
Automating Serverless Deployments for DevOps Organizations

Daniel Sokolowski
sokolowski@cs.tu-darmstadt.de

Technical University of Darmstadt
Germany

Pascal Weisenburger
pascal.weisenburger@unisg.ch

University of St. Gallen
Switzerland

Guido Salvaneschi
guido.salvaneschi@unisg.ch
University of St. Gallen

Switzerland

ABSTRACT

DevOps unifies software development and operations in cross-func-
tional teams to improve software delivery and operations (SDO)
performance. Ideally, cross-functional DevOps teams independently
deploy their services, but the correct operation of a service often
demands other services, requiring coordination to ensure the cor-
rect deployment order. This issue is currently solved either with a
central deployment or manual out-of-band communication across
teams, e.g., via phone, chat, or email. Unfortunately, both contra-
dict the independence of teams, hindering SDO performanceÐthe
reason why DevOps is adopted in the first place.

In this work, we conduct a study on 73 IT professionals, showing
that, in practice, they resort to manual coordination for correct
deployments even if they expect better SDO performance with
fully automated approaches. To address this issue, we propose
µs ([mju:z] łmusež), a novel IaC system automating deployment
coordination in a fully decentralized fashion, still retaining compat-
ibility with the DevOps practiceÐin contrast to today’s solutions.
We implement µs , demonstrate that it effectively enables auto-
mated coordination, introduces negligible definition overhead, has
no performance overhead, and is broadly applicable, as shown by
the migration of 64 third-party IaC projects.

CCS CONCEPTS

• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering→ Orchestration languages; Cloud
computing; Architecture description languages.

KEYWORDS

DevOps, Infrastructure as Code, Cloud, Serverless Computing

ACM Reference Format:

Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021.
Automating Serverless Deployments for DevOps Organizations. In Pro-

ceedings of the 29th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),

August 23ś28, 2021, Athens, Greece. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3468264.3468575

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468575

1 INTRODUCTION

While agile methods had a deep influence on software in IT organi-
zations, software development and operations are traditionally sepa-
rated. Operations summarizes all activities after the development,
including configuration, resource provisioning and deployment,
monitoring, alarming, reporting, and support. The widespread adop-
tion of agile methods [17] set the focus on changing requirements
and software quality, aiming for minimal change response time.
Operations, however, focuses on stability and reliability, which are
typically assumed to be threatened by frequent change.DevOps aims
to mitigate this tension: (1) Organizationally, DevOps strengthens
collaboration between development and operations staff, often, by
unifying both tasks in cross-functional teams [27]. (2) Technically,
DevOps leverages code-based tools for operations, too, achieving
a high degree of automation (continuous delivery). Both lead to a
smoother workflow [33], improving service quality [27] and change
management performance [13].

In DevOps, Infrastructure as Code (IaC) is a core technique [32] to
automate software deployment by managing the IT infrastructure
with machine-readable files, i.e., code, replacing manual configura-
tion via interactive configuration tools. Such IaC definitions allow
versioning, debugging, updating, and reviewing of the infrastruc-
ture setup, reusing well-developed techniques from the domain of
łtraditionalž application code. IaC has shown a tremendous impact
on the speed of change. For example, introducing IaC scripts in
Ambit Energy has increased deployment frequency by a factor of
1,200 [38]. Intercontinental Exchange (ICE) uses IaC to maintain
75% of its 20 K servers, reducing the time to provision development
environments from 1ś2 days to 21 minutes [39].

We focus on IaC for serverless computing, e.g., as in AWS Cloud-
Formation, Azure Resource Manager, or Terraform. Serverless com-
puting [9] is a paradigm for deploying cloud applications close to the
cloud’s original pay-as-you-go concept and simplifies operational
concerns regarding application availability, scalability, and fault
tolerance [15]. Serverless infrastructure is therefore an excellent
fit for DevOps because it reduces the required operations knowl-
edge, making specialized operations teams obsolete [16]. We refer
to serverless computing to include not only function-as-a-service
(FaaS) but all offerings where the cloud provider transparently
manages the provisioning and scaling of underlying servers, in
agreement with the current use of łserverless computingž at major
cloud providers [7, 20, 31], e.g., serverless containers, serverless
databases, or serverless storage solutions.

Implementing DevOps with cross-functional teams following a
service-based architecture ideally implies that each team indepen-
dently deploys its own services. However, the correct operation
of a service often depends on the availability of other services.
If these dependencies span across teams, their deployments have
to be coordinated to ensure that dependencies are not violated.

57

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-2911-8304
https://orcid.org/0000-0003-1288-1485
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.1145/3468264.3468575
https://doi.org/10.1145/3468264.3468575

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi

Unfortunately, existing IaC solutions to orchestrate multiple de-
ployments (e.g., AWS CloudFormation, StackSet, or Sceptre) are
centralized and cannot ensure that dependencies between services
in deployments of different teams are satisfied. HenceÐas we show
in this paperÐsuch dependencies require manual coordination of
deployments, i.e., teams have to communicate out-of-band to en-
sure the correct deployment order, e.g., via phone, chat, or email.
This approach is problematic because it (1) slows down software
evolution [13, 27] and (2) is error-prone because of potential mis-
communication between teams [33]. This also applies to approaches
from academia, where work so far either focuses on centralization
(cf. Section 10.1, 10.2, and 10.4), which counteracts the decoupling
of the teams, or does not provide executable descriptions of the
infrastructure (cf. Section 10.2 and 10.3), which hinders automa-
tion. Beyond previous work, we strive to provide decentralized and
automated management for dependencies among deployments.

In this paper, we conduct an empirical, cross-sectional, online
questionnaire survey on 73 IT professionals, highlighting the issue
of manual coordination and showing the need for better automation
in DevOps. We close this gap by proposingµs ([mju:z] łmusež), a
novel IaC system.µs fully automates deployment coordination in a
decentralized fashion, enabling teams to execute their deployments
independently and asynchronously with no need for manual coor-
dination between teams.µs deployments decentrally ensure that
services are only deployed when their dependencies are available
and undeployed otherwise. We show thatµs effectively automates
the deployment coordination for a representative service-based ap-
plication on AWS, we run benchmarks indicating no performance
overhead compared to industrial-strength competitors, and we port
64 third-party projects toµs . In summary:

• We survey 73 IT professionals showing that application depen-
dencies are very common and that, in practice, developers resort
to manual coordination for correct deployments.

• We designµs , an IaC approach that ensures correct deployment
across teams with neither centralization nor manual coordina-
tion, ensuring safe deployments in DevOps organizations.

• We implement µs as an IaC language and novel continuous
deployment runtime by extending the Pulumi SDK.

• We evaluateµs , showing that it is effective in coordinating de-
centralized deployments, it is efficient, and it is easily applicable.

2 THE DEPLOYMENT COORDINATION ISSUE

To better understand the issues related to deployment coordination,
we conducted a cross-sectional, self-administered, online question-
naire survey with 73 IT professionals1 about software dependencies
and deployment order at their organization. The raw data and a
technical report with its full description and results, including the
adherence to the survey standards of the ACM SIGSOFT commu-
nity [1], are publicly available [45] under CC BY 4.0.

The respondents have various professional experience levels (Fig-
ure 1d). They were reached through snowball sampling [23] in the
authors’ personal network (90%) and via social media (10%). Their
companies cover a broad spectrum of sizes (Figure 1e) and sec-
tors (Figure 1a). Most participants have development or operations

1Assuming 55.3 million IT professionals worldwide [24] and a confidence interval
of 95% entails an error margin of 11%.

Technology
(37%)

Financial
Services

(25%)

Educatio
n

(8
%

)

? (4%)

Other
(26%)

3

(a) Industry sector.

Development,
Engineering

(53%)

D
ev

O
ps

,
S

R
E

 (
11

%
)ops./infra.

(12%)

Other
(23%)

4

(b) Department.

Asia
(16%)

Europe
(67%)

N
orth

A
m

erica (8%
)

?
 (4

%
)

O
th

e
r (4

%
)

5

(c) Location.

0–2 years

3–5 years

6–10 years

11–15 years
≥16 years

11%

34%

27%

11%
15%

(d) Experience.

<20

20–99

100–499

500–2k
2k–5k

≥10k

11%

12%

23%

11%
10%

30%

(e) Employees.

Low

Medium

High

Elite

15%

45%

26%

14%

(f) SDO performance.

> 6-Monthly
≤ 6-Monthy

≤ Monthly

≤ Weekly

≤ Daily

5%
22%

42%

16%

14%

(g) Deployment

frequency.

> 6 Months
≤ 6 Months

≤ 1 Month

≤ 1 Week

< 1 Day
< 1 Hour

5%
21%

29%

22%

7%
16%

(h) Change lead

time.

≥ 1 Week

< 1 Week

< 1 Day

< 1 Hour

14%

18%

47%

22%

(i) Time to

restore.

> 30%

16%–30%

0%–15%

14%

29%

58%

(j) Change fail

rate.

Figure 1: Survey demographics and SDO performance.

tasks and are located in Europe (Figures 1b and 1c). Albeit, our data
does not indicate significantly different responses in other regions.2

We measure the companies’ software delivery and operational

(SDO) performance with an instrument by Forsgren et al. [19],
showing how well the DevOps goals are achieved. It comprises
(1) deployment frequency, (2) lead time for changes (delay between
development and production), (3) time to restore service on failure,
and (4) change fail rate. Our results for these questions are in Fig-
ures 1g to 1j. Forsgren et al. found that the metrics correlate and
form four clusters (low, medium, high, and elite). In Figure 1f, we
apply this clustering to our respondents’ companies using minimal
euclidean distance, mainly having medium and high SDO perfor-
mance (71%). Our study leads to the following research insights.

RI1: Most applications depend on other applications. Only
16% of the participants’ primary applications do not require another
application for their correct operation, while 2ś5 dependencies are
common (42%). 19% depend on more than 10 other applications (Fig-
ure 2a). Dependencies among applications are very common.

