialization phase is complete.
The compilation flow is illustrated in figure 3.
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Figure 3: Jg compilation phases

Implementation: We employ JavaParser [17]—a parser
library for Java—to perform the code analysis and source
code transformation described in section IV. As shown in
Figure 3, the enclave program is deployed inside an Intel SGX
enclave and executed using a JVM. We use the SGX-LKL
framework [18] to support JVM execution inside the enclave.
Running a JVM inside the enclave provides the advantages
of managed languages but in comparison to running a native
code, this approach suffers from a large TCB size.

V. EVALUATION

We evaluate Jg with case studies to demonstrate that it can
address the security requirements of distributed systems. The
aim of the case studies is to demonstrate the core security
features of Jg. The case studies consider basic Java constructs,
mainly due to Jif’s limited Java support and the various static
constraints enforced by the Jif compiler. The case studies are
of the order of tens of LOC.

We implement a secure distributed event processing
(CEP) system based on AdaptiveCEP [19]. In CEP, event
sources produce events that can carry data and are processed
in a cluster of distributed nodes. AdaptiveCEP adapts the



Figure 4: Compilation steps

Listing 4: Jg code

class Main {

1

2 public static void main(String[] args) {

3 String plaintext = "message";

4 String cipher = Encrypter.encrypt(plaintext);
5}

6 @Enclave

7 class Encrypter {

8 @Secret private static String key;

9

10 @Gateway

1 public static String encrypt(String plaintext) {
12 String palintextE = endorse(plaintext);

13 String cipher = encode(plaintextE, key);

14 return declassify(cipher);

15} }

Listing 5: Partition outside the enclave

1 class Main {

> public static void main(String[] args) {

3 String plaintext = "message";

4 String cipher = Encrypter.encrypt(plaintext);
5

Listing 7: Jif code outside the enclave

class Main {
public static void main(String[] args) {

String plaintext = "message";

String cipher = Encrypter.encrypt(plaintext);
o}

[T TR S

Listing 9: Non-enclave partition — communication

class Main{
public static void main(String[] args) {
String plaintext = "message";

Remote remoteServer = Naming.lookup("rmi://IPAddr/RemoteEncr");
RemoteEncr remSrvStub = (RemoteEncr) remoteServer;
String cipher = remSrvStub.wrapEncrypt(plaintext);

O XN U R W —

placement of the event processing operators to maximize
throughput. In the secure CEP case study, every event is en-
crypted before it is sent to the cluster. Event processing nodes
decrypt the events inside the enclave, perform the processing,
and emit the corresponding output events. Listing 11 shows
the code for secure CEP using a filter event processor node.
The FilterNode class implements a filter node that can be
placed on a remote machine. It contains a gateway method
filter (Line 20) that accepts an encrypted event and an
encrypted predicate. The event is decrypted inside the enclave
(Line 21), the predicate is applied to the event payload, and
the result is returned (Line 22). This way, the event data are
protected from an attacker that controls the OS. The attacker
can only observe the encrypted events EncEvent passed as an
argument to the process method.

w AW o =

< o

Listing 6: Partition inside the enclave

1 @nclave
2 final class Encrypter {
3 @Secret private static String key;

4
5 @Gateway

6 public static String encrypt(String plaintext) {
7 String plaintextE = endorse(plaintext);

8 String cipher = encode(plaintextE, key);

9 return declassify(cipher);

10 }}

Listing 8: Jif code inside the enclave
final class Encrypter [principal Enclave] authority(Enclave) {

private {Enclave->; Enclave<-x} key;
public String{Enclave->_; Enclave<-*} encrypt{Enclave<-*}(String{}
plaintext) where authority(Enclave) {
String plaintextE = endorse(plaintext, {} to {Enclave<-x});
String{Enclave->*; Enclave<-*} cipher = encode(plaintextE, key);
return declassify (cipher, {Enclave->*; Enclave<-x} to {Enclave->_;
Enclave<-x*});
8 1}

Listing 10: Enclave partition — communication

1

> interface RemoteEncr extends Remote {

3 public String wrapEncrypt(String plaintext);

4}

5 class EncrypteriWrapper extends UnicastRemoteObject implements
RemoteEncr {

6

7 @verride

8 public String wrapEncrypt(String plaintext) {

9 return Encrypter.encrypt(plaintext);

0} }

11 final class Encrypter { ... }

We also implemented a secure calculator as described
in [20]. In this case study, confidential data is placed inside the
enclave and, during runtime, a user provides tasks to perform
on confidential data from the non-enclave environment. The
tasks are executed inside the enclave and the result is returned
to the non-enclave environment. Listing 12 illustrates tax
computation on salary information using the secure calculator.
The TaskProcessor class is annotated with the @Enclave
annotation because it contains a secret field salary (Line 14)
and a gateway method process (Line 17) that must be
protected within the enclave. A user submits a list of tax-
related computation tasks (taskList) to the process method
(Line 4) where the tasks are executed sequentially inside the
enclave. The untrusted input taskList is first sanitized (Line
18) to verify that it holds certain integrity properties such as it



Listing 11: Secure complex event processing

1 class Main {

2 public static void main(String[] args) {

3 List<IntEvent> events = Generator.getIntEvents(100);
4 List<EncIntEvent> encEvents = encrypt(events);

5 List<EncIntEvent> result = encEvents.stream().

6 filter(PredicateNode.filter).

