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Abstract

High Performance Computing (HPC) is crucial in a number

of sectors, including weather forecasts, particle simulations

and fluid dynamics. Existing programming frameworks for

HPC expose developers to low-level details such as message

passing and explicit memory management, which are hard

to program and error-prone.

In this paper, we present ongoing work on increasing the

level of abstraction for HPC. We tackle this problem with an

approach based on a combination of multitier programming

and reactive programming which enables the development

of complex processor configurations in a uniform way using

event streams as communication pattern. We report our ex-

perience with LULESH, a well known HPC benchmark, and

we outline our research roadmap.

CCS Concepts · Software and its engineering → Grid

computing; · Computer systems organization → n-tier

architectures;

Keywords High Performance Computing, Reactive Pro-

gramming, Tierless Programming

1 Introduction

High Performance Computing (HPC) [14] enables running

scientific and technical computations at high speed and it is

crucial in a number of sectors including weather forecasts,

fluidynamics and particle simulation. The programmingmod-

els adopted in HPC aim to take advantage of modern hard-

ware architectures, which can scale to up to millions of pro-

cessors in the case of supercomputers. Such programming

models are based on languages like C, C++ or Fortran. These

feature explicit memory management and get augmented

with libraries to execute instructions in parallel on multiple
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processors as well as to support inter-process communica-

tion via message passing (MPI [13]/OpenMP).

While the current approach to program HPC applications

maximizes efficiency, it also forces developers to deal with a

kind of programming experience deeply tangled with low-

level details that in many other areas of software develop-

ment have been abstracted away by high-level languages.

In this paper, we present our ongoing research on increas-

ing the level of abstraction for programming frameworks in

HPC. Our approach stems from the observation that PGAS

languages [10] share a number of similarities with multi-

tier languages [6, 7, 27, 32, 33]. The latter, have been re-

cently explored in combination with managed runtimes (e.g.,

Java and Scala) and reactive abstractions, which promise to

conveniently relieve developers from both manual memory

management and message passing [35, 36]. We present our

preliminary results based on the LULESH HPC benchmark,

and discuss a research roadmap to improve the abstraction

level of current HPC programming frameworks. In summary,

we make the following contributions:

• We analyze multitier programming and reactive pro-

gramming from the perspective of HPC applications

and we show how their combination has the potential

to improve the design of HPC software.

• We perform a case study and showcase this approach

based on the LULESH benckmark, a real world HPC

application consisting of more than 6k lines of C++.

• We identify open problems and we present an outlook

for future research on combining multitier program-

ming and reactive programming for HPC.

The paper is structured as follows. In section 2, we moti-

vate and introduce our approach to apply ScalaLoci to HPC,

present the framework and point out challenges. Section 3

presents a first case study, which highlights necessary future

work. Section 4 shows our preliminary performance results.

Section 5 presents our research plans, section 6 discusses

related work. Section 7 concludes.

2 Multitier Reactives in HPC

In this section, we explain the potential benefits of adopting

multitier reactive programming in HPC, present the frame-
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works we adopt in this paper, and we analyze the challenges

of using these paradigms in the context of HPC.

2.1 A Case for Multiter Reactive Programming

Today’s HPC applications require the development of dis-

tributed software in which components communicate to

exchange partial results of a computation. Explicit handling

of code assigned to each processor and of inter-process com-

munication is error-prone and can severely increase the com-

plexity of applications.

Multitier programming languages enable the joint devel-

opment of distributed system components within one com-

pilation unit. This approach makes the distributed communi-

cation flow more explicit and does not break the distributed

logic of the application at the network boundaries. In addi-

tion, multitier programming reduces the code overhead for

communication, because communication code is injected by

the compiler. This solution allows developers to focus on

the application logic rather than low-level details like data

transmission among hosts.

Ideally, the execution of components in distributed sys-

tems is parallelizable. In this context, flexibility in expected

execution times is crucial to avoid waiting time. Asynchro-

nous communication enables this kind of flexibility. Reactive

programming provides support for asynchronous communi-

cation and it improves code readability regarding execution

and data flows [22].

These observations suggest to combinemultitier languages

and reactive programming for HPC applications. As suitable

multitier language we identified ScalaLoci, because it sup-

ports multitier programming in a high-level language (Scala)

in user-defined, complex system architectures. Moreover,

through the integration of REScala, ScalaLoci features multi-

tier reactive programming across nodes. These two libraries

are briefly introduced in the following.