RI2: Dependencies between applications constrain the or-

der of their deployment. Only 12% of the participants state that
dependencies do not constrain the deployment order, while 21%
answer that they do; the answers in between (67%) mean that some
dependencies imply a deployment order (Figure 2b). The likelihood
of such deployment order has a significant negative correlation6

2Using Kruskal-Wallis test with posthoc Wilcoxon signed-rank test with 𝛼 = 5%.
3Product Manager (8%), Manager (4%), Consultant, Coach or Trainer (4%), Infor-

mation Security (3%), C-level Executive (1%), Release Engineering (1%), Other (1%).
4Industrials & Manifacturing (7%), Retail/Consumer/e-Commerce (5%), Telecom-

munications (4%), Media/Entertainment (3%), Non-profit (3%), Healthcare & Pharma-
ceuticals (1%), Government (1%), Energy (1%).

5Africa (1%), Oceania (1%), South America (1%).
6Using both Kendall and Spearman rank correlation coefficients with 𝛼 = 5%.

58

Automating Serverless Deployments for DevOps Organizations ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

≥11
6–10

2–5

1

0

19.2%

13.7%

42.5%

8.2%

16.4%

(a) Number of

dependencies.

Definitely

Probably

Possibly

Prob. Not

Def. Not

Definitely
Probably

Possibly

Prob. Not

Def. Not

20.5%

21.9%

20.5%

24.7%

12.3%

11.0%
11.0%

21.9%

26.0%

30.1%

Deployment Undeployment

(b) Dependency implies

deployment order.

Manual

Coordination

Combination

of Both

Automated

Coordination

31.5%

38.4%

30.1%

(c) Coordination

method.

Figure 2: State of dependencies and deployment order.

1

2

3

4

5

1 2 3 4 5

manual coordination

a
u
to

m
a
te

d

(a) Depl. frequency.

1

2

3

4

5

1 2 3 4 5

manual coordination

a
u
to

m
a
te

d

(b) Change lead time.

1

2

3

4

5

1 2 3 4 5

manual coordination

a
u
to

m
a
te

d

(c) Time to restore.

1

2

3

4

5

1 2 3 4 5

manual coordination

a
u
to

m
a
te

d

(d) Change fail rate.
-16

0

1

2

3

4

5

6
7

16

12%

5%

11%

10%

18%

10%

7%
5%

(e) Total difference.

Figure 3: Assumed SDO performance compared to no coor-

dination (3: similar, <3: worse, >3: better). Jitter added to the

data points for better visualization on the discrete scales.

with the company’s SDO performance, i.e., dependencies less often
constrain deployment order in more developed DevOps organiza-
tions. This correlation is not significant for the order of undeploy-
ment, which is less likely to be constrained by dependencies. Still,
the responses for deployment and undeployment have a significant
positive correlation.6 In summary, our survey indicates that, in
practice, dependencies constrain deployment orderÐeven though
this contradicts the widespread goal of idealistic loose coupling as
promoted by, e.g., service-based architectures [18].

RI3: Deployments across teams need manual coordination.

70% of the participants rely on manual coordination to ensure the
correct deployment order across teams (Figure 2c). 32% do not
support the deployment coordination with automation at all. The
more respondents rely on manual coordination, the stronger they
agree that dependencies constrain the deployment order in RI2.6

RI4: IT professionals think that automated coordination has

better SDO performance than manual coordination. For each
SDO performance metric, we asked separately for automated and
for manual coordination, whether they are likely to be similar (=3),
better (>3), or worse (<3) compared to a scenario with no required
coordination (Figures 3a to 3d). In Figure 3a, as an example, a data
point (3, 3) means that both coordination methods lead to similarly
frequent deployments, and a point (2, 4) means that manual coordi-
nation has less frequent deployments and automated coordination
has more frequent ones. The majority of participants believe that
automated coordination has similar or better SDO performance
than manual coordination, i.e., most data points are above the diag-
onal. The sum of the differences between the scores for automated
and manual coordination over the four SDO metrics yields the total
difference in [−16, 16] for each participant (Figure 3e), showing that

VPC

Cluster
Persistence

Registry

DBLoad Balancer

WebUI
Recommender

Service Shared Resource Dedicated Resource

Image
Auth

Figure 4: Components and functional dependencies of the

TeaStore. Every service is managed by a dedicated team.

79% assume better SDO performance with automated coordination
(>0) and only 8% assume worse SDO performance (<0).

Our survey confirms that applications depend on each other (RI1),
often constraining their deployment order (RI2). In most cases, man-
ual coordination is used to ensure the correct deployment order
across teams (RI3)Ðeven though IT professionals assume better
SDO performance with automated coordination solutions (RI4).
These results indicate the need to automate the deployment coordi-
nation among teams, which we address in the following section.

3 DEPLOYMENT COORDINATION IN DEVOPS

To illustrate deployment coordination techniques for DevOps orga-
nizations, we consider the TeaStore application [53], a case study on
online retailing for benchmarking and modeling service software
that we use as a running example throughout the paper. TeaStore
is a representative case study according to RI1śRI4 (cf. Section 2).
TeaStore consists of six services (Figure 4): (1) WebUI is publicly
accessed through a Load Balancer, (2) Image hosts images, (3) Auth
handles authentication, (4) Recommender provides product recom-
mendations, (5) Persistence is the storage backend for all services
backed by a Database (DB), (6) Registry lists all service instances
for load balancing. All components reside in a single virtual private
cloud (VPC). They run as serverless container services (as offered,
e.g., by AWS Fargate [6]) within the same container cluster and the
DB is serverless, too (as offered, e.g., by AWS RDS [4]).

TeaCorp, TeaStore’s company, adopts DevOps: each service in
Figure 4 is developed and operated by a dedicated team managing
the service’s infrastructure and deployment. Also, the WebUI team
manages the load balancer, the Persistence team its service’s DB,
and the Registry team maintains the shared VPC and cluster.

3.1 Dependencies and Coordination

The arrows in Figure 4 are dependencies between services, e.g.,
Persistence depends on DB and Registry. Apart from Registry, ev-
ery TeaStore service requires two to five (in case of WebUI) other
applications for its correct operationÐa common case (RI1). Depen-
dencies between services constrain their deployment order (RI2)
because each service requires that its dependencies are satisfied
for correct operation. For instance, before Persistence is deployed,
DB and Registry must be up and running. Symmetrically, DB and
Registry should not be undeployed before Persistence. Such depen-
dencies are not limited to services but may refer to any infrastruc-
ture entity, e.g., Persistence also depends on the cluster. Ensuring

59

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi

that a service is only deployed when its dependencies are satisfied
requires deployment coordination, as we discuss next.

Manual Coordination. Most commonly, deployments are coordi-
nated manually (RI3). Current IaC solutions provide limited support
for this approach: each team independently maintains a script for
deploying its services without any guarantee that dependencies
are satisfied across teams (Section 10.4). As a result, the teams in
TeaCorp manually coordinate tasks and have to communicate syn-
chronously, e.g., via chat or phone, to plan the deployment together.
More advanced IaC solutions still do not fully solve this issue. For
example, with Pulumi stack references [37], a TeaCorp team can
give other teams access to its deployment state, ensuring that a
service is only deployed when its dependencies to other teams’
deployments are met. Yet, this guarantee is not provided for the
undeployment order of services, potentially leaving the system in
an inconsistent state. Also, teams still have to manually coordinate
their operations to deploy and undeploy in a correct order. Manual
coordination contradicts DevOps’s aim of a high degree of automa-
tion. It is error-prone, inflexible, time-consuming, and, thus, likely
to reduce the organization’s SDO performance.

Automated Coordination. Automated coordination promises bet-
ter SDO performance (RI4). Yet, existing automated deployment
solutions, e.g., AWS CloudFormation, AWS CDK, Terraform or
Pulumi, are centralized (Section 10.4): all teams delegate the deploy-
ment of their services to a single operations team which ensures
that dependencies are satisfied without manual communication.
To apply this methodology to TeaStore, a central operations team
should maintain the infrastructure for all other teams, i.e., the whole
company, ensuring correct deployment and undeployment order.
Unfortunately, such a centralized solution separates development
and operations, contradicting the łyou build it, you run itž prin-
ciple of DevOps. It is likely to reduce the SDO performance, as
communication across teams is required for (1) all changes and
(2) application improvements based on operational insights.

3.2 µs: Automated Coordination for DevOps

We propose µs , which solves the deployment issue for DevOps
organizations by decentralizing the automated deployment coordi-
nation. Withµs , teams independently specify their deployments
in theµsℓ languageÐsimilar to what they may do today with, e.g.,
AWS CDK or Pulumi. In contrast to these solutions, however,µs
provides a mechanism to satisfy dependencies across deployments
without manual coordination. Inµsℓ , developers define awish from
another deployment and deploy their services dependent on its sat-
isfaction. For example, in TeaCorp, the Auth team defines wishes
for Registry and Persistence and lets its service depend on them so
that the Auth service is only deployed when the wishes are satisfied.
The Registry and Persistence teams satisfy these wishes by defining
a corresponding offer in their deployments.

To automate deployment coordination, the execution of each
team’s deployment is a continuously running process of the µs
runtime and notÐas common todayÐa one-off task. The deploy-
ments communicate and ensure that services depending on wishes
are only deployed when the wishes are satisfied by corresponding
offers. For example, the Auth team’s deployment automatically de-
ploys its service when the offers from Registry and Persistence are

available. Further, when an offer is withdrawn and a wish becomes
unsatisfied,µs ensures that the Auth service is undeployed first.

Our solution guarantees the correct deployment and undeploy-
ment order for dependencies across deployments of different teams
without introducing a central authority nor requiring manual coor-
dination. Thus,µs enables safe deployments in DevOps organiza-
tions with cross-functional teams.

4 DEPLOYMENT DEFINITIONS

We now presentµsℓ ,µs’ definition language for deployments.