7 collect(Collectors.toList());

8} 1}

9 class EncIntEvent extends EncEvent {

10 private EncInt val; // encrypted integer
11 private String origin;

12 }

is not null and not empty. If the sanitization check succeeds,
then the taskList field is endorsed (21); otherwise, null
is returned. When translating to Jif, we use Jif’s checked
endorsement construct to implement input sanitization. The
input sanitization reduces the information leakage by only
allowing the verified tasks to interact with the secret fields
and influence the returned value. The case study demonstrates
that the code can be easily partitioned using annotations such
that the sensitive information is kept inside the enclave, and a
user from the non-enclave environment can only observe the
result of predefined sensitive operations that are declassified
explicitly by the developer.

Listing 13 shows a Jr implementation of the Battleship
game as in [21]. In the battleship game, each of the two players
owns a secret grid. Initially, players position their battleships
randomly on the grid. The game then proceeds in rounds and
in each round, players guess a position on the opponent’s grid.
At the end of a round, players are told if the guessed location
contains a battleship. The goal is to successfully guess all the
battleship locations on the opponent’s grid. The game ends
when a player guesses all the battleship locations. This case
study demonstrates a scenario where we need to declassify
some secret information depending on the external inputs.
Initially, both grids are secret and in each round, a grid location
needs to be made public via declassification. The location to
declassify depends on the guess of the opponent; thus, we
need to endorse the opponent’s guess to declassify the location.
Listing 13 shows the code run on every player’s machine. The
Main class is placed outside the enclave and it stores the status
of the opponent’s grid (Line 2). The main method consists of a
while loop in which a player sends and receives guesses. The
Grid class is placed inside the enclave. The secret variable
grid (Line 17) stores the status of a player’s grid. The gateway
method applyGuess (Line 20) accepts the opponent’s guess
as an argument and checks if the guessed location contains
a battleship. The argument guess is untrusted and we use
the endorse operator (Line 21) to raise the integrity level
to Trusted. The apply method (Line 25) extracts the array
indices from the argument guess and checks if a battleship
is present at the array location. The variable result has
Secret confidentiality level as it is implicitly influenced by the
secret field grid (inside the apply method, when checking
for the battleship location). The subsequent declassification
operation (Line 23) downgrades its confidentiality level to
Public. The declassified value of result is returned to non-

13 @Enclave

14 class FilterNode {

15

16 @Secret static String key;

17 Predicate predicate;

18

19 @Gateway

20 public static boolean filter(EncIntEvent event) {

21 Integer val = decrypt(endorse(event).getVal(), key);
22 return apply(predicate, val);

23} o}

enclave environment (Line 23). The case study demonstrates
the use of the endorse and declassify operators to declassify
secret information securely by endorsing the untrusted values
explicitly.

VI. RELATED WORK

In this section we compare Jg to closely related works.
We divide them into three broad categories.

Application partitioning for enclaves: Various works have
considered partitioning an application for enclaves based
on input provided by the user, such as annotations or
configuration files. Glamdring [22] performs source-level
partitioning of C code based on annotations. Panoply [23]
creates low TCB application binaries from the annotated C
applications. These works consider input sanitization checks
across the enclave interface but do not employ information flow
checks. Civet [24] and Uranus [25] perform Java application
partitioning based on XML configuration and user annotations
respectively. Secure Routines [26] extends annotation-based
partitioning for Go programs. Unlike Jg, they consider only
passive attackers and provide limited information-flow control
guarantees.

Enclaves and information flow control: Gollamudi et
al. [20] consider information flow control for enclave applica-
tions focusing on erasure policies. DFLATE [27] presents non-
interference guarantees in distributed TEEs settings. In contrast
to these works, Jg provides robustness guarantees against
stronger active attackers. Moat [28] and its successor [29]
automate confidentiality verification for enclaves programs.

Information flow control for distributed systems: Various
works [30], [31], [32], [33], [34], [35], [36], [37] have
employed information flow control techniques to prevent
information leaks at the network boundaries in distributed
settings. Inspired by these approaches, Jg uses IFC techniques
to secure data flow across the enclave - non-enclave interface.

VII. CONCLUSION

In this paper we presented Jg, a programming framework
for enclave-enabled applications where developers use an-
notations to specify and guide the application partitioning
and security policies. We implemented several case studies
from literature showing that Jg correctly handles application
partitioning while providing strong security guarantees against
realistic attackers.
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Listing 12: Secure calculator

12 @Enclave
13 class TaskProcessor {

class Main {

public static void main(String[] args) {
List<Task> taskList = getTaskSeq("TAX");
Double tax = TaskProcessor.process(taskList);

}

lass Task {
public Double run (Double input) {
// Task computation
}

1n }

1
2
3
4
5
6
7
8

9
10
11
12

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29 }

@Secret static Double salary;

@Gateway
public static Double process(List<Task> taskList) {
if !(sanitize(taskList)) {
return null;

}
List<Task> taskListE = endorse(taskList);
try {
Double result = salary;
for (int i = 0; i < taskListE.size(); i++){
result = taskListE.get(i).run(result);

}
} //0mitting the catch block
return declassify(result);

}

Listing 13: Battleship game

class Main {

static boolean[][] gridOpp; // opponent's grid status

public static void main(String[] args) {

boolean gameOver = false;

while( !gameOver) {
Guess g2 = getGuess(); // opponent's guess
updateOppGrid(g2) ;
int result = Grid.applyGuess(g2);
// generate and send the guess to the opponent
// along with the result of the previous guess

13 +}
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