2.2 ScalaLoci

ScalaLoci [35, 36] is a general purpose multitier language,

which supports various architectures of distributed systems.

Those are specified by peer types, which represent endpoints,

e.g., processes, of the application. Their connections are spec-

ified by so called ties, which setup bindings and their arities

as optional, single or multiple. These are examples for a ho-

mogeneous peer-to-peer and a client-server architecture:

1 // peer-to-peer

2 @peer type Node <: { type Tie <: Multiple[Node] }

3 // client-server

4 @peer type Server <: { type Tie <: Multiple[Client] }

5 @peer type Client <: { type Tie <: Single[Server] }

Based on these peers, ScalaLoci allows the located place-

ment of values and functions using placement types. These

augment a data type with the peer type, on which the value

or function is placed on. At compile time, the code is split

1 // central public information on Server

2 val dailyMsg: String on Server = placed { "It's Friday" }

3 // central local information on Server

4 val secret: String localOn Server = placed { "XD" }

5 // access central information on Client

6 val centralMsg: Future[String] on Client =

7 placed { dailyMsg.asLocal }

8 // access local information, shows error in IDE and does not compile

9 val centralSecret: Future[String] on Client =

10 placed { secret.asLocal } // privacy violation

11 // print hello on a client

12 def sayHi(): Unit on Client = placed{ println("Hello") }

13 // print hello on all clients from server

14 placed[Server] { remote call sayHi() }

Listing 1. ScalaLoci placement types, remote value accesses

and remote procedure calls on a client-server architecture.

up for the various executables of the program along these

types. Moreover, ScalaLoci checks statically, whether remote

function calls and value transports are correct according to

the architecture specification. This makes the dataflow visi-

ble and enforces correctness across processes. Examples for

the placement, remote value accesses and remote procedure

calls are shown in Listing 1.

While ScalaLoci enables the integration of distributed con-

trol flows, recent versions also introduced a module concept.

The modularization can be used to separate sub-systems in

the program from each other. The crucial advantage over

other module systems is that these separation boundaries do

not have to be at the inter-process communication points,

but can be chosen in a problem oriented and domain specific

way to encapsulate a distributed functionality into a single

multitier module.

We see great potential in using ScalaLoci for HPC applica-

tions, because system architecture and modularization can

be performed in a domain specific way, which is much more

intuitive than today’s HPC programming techniques. More-

over, the control and data flow are visible across peers. This

is further improved through reactive abstractions of which

we describe the applied implementation next.

2.3 REScala

REScala [29] is a Scala library, which integrates reactive val-

ues seamlessly with an event system. REScala provides data

types for events (Listing 2) and so called signals (Listing 3).

Events can be used to propagate changes imperatively. Sig-

nals update themselves and propagate changes automatically

whenever one of their functional dependencies changes.

Both abstractions have the advantage of helping the de-

veloper to write encapsulated and composable code, with a

clear visualization of the data flow [30, 31]. Moreover, the

implied update propagation of values can safe a lot of manual

implementation work for the exchange of changing data.

REScala events and signals are available for ScalaLoci and

can be used seamlessly across peers. This enables simple
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1 val fruits = Evt[String]() // Event declaration

2 fruits.observe(println(_))

3 fruits.fire("Apple") // Prints "Apple"

4 fruits.fire("Banana") // Prints "Banana"

Listing 2. REScala event example.

1 val name = Var("Anna") // Signal value declaration

2 val s = Signal {"Hey " + name()} // Dependent signal declaration

3 s.changed.observe(println(_)) // Prints "Hey Anna" directly

4 name.set("Berta") // Prints "Hey Berta"

5 name.set("Chris") // Prints "Hey Chris"

Listing 3. REScala signal example.

implementation of complex data flows in HPC programs.

Thereby, the communication is asynchronous and potentially

allows the implementation of algorithms that do not waste

computational time due to barrier synchronization.

2.4 Challenges of Multitier Reactives

These are the challenges we see for multitier reactive pro-

gramming in HPC.

Architecture Representation. In traditional programming

languages the code that belongs to different peers is de-

veloped separately, forcing the separation of logic at inter-

process communication and introducing error-prone boiler-

plate code for communication. MPI aims to simplify inter-

process communication with a message passing model that

is especially helpful in Single Program Multiple Data (SPMD)

applications. However, this solution addresses processes via

(multidimensional) indexes, which is very abstract and not

related to the underlying architecture of the program. This

complexity can cause undetected and hard-to-debug errors

in the code. In contrast, multitier abstractions allow domain

specific architecture definitions, which improve the under-

standability of the communication code and introduce static

correctness guarantees for inter-process communication.