4.1 Deployment Graphs

A deployment graph is a directed acyclic graph (DAG) where nodes 𝑟
are resources, i.e., infrastructure entities like containerized services,
load balancers, or network security policies. Arcs (𝑟, 𝑟 ′) represent
dependencies between resources, describing requires or hosted-by
relationships. Dependencies are transitive and constrain the deploy-
ment order, i.e., for each arc, the target 𝑟 ′ is deployed before the
source 𝑟 . For instance, if a container depends on a cluster, the cluster
is deployed before the container and the container is undeployed
before the cluster. To ensure that the deployment order is decidable,
the deployment graph must be acyclic.

Crucially,µs safely connects independent deployment graphs by
inter-deployment dependencies, i.e., arcs between nodes in different
deployment graphs. These arcs specify dependency and, thus, de-
ployment order between resources in independent deployments. An
inter-deployment dependency is set up through an offer and a wish
resource. An offer in the deployment graph allows another deploy-
ment graph, the beneficiary, to depend on it. The beneficiary defines
a wish referencing the offer to introduce the inter-deployment de-
pendency. Like all resources, offers and wishes can be connected to
additional resources in their deployment graphs, enabling transitive
dependencies among resources across separate deployments. To
retain the decidability of the deployment order, inter-deployment
dependencies may not introduce cyclic dependencies.

For example, at TeaCorp, each team maintains a separate de-
ployment graph, modeling the team’s resources and dependencies.
Figure 5 shows the Auth team’s deployment graphwith all resources
required to run the Auth service. The resources depend on three
other deployments, expressed by the wishes cluster, service and vpc

from Registry, service from Persistence, and securityGroup from
WebUI. Lastly, the Auth deployment allows other deployments’
resources to depend on its offers; securityGroup for Persistence and
Registry, and service for WebUI. The combination of all deployment
graphs through inter-deployment dependencies forms the global
deployment graph, which can be used for global reasoning. However,
such a central view is never reified at TeaCorp as it would require
centralized access to the deployment graphs of all teams.

4.2 Deployment Definitions inµsℓ
µsℓ enables developers to define deployment graphs in deployment

definitions. They describe the topology of the graph and the con-
figuration of its resources.µsℓ uses TypeScript as a host language,
retaining all TypeScript features, including OOP abstractions like
classes and inheritance. Further, it extends Pulumi, achieving full

60

Automating Serverless Deployments for DevOps Organizations ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Wish<VPC>
registry.vpc

Wish<Cluster>
registry.cluster

Wish<void>
persistence.service

Wish<SecurityGroup>
webui.securityGroup

SecurityGroup
securityGroup

Rule
egress

Offer<SecurityGroup>
registry.securityGroup

Offer<SecurityGroup>
persistence.securityGroup

Service
auth

TaskDefinition

Offer<void>
webui.service

Wish<{host, port}>
registry.service

Rule
ingress

Subnet
private 0

Subnet
private 1

Subnet
public 1

Subnet
public 0

Role
execution

Role
task

PolicyAttachment PolicyAttachmentPolicyAttachment

LogGroup

Repository

LifecyclePolicy

Figure 5: The Auth team’s deployment graph.

Wish<VPC>
registry.vpc

Wish<Cluster>
registry.clusterWish<void>

persistence.service

Wish<SecurityGroup>
webui.securityGroup

SecurityGroup
securityGroupEgressRule

Offer<SecurityGroup>
registry.securityGroup

Offer<SecurityGroup>
persistence.securityGroup

FargateService
auth

FargateTaskDefinition

Offer<void>
webui.service

Wish<{host, port}>
registry.service IngressRule

Figure 6: Simplified developer view on Figure 5.

compatibility with existing Pulumi TypeScript projects. Listing 1
shows the Auth team’s deployment definition for Figure 5.

Inµsℓ , resources are objects inheriting from Resource. Instantiat-
ing Resource creates a node 𝑟 in the deployment graph, e.g., Lines 1.7
and 1.8 instantiate a resource since SecurityGroup inherits from
Resource. Referencing another resource 𝑟 ′ from a resource 𝑟 defines
a dependency, hence, an arc (𝑟, 𝑟 ′) in the deployment graph. There
are two ways to establish such dependencies. First, dependencies
can be defined using dependsOn, e.g., the Auth service (Lines 1.15
to 1.28) requires the Persistence service (Line 1.28). Second, re-
sources can declare input and output values: using a resource or
its output as another resource’s input defines a dependency. Inputs
are configuration values used when instantiating a resource, e.g.,
in Line 1.8, the security group is configured with its VPC and an
egress rule. Outputs are values resulting from the deployment and
are accessible via object properties (e.g., a security group’s id in
Line 1.10) or getter methods (e.g., VPC’s private subnets’ ids in
Line 1.17). For instance, the Auth service also depends on a cluster
(Line 1.16), the VPC (Line 1.17), the Registry service (Lines 1.24
and 1.25), and the security group (Line 1.27).

Inheritance enables reuse and refinement of resource definitions.
Inherited definitions simplify the developer view on the deployment
graph because parts of it are implicitly defined in the superclass.
Hence, inheritance can be used to collapse a region of the graph into
a node, hiding the dependencies within the region. For example, the
deployment graph in Figure 5 is simplified to the developer view
in Figure 6 (described in Listing 1) because Remote, SecurityGroup
and FargateSevice inherit from superclasses: (1) the vpc and the
four subnets are collapsed to registry.vpc and (2) nine resources
(policies, roles, repository, logging group, and task definition) are
collapsed to FargateTaskDefinition.

4.3 Connecting Deployment Definitions

To define inter-deployment dependencies using offers and wishes,
µsℓ deployment definitions reference remote deployment defini-
tions as remote objects (cf. instances of Remote in Lines 1.3 to 1.5). The

Listing 1: The Auth team’sµsℓ deployment definition.

1.1 interface RegistryWishes { vpc: Vpc, cluster: Cluster,

1.2 svc: { host: string, port: number } }

1.3 const reg = new Remote<RegistryWishes>(registryKey);

1.4 const persistence = new Remote<{ svc: void }>(persistncKey);

1.5 const webui = new Remote<{ secG: SecurityGroup }>(webuiKey);

1.6

1.7 const securityGroup = new SecurityGroup7('auth', {

1.8 vpc: reg.wishes.vpc, egress: [anywhereViaTcp] });

1.9 securityGroup.createIngressRule7('webui-inbound', {

1.10 location: { sourceSecurityGroupId: webui.wishes.secG.id },

1.11 ports: new TcpPorts(8080)});

1.12 [reg, persistence].foreach(remote =>

1.13 new Offer(remote, 'securityGroup', securityGroup));

1.14

1.15 const auth = new FargateService7('auth', {

1.16 cluster: reg.wishes.cluster,

1.17 subnets: reg.wishes.vpc.getSubnetsIds('private'),

1.18 taskDefinitionArgs: { container: {

1.23 environment: [

1.24 { name: 'REG_HOST', value: reg.wishes.svc.host },

1.25 { name: 'REG_PORT', value: `${reg.wishes.svc.port}`8 }

1.26] } },

1.27 securityGroups: [securityGroup],

1.28 }, { dependsOn: [persistence.wishes.svc] });

1.29 new Offer(webui, 'service', undefined, { dependsOn: auth });

Listing 2: The Registry team’s svc offer to the Auth team.

2.1 new Offer(auth, 'svc', { host: regHost, port: regPort },

2.2 { dependsOn: registry });

remote objects in the Auth team’s deployment definition connect
to Registry, Persistence, and WebUI.

The type parameter of a remote object defines wishes towards
remote deployment definitions, mapping the names of the expected
offers to their expected value types. For instance, Auth defines three
wishes (vpc, cluster, and svc in Lines 1.1 and 1.2) from Registry
(Line 1.3), an empty svc wish from Persistence (Line 1.4), and a
security group secG from WebUI (Line 1.5).

Developers can access the wishes satisfied by an offer of a remote
deployment via the wishes property of the remote object, which
maps the wish name to the wish resource, i.e., the resource that
fulfills the wish. A wish resource is a proxy to the values provided
by an offer in the remote deployment definition. A wish’s type
may refer to a resource, e.g., in Line 1.8 vpc is a VPC resource. For
other object types, the wish resource has a correspondingly typed
output property per field, e.g., host and port of Registry’s svc offer
(Lines 1.24 and 1.25). For other types, the wish resource provides
the typed value as value or, in case of type void, has no output
property, like for Persistence’s svc offer (Line 1.28).

Offers to remote deployments are instances of Offer. They are
configured with the beneficiary’s remote object, a unique name
among the offers to that remote deployment, and by the content
to be offered. In Line 1.29, an empty offer depending on the Auth

7AWS resource interfaces presented as reused in ourµsℓ implementation from
Pulumi. Arguably better alternative typing would be possible.

8
`${...}` used to convert Output<number> to expected Input<string>.

61

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi

service is offered to WebUI as service. Lines 1.12 and 1.13 provide
the security group as separate securityGroup offers to Registry and
Persistence. Listing 2 shows the Registry team’s svc offer of an
object with host and port, depending on the Registry service.

4.4 Deployment Compatibility

A wish is satisfiable if it corresponds to an offer across separate de-
ployment definitions. If a resource depends on an unsatisfiable wish,
it is not deployedÐlike if it was not defined at all. As unsatisfiable
wishes threaten availability,µs allows checking the compatibility

with connected deployments before the deployment is executed, i.e.,
whether all wishes are satisfiable by the connected deployments.

To check compatibility,µs generates offer excerpts for each re-
mote object in a deployment definition. An excerpt describes all
offers for a particular remote with their types. These excerpts can
then be used to validate the wishes in the remote deployment defi-
nition, checking that all wished offers exist and that their types are
subtypes of the wished type.

5 DEPLOYMENT EXECUTION

A deployment is a process of the µs runtime and is configured
by aµsℓ deployment definition. The deployment iteratively runs
through three phases (Figure 7) as described in the following. Each
deployment can be connected to arbitrary remote deployments,
constituting a distributed system.

5.1 Configuration Phase

Eachµsℓ deployment definition is executed in the interpreter of
its own µs deployment runtime during the configuration phase

(Figure 7a). The interpreter receives the deployment definition and
the offers to the deployment as input from remote deployments,
and generates the target state, i.e., the targeted deployment graph,
plus the resource configurations. For each resource, the configura-
tion comprises only simple values and output values of resources
on which it directly depends. Upon deploying the resource, such
output values are available because the dependency implies that the
resources associated with the output values are already deployed.

Wish resources are configured by the provided values of the
corresponding offers. If a wish is unsatisfied, i.e., the corresponding
offer is not deployed, all resources (transitively) depending on the
unsatisfied wish are removed from the deployment graph, ensuring
that they are not in the target state and, thus, not deployed.

5.2 Deployment Phase

In the deployment phase, the driver updates the infrastructure based
on the target state and the current state (Figure 7b). The current
state is the deployment graph of the currently deployed resources.
It also contains the resource configurations, but they are fully re-
solved to valuesÐin contrast to the target state. The current state is
initially empty, and the driver updates it according to the performed
operations. It is saved in persistent storage from where it is read in
consecutive runs to initialize the current state.

Operations on Resources. The driver implements CRUD opera-
tions (create, read, update, delete) for all supported resources. Read-
ing a resource accesses its configuration from the infrastructure

Remote
Deployments

Offers

µsl Deployment Definition
configures

triggers
(with target deployment state)
triggers

triggers

trigger

Interpreter

Reactive
Engine Driver

configure

Offer
Offerdeploys

(a) Configuration

(b) Deployment(c) Reaction

Phases (a), (b), (c)
indicated by back-

ground shade

Figure 7:µsdeployment architecture.

and updates the configuration and the output values in the current
state. Creating a resource deploys it in the infrastructure and adds
it with its configuration, dependencies, and output values to the
current state. Updating a resource updates its configuration in the
infrastructure and updates its configuration, dependencies, and
output values in the current state. Deleting a resource undeploys it
from the infrastructure and removes it with its configuration and
dependencies from the current state.

Deployment Algorithm. For deployment, these rules are executed
in parallel for all resources: (1) A resource is deleted if it is in the
current state but not in the target state and if no resource depends
on it. (2) A resource is created if it is in the target state but not in
the current state and if all its dependencies are in the current state
with the same resource configuration defined in the target state.
(3) A resource is updated if it is in both the target state and the
current state but with different configurations or dependencies. All
its dependencies in the target state must exist in the current state
and have the same resource configuration as in the target state.

The driver applies these rules iteratively until the current state
and the target state match. Only then all resource outputs are
resolved to values in the current state. If the target state is acyclic,
termination is guaranteed. At any time, safety is ensured, i.e., a
resource is only deployed when all its dependencies are, too.

Wishes and Offers. Wishes and offers are treated like any other
resource in the deployment procedure, except there is no entity
associated with them in the infrastructure. For wishes, the deploy-
ment operations, thus, reduce to the changes in the current state.
For offers, on deployment, the offered values are made available to
the beneficiary deployment. Future requests of the beneficiary for
the offer are answered with these values and, if the beneficiary is
currently connected, it is informed about the change. Upon delete
of an offer, the beneficiary deployment is informed that the offer
is withdrawn, and the removal from the current state is delayed
until the beneficiary confirms that none of its deployed resources
depend on the offer (anymore).

5.3 Reaction Phase

To enable DevOps, deployments should be started and updated in-
dependently, i.e., without (synchronous) coordination among teams.
Thereby, it is critical to maintain all dependency constraints across
deployments at all time to ensure correct operation. Inµs , the reac-
tive engine of the deployment runtime triggers the interpreter and
consecutively the driver whenever offers from other deployments
change (Figure 7c). Thus, aµs deployment is a long-running ser-
vice continuously adapting the infrastructure rather than a one-off

62

Automating Serverless Deployments for DevOps Organizations ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Central Storage

µsl Deployment
Definition

Remote
Deployments

start &
terminate

develops

starts & terminates
Auth

TeaStore
Auth

Deployment

provide &
use

provides
& uses

Auth
Team

Offer
Excerpts Other

Teams

exchange
offers

Figure 8: The Auth team’sµssetup at TeaCorp.

task setting up the infrastructure. As a result, inµs , deployments
are decoupled and can be started and updated independently.

Theµs reactive engine communicates about mutual offers with
connected deployments, which may leave and connect at any time.
Whenever the state of an offer changes that is associated with a wish
in its deployment definition, the re-execution of the deployment is
triggered. Then the interpreter generates the new target state, which
the driver reaches. For correctness, a single deployment execution
takes place at a time. If the reactive engine observes a trigger for
re-execution while the deployment is still in the configuration or
the deployment phase, the re-execution is delayed to the following
reaction phase.

5.4 Combining All Three Phases:µsin Action

We are now ready to present how µs can be used in a DevOps
organization where deploymentsÐsimilar to conventional applica-
tion codeÐchange over time. As programs and their infrastructure
evolve, deployment definitions need to be updated. To minimize the
impact on the running system, the managed resources should con-
tinue operation during the update. Also, the updates of connected
deployments should be independent. These requirements are met
through rolling updates without pausing connected deployments.

A µs deployment is updated by terminating and restarting it
with the new deployment definition. Termination of a deployment
does not undeploy its managed resources, but only stops the de-
ployment runtime in a consistent state, i.e., it ensures that the
current state correctly describes the infrastructure. For thisÐif the
deployment phase is ongoingÐit waits for the completion of the
deployment phase. After restart, the deployment continues with
the latest current state and the new deployment definition.

Figure 8 shows the Auth team’s setup at TeaCorp.µs executes
the Auth team’sµsℓ deployment definition (cf. Listing 1) as a contin-
uously running service that communicates with the deployments of
the other teams to exchange the mutual offers. Initially, and when-
ever the offer from another deployment changes, the deployment
updates the infrastructure. The infrastructure hosts, together with
the other teams’ infrastructure, the TeaStore. Thanks to µs , the
Auth team can safely change its deployment without any synchro-
nous or manual coordination with other teams. The Auth team uses
a CI/CD pipeline to automate its deployment updates. When a new
version of the deployment definition is completed, its compatibility
is checked against the offer excerpts from the other teams. In case of
incompatibility (i.e., an unsatisfiable wish), the pipeline is stopped.
In rare cases, the pipeline may be resumed manually, e.g., if the
Registry team promised a new offer to Auth, but did not update its
offer excerpts yet. Otherwise, the Auth team’s offer excerpts are

generated from the new deployment definition and updated in the
company-wide storage. Finally, the deployment is terminated and
restarted with the new deployment definition.

6 DISTRIBUTION INµs
In this section, we discuss aspects that do not impactµs ’ principles
but are relevant in a real-world distributed system.

6.1 Availability

Connectedµs deployments construct a distributed system where
faults can occur anytime. µs has to account for another deploy-
ment’s (temporary) unavailability because availability cannot be
guaranteed. In µs , the unavailability of a deployment does not
impact the availability of its deployed infrastructure, e.g., services
are not undeployed even when their deployment fails.

The safety protocol (cf. Section 6.3) ensures that resources are
only deployed when their dependencies areÐalso across multiple
deployments. On unavailability, if an offer is deployed, the corre-
sponding wish and the resources depending on it are only deployed
after the offering and the wishing deployment have reconnected.
Vice-versa, the protocol delays the undeployment of an offer until
the beneficiary deployment is available again.

6.2 Consistency

Several inconsistencies can arise in a distributed deployment system
between the specification and the current state or among replicas.

Deployment Definition vs. Target State. The target state results
from interpreting aµsℓ deployment definition (cf. Section 5.1). It
depends on the environment, i.e., the offers from other deployments
and possibly other external state and side effects sinceµsℓ supports
all features of its host language. Thus, multiple executions of aµsℓ
script may result in different target states, as the environment
may change. Thus, the consistency of the target state with the
deployment definition is only guaranteed at generation time.

Current State vs. Remote View on Offers. Inµs , we ensure even-
tual consistency between each deployment’s state and remote de-
ployment’s view on the deployed offers: The reactive engine triggers
the re-execution whenever the environment changes. By default,
µs considers changes of offers. If developers use other environmen-
tal elements in a deployment definition, e.g., external state, they
have to inform the reactive engine whenever there is a change.

Current State vs. Infrastructure. Generally, the infrastructure
might drift over time, i.e., become inconsistent with the current
state, e.g., through external or manual administration operations.
However, ideally, infrastructure managed purely byµs does not
drift. Existing drift can be eliminated by reading the infrastruc-
ture’s state into theµs deployment’s current state and triggering
the re-execution of the deployment phase (cf. Section 5.2).

6.3 Trust Model

Deployments can (necessarily) access information from or influence
each other when there are inter-deployment dependencies.

Shared Information. Information between deployments is only
shared via offers and wishes. An offer discloses a concretely defined

63

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi

Table 1: Evaluation overview.

Research Hypothesis Evaluation Method Hypothesis Confirmed

RH1.1 µs can automate decentralized deployments. Implementing TeaCorp’s TeaStore deployment from Section 3. ✓

RH1.2 µs introduces only negligible coding overhead over its competitors. Comparing SLOC of TeaStore deployments. ✓

RH2.1 µs deployments are not slower than deployments with competitors. Comparing duration of a standard deployment. ✓

RH2.2 µs’ deployment time is constant for independent dependencies. Measuring joint duration for multiple independent deployments. ✓

RH2.3 µs’ deployment time scales linearly for sequential dependencies. Measuring joint duration for a chain of dependent deployments. ✓

RH3.1 µs is applicable to existing IaC programs. Executing existing Pulumi TypeScript programs inµs . ✓

RH3.2 Existing distributed IaC programs connected with explicit interfaces
can be converted toµsℓ .

Automatically converting 64 Pulumi TypeScript programs connected
through stack references toµsℓ .

✓

share of information to its beneficiary deployment defined as the
offered object in the µsℓ deployment definition. In the opposite
direction, the beneficiary discloses the case in which no resources
depend on the offer (at offer withdrawal, cf. Section 5.2).

Safety Protocol. As resources depending on a wish are deployed
only when the corresponding offer is deployed, the wishing side has
to trust that the offering side deploys its offer and that it adheres
to the safety protocol: It only undeploys the offer after informing
the wishing side and waiting for the undeployment of all resources
depending on it. Vice-versaÐgiven the offering deployment adheres
to the protocolÐthe wishing side can prevent the undeployment of
the offer and, thus, of the resources it depends on.

7 IMPLEMENTATION

To the best of our knowledge, all existing IaC tools compatible
with serverless infrastructure are executed as one-off tasks. Thus,
µs cannot be directly implemented using existing solutions. We
implementµs as a TypeScript library, which internally uses the
Pulumi SDK [36].µsℓ deployment definitions are executed inµs’
runtime, which is also implemented in TypeScript and based on
Hareactive [52], a functional reactive programming library to en-
sure continuous reactivity to deployment changes (Section 5.3).

We decided to implement theµs framework as a minimal ex-
tension to Pulumi and base it on TypeScript for multiple practical
advantages: (1) full expressivity of an industrial-strength language,
(2) simplified adoption as many developers are familiar with Type-
Script, and (3) full compatibility with existing Pulumi TypeScript
projects. Our approach extends Pulumi with a reactive runtime
and resource implementations for remote connections, offers, and
wishes. Pulumi providesµs’ interpreter and driver, enabling that
all Pulumi IaC programs implemented in TypeScript are valid in
µsℓ and, thus, can be used withµs out-of-the-boxÐwithout any
changes. Our code is Apache 2.0 licensed and public on GitHub [48].
µsℓ supports three resource types (RemoteConnection, Offer and
Wish) implemented using dynamic resource providers [29]. Remote
is a component resource to define a RemoteConnection and its Wish
resources jointly (cf. Listing 1). In addition, all resource types avail-
able as a library from or for Pulumi can be used inµsℓ .

Theµs runtime executes and deploys (cf. Section 5.1 and Sec-
tion 5.2) aµsℓ deployment definition using Pulumi’s Automation
API. We extended Pulumi’s deployment engine with resource graph
pruning to remove all resources that depend on unsatisfied wishes
from the target state. This is repeated when an external offer

changes (cf. Section 5.3). The reaction runtime ensures sequential
execution of deployment rounds.

The resource implementations communicate via gRPC with their
µs runtime to update and retrieve the state of offers, wishes, and
remote connections.µs deployments also use gRPC for connections
between them, defined by RemoteConnection resources. Between
consecutive runs, theµs runtime only requires the deployment’s
current state that is persisted using Pulumi’s state management. No
additional state is required as all information is reconstructed from
the current state on the first deployment round after a restart.

8 EVALUATION

In this section, we evaluate the design and the implementation of
µs . First, we are interested in whetherµs is effective in ensuring
safe, decentralized deployments for service-based applications. This
leads to the research question:

RQ1: Doesµseffectively support deployment automation

in DevOps organizations? It is crucial to assess whetherµs can
automate deployment in a context where current solutions need
manual coordination. Second, we are interested in the run time
performance ofµs , leading to the research question:

RQ2: How does µs’ performance compare to state-of-the-

art, industrial-strength deployment solutions? Performance
is important to ensure thatµs’ automation does not come at the
detriment of slow deployments. Finally, we are interested in the
applicability ofµs to existing projects. We ask:

RQ3: Canµsbe applied to existing IaC projects? It is important
to ensure that µs can be applied to real-world IaC projects and
assess the required migration effort.

We break the research questions down into research hypotheses
(RH) in Table 1 and state the evaluation method to confirm each
of them. For the experiments, we use the Amazon Web Services
cloud with AWS Fargate containers [6]. We select Pulumi and AWS
CDK as a baseline because they are industrial-strength, recent IaC
solutions, and offer features comparable toµs (Section 10.4).

8.1 Effective Deployments in DevOps

To answer RQ1, we implement three versions of the TeaStore appli-
cation’s deployment (Section 3), withµs , with Pulumi, and with
AWS CDK. We compare automation and definition overhead.

First, we consider the support for decentralized deployments.
With Pulumi, AWS CDK, andµs , each team can have a separate

64

Automating Serverless Deployments for DevOps Organizations ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 2: Size of the teams’ deployments at TeaCorp (SLOC).

Team Auth Image Pers. Recomm. Registry WebUI Total

µsℓ 61 63 88 63 75 144 494
Pulumi 53 56 80 56 59 129 433
CDK 47 48 91 47 59 73 365

IaC script for its infrastructure, all together deploying the TeaStore.
With all systems, the teams can manually coordinate the order of
the deployments, but this limits SDO performance. With AWS CDK
and Pulumi, a team can access other teams’ deployment states to
verify that dependencies are available.µs is the only solution that
fully automates the coordination (cf. Section 3), confirming RH1.1.

Second, to evaluate the coding overhead required byµs (RH1.2),
we compare the size for each IaC solution. Table 2 reports the SLOC
for each team’s service in TeaCorp. Together, the teams need 14%
more lines with µs than with Pulumi and 35% more lines than
with AWS CDK. This is due to the additional information in offers
and wishes, required to enable automated coordination. AWS CDK
is shorter because the default configurations of the patterns in
its construct library [5] require less configuration than the best
practices implemented in Pulumi’s Crosswalk for AWS library [35].

In summary, to answer RQ1, µs is as effective as Pulumi or
AWS CDK. There is negligible coding overhead. On top,µs neither
requires centralization nor manual coordination. The evaluation
suggests that adopting AWS CDK’s best practice patterns as µs
library could further reduce the required effort forµs deployments.

8.2 Performance

To answer RQ2, we first measure the duration of a containerized
HTTP web service deployment with µs and compare it to AWS
CDK and Pulumi. Second, we assess the run time of the automated
coordination of multiple depending deployments in a parallel and
in a sequential setup. For the experiments, we deploy AWS Far-
gate container services with the web service instance [22] into an
existing VPC and cluster.

In the first experiment, we assess the performance of a deploy-
ment withµs compared to AWS CDK and Pulumi. We repeat the
measurements of deployment duration 15 times. Each measure-
ment starts at process start and ends forµs at the first driver run
termination and for Pulumi and AWS CDK at the process exit. Both
appear directly after the deployment tool ensures the service is
available. The results are in Figure 9 and indicate that Pulumi and
µs deployments take similarly long, while deployment with AWS
CDK takes on average 20% longer. Hence,µs is not slower than
AWS CDK nor Pulumi, confirming RH2.1.

In the second experiment, we assess the performance of µs’
automated coordination. In the parallel setup, all deployments de-
pend on the same lead deployment and can be deployed in parallel
once the lead deployment is available. In the sequential setup, the
deployments’ dependencies build a chain towards the lead deploy-
ment. Hence, deployments take place sequentially after the lead
deployment. We measure both setups with 3, 6, and 12 services
and repeat each experiment 3 times. Figure 10 shows the number
of deployed resources after starting (un)deployment of the lead
deployment over time. As expected by RH2.3, in the sequential

CDK

Pulumi

µs

0 50 100Time [s]

max
mean
median
min

Figure 9: Required time to deploy a single service.

Deployment Undeployment

P
a

ra
lle

l
S

e
q

u
e

n
t.

0 250 500 750 0 250 500 750

0
75

150
225

0
75

150
225

Time [s]

Services
12
6
3

Figure 10: Number of resources deployed with µswhen

(un)deploying services in parallel and sequentially.

setup, the time increases linearly with the number of services, i.e.,
three need ~ 3.5 minutes and 12 services 4× as much (~ 14 minutes).
The parallel setup (RH2.2) requires, independently of the number
of services, roughly double the time (for the lead deployment and
the deployments that depend on it), ~ 2.5 minutes, compared to the
single service experiment in Figure 9. Deployment and undeploy-
ment show the same behavior; undeployment is faster. The results
show no significant overhead of automated coordination, entailing
the behavior expected in RH2.2 and RH2.3.

The experiments answer RQ2, showing that deployment duration
is comparable or better than with state-of-the-art IaC systems, and
µs’ automated coordination does not introduce significant delay.

8.3 Applicability

To answer RQ3, we appliedµs to third-party open-source projects.
First, by the design of our system, every Pulumi TypeScript pro-
gram is a valid µsℓ deployment definition, making µs virtually
compatible with any third-party, Pulumi-based TypeScript project,
satisfying RH3.1.Of course, when starting from a centralized Pu-
lumi script, the correct splitting into separate deployments, one
for each DevOps team, requires manual intervention because the
DevOps structure of the organization is not explicit in the code.
Hence, naively porting a Pulumi program toµs does not benefit
fromµs’ automated coordination out-of-the-box.

To demonstrateµs’ deployment automation, we focus on a sub-
set of Pulumi programs already partitioned and used in a decen-
tralized way. These Pulumi programs use stack references [37] to
access remote deployments, making the boundary between deploy-
ments and their interfaces explicit. Such scripts can be migrated
to support automated deployment by (1) defining offers for the
supplied resources and (2) wishes for accessing remote resources by
replacing Pulumi’s stack references. We built a dataset [46] of third-
party, real-world projects, starting from all projects on GitHub con-
taining TypeScript files creating pulumi.StackReference instances.
Through GitHub’s Search API, we obtained 64 distinct repositories
(February 2021), ranging from 150 to 500 K SLOC (avg. 37 K SLOC).
We automatically migrated these projects to µsℓ by applying a
simple script [47] that translates stack references and their access
to remote, wish and offer resources based on AST transformation.
Our migration of the dataset replaces 197 stack references with 556

65

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi

wishes and shows that that RH3.2 applies:µs decentralized coordi-
nation can automatically be leveraged if distributed deployments
are connected through explicit interfaces, e.g., stack references.

The experiments answer RQ3, showing thatµsℓ can be applied
to 64 real-world projects. Whileµs is compatible with any existing
Pulumi TypeScript program, we further show that migrating Pulumi
files that already provide the separation into different deployments
provides the basis for benefiting fromµs’ deployment automation
without requiring manual refinement of the deployment code.

9 LIMITATIONS

While this work focuses on serverless computing,µs is not limited
to serverless resources. We only require that a resource is con-
trollable via a CRUD API. This is naturally the case in serverless
computing but nothing prevents that a similar approach is applied
to classic, non-virtualized server-based systems. Also, the tension
between DevOps and IaC orchestration highlighted in this paper
still holds for server-based approaches. In practice, our implementa-
tion can manage all resources for which a Pulumi resource provider
can be implemented, which includes, for example, virtual servers
(e.g., AWS EC2 [3]). Yet, we argue that serverless resources are a
better fit for DevOps because many operational issues (e.g., scaling)
are delegated to the cloud provider, simplifying operations.

Even ifµs decouples the operations of teams, offers and wishes
cause architectural coupling because they must be compatible for
dependency satisfaction, requiring to exchange the interfaces dur-
ing development. However, this communication is not critical for
operations because it can be performed asynchronously with no
impact on the running system. Further,µs offers an asynchronous
verification mechanism for compatibility (cf. Section 4.4). Currently,
µs focuses on 1-to-1 offerśwish dependencies, where the offering
and the wishing deployment directly reference each other. To in-
crease decoupling, we could consider offers to and wishes from any

deployment. This mechanism would require a middleware (e.g., a
publish/subscribe system) to mediate indirect dependencies.

Another important aspect is thatµs treats deployed applications
as a black box. Thus, deployment updates do not consider the
internal state of deployed applications. In contrast, techniques like
safe dynamic updating [11, 51] enable only safe resource updates,
i.e., no distributed transaction occurs across a component update.
Such mechanism can be implemented on top ofµs .

Concerning performance, as shown in Section 8.2,µs’ results
are comparable to competitors. Still, deployment time is dominated
by the infrastructure platforms managing the deployed resources,
causing deployment iterations to take at least seconds and rather
minutes. This process might be too slow for adaptive systems where
deployment changes must be applied very frequently.µs ’ approach
is applicable to such scenarios in combination with a faster resource
orchestration and a lower-latency driver than Pulumi.

Finally,µs’ distributed behaviors (cf. Section 6) necessarily re-
quire a trust relationship between the teams who connect their de-
ployments with offers and wishes. Also, as changes require that the
deployment and the resource orchestration platform are available,
µs does not fit scenarios where either is regularly unreachable.

10 RELATED WORK

We now outline the research gap covered byµs before providing
detailed insight into the related work.

Resource orchestrators (Section 10.1) manage resource creation,
setup, and deletion. In contrast toµs , they do not coordinate de-
ployments over time, nor do they ensure correct dependencies
across resources.µs can interface with resource orchestrators and
leverage them for the actual infrastructure changes.

Modeling languages (Section 10.2) describe the system architec-
ture and its operational behavior but do not allow the automatic
derivation of operations, asµs does. Architecture description lan-
guages (ADLs) (Section 10.3) specify software architectures and can
be used to check architectural conformance.µs is similar, as it pro-
vides a model of the components’ dependencies, but the goal ofµs
is to define an executable specification, ensuring that deployment
dependencies are fulfilled even in a decentralized setting.
µs features its own definition languageµsℓ , which is executable

code, in contrast to modeling languages or ADLs. Still, decentral-
ized coordination could also be defined in modeling languages like
TOSCA (cf. Section 10.2). In particular,µsℓ code can be generated
from definitions in modeling languages (cf. Section 10.3). Similarly,
µsℓ ’ coordination based on offers and wishes could be defined as
an extension to an ADL (instead of extending Pulumi). These ap-
proaches would relinquish some advantages of our solution that
combines Pulumi and TypeScript (cf. Section 7) but would enable
reuse of existing analysis and architecture verification techniques.

Existing solutions for IaC (Section 10.4) are centralized, and each
team contributes its part. Instead,µs is decentralized, preserving
compatibility with the separation into DevOps teams.

10.1 Resource Orchestrators

For an overview of cloud resource orchestration, the reader may
refer to the survey by Weerasiri et al. [54]. According to their
reference architecture,µs combines a policy enforcement engine
and a rule engine. The former derives decisions based on policies
and monitoring; the latter performs deployment operations for each
decision based on defined rules. A survey of programming resource
orchestration operations is in the work of Ranjan et al. [42].

Solutions like Kubernetes, Kubernetes Federation, Mesos, and
Docker Swarm manage software containers [14], an OS-level vir-
tualization technique for simplified, standardized software distri-
bution with guaranteed isolation. Container orchestrators deploy
containers across clusters and data centers and provide features for
fault tolerance, load balancing, and automated scaling. In contrast
toµs , all systems above only support central configuration and are
limited to the management of container-based applications.

Motivated by the challenges in IoT, where applications and ser-
vices are deployed not only in data centers but also at the edge,
DOCMA [25] is a distributed and decentralized orchestrator for
containerized microservice applications. However, DOCMA appli-
cations are centralized: an application globally defines everything
(all services/containers) within its scope. In contrast toµs , sepa-
ration into multiple entities and dependencies among applications
are not supported. Liu et al. [28] present COPE (Cloud Orches-
tration Policy Engine), a distributed platform to automate cloud
resource orchestration. COPE is declarative: the provider specifies

66

Automating Serverless Deployments for DevOps Organizations ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

constraints and goals with a policy language that, in combination
with the current system state, is used to determine the compute,
storage and network resource allocations to meet customer SLAs.

10.2 Modeling Languages

Modeling languages express a system structure (e.g., nodes and re-
lations) following a consistent set of codified rules. TOSCA [34] is
an OASIS standard for modeling cloud applications and their man-
agement. The application topology is described as a graph of nodes
(components) and relationships (e.g., łhosted-onž or łconnected-tož).
Operational tasks are either declaratively derived from the topol-
ogy or explicitly described as management plans using workflow
languages like BPMN or BPEL. Bellendorf and Mann [12] provide
a survey on cloud orchestration methodologies using TOSCA, its
language extensions, and tools for manipulating TOSCA models.
Wettinger et al. [55, 56] apply TOSCA to DevOps using it as a
metamodel to integrate heterogeneous automation artifacts. The
Essential Deployment Metamodel (EDMM) [58] is the least denomi-
nator metamodel of popular declarative deployment technologies
to ensure that metamodel instances easily map to such technologies.
TOSCA Light [59] is an EDMM-compliant subset of TOSCA, whose
models can be deployed with 13 popular deployment technologies
using the TOSCA Lightning [57] toolchain.
µs draws direct inspiration from the EDMM, describing deploy-

ments as a graph of typed components and directed relations, where
artifacts are defined as component properties and operations are de-
rived from the deployment description. We envision a clear synergy
betweenµs and modeling languages. For example, a specification
in µs could be derived from TOSCA with a two level-approach:
The TOSCA specification provides a centralized view on a system
with components implementing well-defined interfaces, and our
system provides the operationalization and the runtime to execute
such specification as a decentralized deployment. The TOSCA spec-
ification serves a whole-system view for the design phase, while
DevOps teams useµs for decentralized deployment definitions.

10.3 Architecture Description Languages

Architecture Description Languages (ADL) describe the high-level
structure of applications on a component level. According to the
classification of Medvidovic and Taylor [30], ADLs must explicitly
model components, their connection with the respective configura-
tions, and they require tools for development and evolution.

ArchJava [2] defines the component architecture of a system
within the programming language. Components are special Java ob-
jects that define ports, i.e., the interfaces connecting components. In
these interfaces, methods are provided, required to bind the provided
method of a single connected port or broadcasts, binding the pro-
vided methods of multiple connected ports. The language enforces
communication integrity. The ORS language and runtime [26] treat
services as first-class composition units and separates the appli-
cation from infrastructure concerns. It features a sub-language
to define the deployment and to allow dynamic system changes.
Terra and Valente [49, 50] propose a domain-specific dependency
constraint language to restrict structural dependencies in object-
oriented software architectures. Acceptable and unacceptable de-
pendencies are statically enforced to avoid architectural erosion.

10.4 Infrastructure as Code

Infrastructure as code [32] refers to the management and provi-
sioning of computing resources through machine-readable code
to enable deployment automation. The advantage of IaC is that
designing, implementing, and deploying infrastructure can lever-
age known software best practices such as version control and
code reviews. Various industrial frameworks support IaC, including
CloudFormation, CloudFormation-based DSLs and Orchestrators,
AWS CDK, ARM, Terraform and Pulumi. They configure and pro-
vision infrastructure and software and differ in the language they
support (e.g., custom DSLs vs. existing language like JavaScript),
programming model, and the targeted infrastructure [40].

Balis et al. [10] investigate an approach based on Terraform to
provide repeatable cloud infrastructures for scientific computing
to automate research experiments in scientific workflows. They
enable a strict separation of infrastructure provisioning and work-
flow description and support auto-scaling of scientific workflows.
Guerriero et al. [21] conduct semistructured interviews with senior
developers to investigate the state of IaC adoption, concluding that
available tools offer limited automation, lack portability (each tool
is based on a different language) and miss support for analysis tech-
niques (e.g., linters). TOSCA supports IaC in DevOps by providing
a standard notation and language for infrastructure [8].

Similar to traditional code, IaC can be of poor quality. Sharma
et al. [44] propose a catalog of configuration smells that violate
best practices for IaC, analyze ~ 5 K Puppet repositories and show
that design smells and configuration smells tend to occur together.
Schwarz et al. [43] extend this research to show that IaC smells are
agnostic to the specific technology and can be defined at a more ab-
stract level. Rahman and Williams [41] conduct an empirical study
to identify the characteristics of defective IaC scripts through a qual-
itative analysis of project commits validated by an assessment from
practitioners. They identify several properties that correlate with
defects (e.g., executing external modules and hard-coded strings).

11 CONCLUSION

Our study on 73 IT professionals confirms that most applications
depend on others and that such dependencies constrain the order
of the applications’ deployment, for which typically manual coordi-
nation is requiredÐeven though developers agree that automation
promises better SDO performance. Yet, today’s IaC solutions can-
not automate deployments in DevOps organizations because they
require centralization or manual out-of-band coordination, e.g., via
phone, chat, or email. We proposeµs , an IaC system to automate
deployment coordination in a decentralized fashion, ensuring com-
patibility with the DevOps practice. We implementµs and show
that it ensures decentralized deployments without manual coordi-
nation, introduces negligible performance overhead, and is broadly
applicable to IaC projects.

ACKNOWLEDGMENTS

This work has been co-funded by the German Research Foundation
(DFG, No. 383964710, SFB 1119), by the Hessian LOEWE initiative
(emergenCITY and Software-Factory 4.0), and by the University of
St. Gallen (IPF, No. 1031569).

67

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi

REFERENCES
[1] ACM Special Interest Group on Software Engineering. 2021. Empirical Standards:

Questionnaire Surveys. https://github.com/acmsigsoft/EmpiricalStandards/blob/
master/docs/QuestionnaireSurveys.md, last accessed on 2021-05-05.

[2] Jonathan Aldrich, Craig Chambers, and David Notkin. 2002. ArchJava: Con-
necting Software Architecture to Implementation. In Proceedings of the 24th
International Conference on Software Engineering (Orlando, Florida) (ICSE ’02).
Association for Computing Machinery, New York, NY, USA, 187ś197. https:
//doi.org/10.1145/581339.581365

[3] Amazon Web Services. 2021. Amazon EC2. https://aws.amazon.com/ec2/, last
accessed on 2021-05-28.

[4] Amazon Web Services. 2021. Amazon RDS: Cloud Relational Database. https:
//aws.amazon.com/rds/, last accessed on 2021-02-14.

[5] Amazon Web Services. 2021. AWS Cloud Development Kit (AWS CDK): Con-
structs. https://docs.aws.amazon.com/cdk/latest/guide/constructs.html, last
accessed: 2021-02-26.

[6] Amazon Web Services. 2021. AWS Fargate: Serverless Compute Engine. https:
//aws.amazon.com/fargate/, last accessed on 2021-02-14.

[7] Amazon Web Services. 2021. Serverless Computing. https://aws.amazon.com/
serverless/, last accessed on 2021-05-21.

[8] Matej Artac, Tadej Borovssak, Elisabetta Di Nitto, Michele Guerriero, and
Damian Andrew Tamburri. 2017. DevOps: Introducing Infrastructure-as-Code. In
2017 IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C). 497ś498. https://doi.org/10.1109/ICSE-C.2017.162

[9] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,
and Philippe Suter. 2017. Serverless Computing: Current Trends and Open Problems.
Springer Singapore, Singapore, 1ś20. https://doi.org/10.1007/978-981-10-5026-
8_1

[10] Bartosz Balis, Michal Orzechowski, Krystian Pawlik, Maciej Pawlik, and Maciej
Malawski. 2020. Cloud Infrastructure Automation for Scientific Workflows. In
Parallel Processing and Applied Mathematics, RomanWyrzykowski, Ewa Deelman,
Jack Dongarra, and Konrad Karczewski (Eds.). Springer International Publishing,
Cham, 287ś297. https://doi.org/10.1007/978-3-030-43229-4_25

[11] Luciano Baresi, Carlo Ghezzi, Xiaoxing Ma, and Valerio Panzica La Manna.
2017. Efficient Dynamic Updates of Distributed Components Through Version
Consistency. IEEE Transactions on Software Engineering 43, 4 (2017), 340ś358.
https://doi.org/10.1109/TSE.2016.2592913

[12] Julian Bellendorf and Zoltán Ádám Mann. 2020. Specification of cloud topologies
and orchestration using TOSCA: a survey. Computing 102, 8 (2020), 1793ś1815.
https://doi.org/10.1007/s00607-019-00750-3

[13] Alanna Brown, Nigel Kersten, and Michael Stahnke. 2020. 2020 State of DevOps
Report. https://puppet.com/resources/report/2020-state-of-devops-report/, last
accessed on 2020-11-27.

[14] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes: Lessons Learned from Three Container-
Management Systems over a Decade. Queue 14, 1 (Jan. 2016), 70ś93. https:
//doi.org/10.1145/2898442.2898444

[15] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2019.
The Rise of Serverless Computing. Commun. ACM 62, 12 (Nov. 2019), 44ś54.
https://doi.org/10.1145/3368454

[16] Daniel Cukier. 2013. DevOps Patterns to Scale Web Applications Using Cloud
Services. In Proceedings of the 2013 Companion Publication for Conference on Sys-
tems, Programming, & Applications: Software for Humanity (Indianapolis, Indiana,
USA) (SPLASH ’13). Association for Computing Machinery, New York, NY, USA,
143ś152. https://doi.org/10.1145/2508075.2508432

[17] Digital.ai. 2020. 14th Annual State of Agile Report. https://explore.digital.ai/state-
of-agile/14th-annual-state-of-agile-report, last accessed on 2020-11-30.

[18] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: Yester-
day, Today, and Tomorrow. Springer International Publishing, Cham, 195ś216.
https://doi.org/10.1007/978-3-319-67425-4_12

[19] Nicole Forsgren, Dustin Smith, Jez Humble, and Jessie Frazelle. 2019. 2019 Accel-
erate State of DevOps Report. Technical Report. https://services.google.com/fh/
files/misc/state-of-devops-2019.pdf, last accessed on 2021-05-05.

[20] Google Cloud. 2021. Serverless Computing. https://cloud.google.com/serverless,
last accessed on 2021-05-21.

[21] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba. 2019. Adoption,
Support, and Challenges of Infrastructure-as-Code: Insights from Industry. In
2019 IEEE International Conference on SoftwareMaintenance and Evolution (ICSME).
580ś589. https://doi.org/10.1109/ICSME.2019.00092

[22] HashiCorp. 2016. In-memory web server that echos back the arguments given to
it. https://hub.docker.com/r/hashicorp/http-echo/, last accessed: 2021-02-25.

[23] Douglas D. Heckathorn. 1997. Respondent-Driven Sampling: A New Approach
to the Study of Hidden Populations. Social Problems 44, 2 (1997), 174ś199. https:
//doi.org/10.2307/3096941

[24] IDC and Statista. 2019. Worldwide Technology Employment Impact Guide. IDC;
Statista. https://www.statista.com/statistics/1126677/it-employment-worldwide/,
last accessed on 2021-02-03.

[25] Lara Lorna Jiménez and Olov Schelén. 2019. DOCMA: A Decentralized Orches-
trator for Containerized Microservice Applications. In 2019 IEEE Cloud Summit.
45ś51. https://doi.org/10.1109/CloudSummit47114.2019.00014

[26] Ingolf Krüger, Barry Demchak, andMassimilianoMenarini. 2012. Dynamic Service
Composition and Deployment with OpenRichServices. Springer Berlin Heidelberg,
Berlin, Heidelberg, 120ś146. https://doi.org/10.1007/978-3-642-30835-2_9

[27] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles.
2019. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv. 52, 6,
Article 127 (Nov. 2019), 35 pages. https://doi.org/10.1145/3359981

[28] Changbin Liu, Boon Thau Loo, and Yun Mao. 2011. Declarative Automated Cloud
Resource Orchestration. In Proceedings of the 2nd ACM Symposium on Cloud
Computing (Cascais, Portugal) (SOCC ’11). Association for Computing Machinery,
New York, NY, USA, Article 26, 8 pages. https://doi.org/10.1145/2038916.2038942

[29] Praneet Loke. 2020. Pulumi: Dynamic Providers. https://www.pulumi.com/blog/
dynamic-providers/, last accessed: 2021-02-22.

[30] Nenad Medvidovic and Richard N. Taylor. 2000. A classification and comparison
framework for software architecture description languages. IEEE Transactions on
Software Engineering 26, 1 (2000), 70ś93. https://doi.org/10.1109/32.825767

[31] Microsoft Azure. 2021. Serverless Computing. https://azure.microsoft.com/en-
us/overview/serverless-computing/, last accessed on 2021-05-21.

[32] Kief Morris. 2016. Infrastructure as Code: Managing Servers in the Cloud (1st ed.).
O’Reilly Media, Inc.

[33] Kristian Nybom, Jens Smeds, and Ivan Porres. 2016. On the Impact of Mixing Re-
sponsibilities Between Devs and Ops. In Agile Processes, in Software Engineering,
and Extreme Programming, Helen Sharp and Tracy Hall (Eds.). Springer Interna-
tional Publishing, Cham, 131ś143. https://doi.org/10.1007/978-3-319-33515-5_11

[34] OASIS. 2013. Topology and Orchestration Specification for Cloud Applications
Version 1.0. OASIS Standard, http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/
TOSCA-v1.0-os.html, last accessed on 2020-09-25.

[35] Pulumi. 2021. Pulumi Crosswalk for AWS. https://www.pulumi.com/docs/
guides/crosswalk/aws/, last accessed: 2021-02-26.

[36] Pulumi. 2021. Pulumi: Modern Infrastructure as Code. https://github.com/
pulumi/pulumi, last accessed: 2021-02-25.

[37] Pulumi. 2021. Stacks: Stack References. https://www.pulumi.com/docs/intro/
concepts/stack/#stackreferences, last accessed: 2021-02-23.

[38] Puppet. 2019. Ambit Energy’s Competitive Advantage? It’s Really a DevOps Soft-
ware Company. https://media.webteam.puppet.com/uploads/2019/11/puppet-cs-
ambit.pdf, last accessed on 2021-02-22.

[39] Puppet. 2019. NYSE and ICE: Compliance, DevOps and Efficient Growth with
Pupper Enterprise. https://media.webteam.puppet.com/uploads/2019/11/puppet-
CS-NYSE-ICE.pdf, last accessed on 2021-02-22.

[40] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2019. A system-
atic mapping study of infrastructure as code research. Information and Software
Technology 108 (2019), 65 ś 77. https://doi.org/10.1016/j.infsof.2018.12.004

[41] Akond Rahman and Laurie Williams. 2019. Source code properties of defective
infrastructure as code scripts. Information and Software Technology 112 (2019),
148 ś 163. https://doi.org/10.1016/j.infsof.2019.04.013

[42] Rajiv Ranjan, Boualem Benatallah, Schahram Dustdar, and Michael P. Papazoglou.
2015. Cloud Resource Orchestration Programming: Overview, Issues, and Direc-
tions. IEEE Internet Computing 19, 5 (2015), 46ś56. https://doi.org/10.1109/MIC.
2015.20

[43] Julian Schwarz, Andreas Steffens, and Horst Lichter. 2018. Code Smells in
Infrastructure as Code. In 2018 11th International Conference on the Quality
of Information and Communications Technology (QUATIC). 220ś228. https:
//doi.org/10.1109/QUATIC.2018.00040

[44] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your Con-
figuration Code Smell?. In Proceedings of the 13th International Conference on Min-
ing Software Repositories (Austin, Texas) (MSR ’16). Association for ComputingMa-
chinery, New York, NY, USA, 189ś200. https://doi.org/10.1145/2901739.2901761

[45] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021. Depen-
dencies in DevOps Survey 2021. https://doi.org/10.5281/zenodo.4873909

[46] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021. Pulumi
TypeScript Projects using Stack References. https://doi.org/10.5281/zenodo.4878577

[47] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021. Pu-
lumi TypeScript Stack References to µs Converter. https://doi.org/10.5281/zenodo.
4902171

[48] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021. µs Infras-
tructure as Code. https://doi.org/10.5281/zenodo.4902323

[49] Ricardo Terra and Marco Tulio de Oliveira Valente. 2008. Towards a Dependency
Constraint Language to Manage Software Architectures. In Software Architecture,
Ron Morrison, Dharini Balasubramaniam, and Katrina Falkner (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 256ś263. https://doi.org/10.1007/978-3-
540-88030-1_19

[50] Ricardo Terra and Marco Tulio Valente. 2009. A dependency constraint lan-
guage to manage object-oriented software architectures. Software: Practice and

68

https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/QuestionnaireSurveys.md
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/QuestionnaireSurveys.md
https://doi.org/10.1145/581339.581365
https://doi.org/10.1145/581339.581365
https://aws.amazon.com/ec2/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://docs.aws.amazon.com/cdk/latest/guide/constructs.html
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-3-030-43229-4_25
https://doi.org/10.1109/TSE.2016.2592913
https://doi.org/10.1007/s00607-019-00750-3
https://puppet.com/resources/report/2020-state-of-devops-report/
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/3368454
https://doi.org/10.1145/2508075.2508432
https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
https://doi.org/10.1007/978-3-319-67425-4_12
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://cloud.google.com/serverless
https://doi.org/10.1109/ICSME.2019.00092
https://hub.docker.com/r/hashicorp/http-echo/
https://doi.org/10.2307/3096941
https://doi.org/10.2307/3096941
https://www.statista.com/statistics/1126677/it-employment-worldwide/
https://doi.org/10.1109/CloudSummit47114.2019.00014
https://doi.org/10.1007/978-3-642-30835-2_9
https://doi.org/10.1145/3359981
https://doi.org/10.1145/2038916.2038942
https://www.pulumi.com/blog/dynamic-providers/
https://www.pulumi.com/blog/dynamic-providers/
https://doi.org/10.1109/32.825767
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://doi.org/10.1007/978-3-319-33515-5_11
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://www.pulumi.com/docs/guides/crosswalk/aws/
https://www.pulumi.com/docs/guides/crosswalk/aws/
https://github.com/pulumi/pulumi
https://github.com/pulumi/pulumi
https://www.pulumi.com/docs/intro/concepts/stack/#stackreferences
https://www.pulumi.com/docs/intro/concepts/stack/#stackreferences
https://media.webteam.puppet.com/uploads/2019/11/puppet-cs-ambit.pdf
https://media.webteam.puppet.com/uploads/2019/11/puppet-cs-ambit.pdf
https://media.webteam.puppet.com/uploads/2019/11/puppet-CS-NYSE-ICE.pdf
https://media.webteam.puppet.com/uploads/2019/11/puppet-CS-NYSE-ICE.pdf
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1016/j.infsof.2019.04.013
https://doi.org/10.1109/MIC.2015.20
https://doi.org/10.1109/MIC.2015.20
https://doi.org/10.1109/QUATIC.2018.00040
https://doi.org/10.1109/QUATIC.2018.00040
https://doi.org/10.1145/2901739.2901761
https://doi.org/10.5281/zenodo.4873909
https://doi.org/10.5281/zenodo.4878577
https://doi.org/10.5281/zenodo.4902171
https://doi.org/10.5281/zenodo.4902171
https://doi.org/10.5281/zenodo.4902323
https://doi.org/10.1007/978-3-540-88030-1_19
https://doi.org/10.1007/978-3-540-88030-1_19

Automating Serverless Deployments for DevOps Organizations ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Experience 39, 12 (2009), 1073ś1094. https://doi.org/10.1002/spe.931
[51] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. 2007.

Tranquility: A Low Disruptive Alternative to Quiescence for Ensuring Safe Dy-
namic Updates. IEEE Transactions on Software Engineering 33, 12 (2007), 856ś868.
https://doi.org/10.1109/TSE.2007.70733

[52] Simon Friis Vindum and Emil Holm Gjùrup. 2019. Hareactive: Purely Functional
Reactive Programming Library. https://github.com/funkia/hareactive, last
accessed: 2021-02-25.

[53] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research.
In 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS). 223ś236. https://doi.
org/10.1109/MASCOTS.2018.00030

[54] Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z. Sheng, and
Rajiv Ranjan. 2017. A Taxonomy and Survey of Cloud Resource Orchestration
Techniques. ACM Comput. Surv. 50, 2, Article 26 (May 2017), 41 pages. https:
//doi.org/10.1145/3054177

[55] Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann. 2014. Standards-
Based DevOps Automation and Integration Using TOSCA. In Proceedings of the
2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC
’14). IEEE Computer Society, USA, 59ś68. https://doi.org/10.1109/UCC.2014.14

[56] Johannes Wettinger, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2016.
Streamlining DevOps automation for Cloud applications using TOSCA as stan-
dardized metamodel. Future Generation Computer Systems 56 (2016), 317 ś 332.
https://doi.org/10.1016/j.future.2015.07.017

[57] Michael Wurster, Uwe Breitenbücher, Lukas Harzenetter, Frank Leymann, and
Jacopo Soldani. 2020. TOSCA Lightning: An Integrated Toolchain for Transform-
ing TOSCA Light into Production-Ready Deployment Technologies. In Advanced
Information Systems Engineering, Nicolas Herbaut and Marcello La Rosa (Eds.).
Springer International Publishing, Cham, 138ś146. https://doi.org/10.1007/978-
3-030-58135-0_12

[58] Michael Wurster, Uwe Breitenbücher, Michael Falkenthal, Christoph Krieger,
Frank Leymann, Karoline Saatkamp, and Jacopo Soldani. 2020. The Essen-
tial Deployment Metamodel: A Systematic Review of Deployment Automation
Technologies. SICS Software-Intensive Cyber-Physical Systems 35 (2020), 63ś75.
https://doi.org/10.1007/s00450-019-00412-x

[59] Michael Wurster., Uwe Breitenbücher., Lukas Harzenetter., Frank Leymann.,
Jacopo Soldani., and Vladimir Yussupov. 2020. TOSCA Light: Bridging the
Gap between the TOSCA Specification and Production-ready Deployment Tech-
nologies. In Proceedings of the 10th International Conference on Cloud Comput-
ing and Services Science - Volume 1: CLOSER,. INSTICC, SciTePress, 216ś226.
https://doi.org/10.5220/0009794302160226

69

https://doi.org/10.1002/spe.931
https://doi.org/10.1109/TSE.2007.70733
https://github.com/funkia/hareactive
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1145/3054177
https://doi.org/10.1145/3054177
https://doi.org/10.1109/UCC.2014.14
https://doi.org/10.1016/j.future.2015.07.017
https://doi.org/10.1007/978-3-030-58135-0_12
https://doi.org/10.1007/978-3-030-58135-0_12
https://doi.org/10.1007/s00450-019-00412-x
https://doi.org/10.5220/0009794302160226

	Abstract
	1 Introduction
	2 The Deployment Coordination Issue
	3 Deployment Coordination in DevOps
	3.1 Dependencies and Coordination
	3.2 µs: Automated Coordination for DevOps

	4 Deployment Definitions
	4.1 Deployment Graphs
	4.2 Deployment Definitions in µsl
	4.3 Connecting Deployment Definitions
	4.4 Deployment Compatibility

	5 Deployment Execution
	5.1 Configuration Phase
	5.2 Deployment Phase
	5.3 Reaction Phase
	5.4 Combining All Three Phases: µs in Action

	6 Distribution in µs
	6.1 Availability
	6.2 Consistency
	6.3 Trust Model

	7 Implementation
	8 Evaluation
	8.1 Effective Deployments in DevOps
	8.2 Performance
	8.3 Applicability

	9 Limitations
	10 Related Work
	10.1 Resource Orchestrators
	10.2 Modeling Languages
	10.3 Architecture Description Languages
	10.4 Infrastructure as Code

	11 Conclusion
	Acknowledgments
	References