Asynchronous Control Flow. MPI assumes a coordinated

startup of all processes and is not designed to scale the system

dynamically or support fault-tolerance mechanisms. Tradi-

tionally, most HPC applications do not require those features,

but recent and future hardware developments lead to HPC ap-

plication deployments onto hardware clusters, in which the

probability of a partial hardware failure is higher. Also, the

execution speed variability of today’s hardware processors is

significant. In parallel applications written in a synchronous

style ś like many MPI and OpenMP applications are ś this

leads to wasted computational time at faster CPUs at each

synchronization barrier. Reactive programming can greatly

help addressing these issues, providing abstractions for work

decomposition into asynchronous tasks with asynchronous

communication patterns that can account for varying execu-

tion times on distributed processors and avoid unnecessary

synchronization barriers.

Performance. A disadvantage of a high-level language with

virtualization and garbage collection is that it is usually less

performant than hand-optimized low-level C code. For a first

step, we consider to implement often executed core func-

tions in optimized C and orchestrate them using ScalaLoci

by leveraging the Java Native Interface (JNI). We believe this

might be a valid and practicable compromise to combine the

best of both approaches. In further steps we can also con-

sider heap management optimizations or manual memory

management in the JVM as done for HPC, e.g., in [3].

3 ScalaLoci in HPC

In this section we introduce the LULESH Benchmark and

discuss our implementation of LULESH using the ScalaLoci

multitier programming language.

3.1 The LULESH Benchmark

Livermore Unstructured Lagrangian Explicit Shock Hydrody-

namics (LULESH) [18] is a hydrodynamics proxy applica-

tion [17] developed at Lawrence Livermore National Labora-

tory (LLNL). LULESH is a smaller, but representative exam-

ple of scientific applications in HPC, including the way it

implements numerical algorithms and data transfer among

processors. Initially developed as a problem for the DARPA

UHPC program, which aimed for sustaining the design of

extreme scale computers, it is also commonly used as case

study in HPC software design, e.g., by [15, 16, 21].

LULESH implementations exist for many technologies. In

our work, we refer to the baseline implementation for CPU

based computation in the version 2.0.3. This code is imple-

mented in C++ and supports single-threaded sequential exe-

cution, multi-threaded execution using OpenMP, distributed

execution with MPI, and the combination of these modes.

Thus, it is a suitable reference for various setup sizes.

After initialization, the simulation in LULESH is achieved

by a central main loop. Each iteration simulates a discrete

time step and consists of decentralized calculations for the

state update of the simulated nodes and elements as well as

the size of the simulated time step. The execution terminates

after a predefined timespan has been simulated.

Topology and Communication. LULESH simulates expan-

sion in 3-dimensional space. Thereby, the entire simulation

space is a cube. For shared-nothing parallelization this cube

Figure 1. Grid architecture in the LULESH benchmark.
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is sub-divided into a mesh of hexahedrons, which are ini-

tially equally sized cubes, but deform over time. All processes

simulate one hexahedron, called a domain. The number of

processes n has to be l3, l ∈ N>0.

In each iteration, all processes need to decide on a com-

mon time step, which requires global communication among

all processes. Furthermore, processes exchange node or ele-

ment data with the processes simulating adjacent domains.

Through the 3-dimensional arrangement into planes, rows

and columns, a domain exchanges data with up to 26 other

domains over different communication directions: 6 faces, 12

edges and 8 corners (Figure 1).

3.2 ScalaLoci Implementation

CalcAccelerationForNodes

LagrangeLeapFrog TimeIncrement

LagrangeNodal LagrangeElements
CalcTimeConstraintsForElems

CalcForceForNodes

Main Loop

ApplyAccelerationBoundaryCond...
CalcVelocityForNodes
CalcPositionForNodes

CalcLagrangeElements
CalcQForElems

ApplyMaterialPropertiesForElems
UpdateVolumesForElems

CalcVolumeForceForElems
CalcMonotonicQForElems
CalcMonotonicQForElems

Figure 2. High-level call graph of LULESH.

We ported the main program logic, which contains all

inter-process communication, to ScalaLoci while keeping

the optimized computation kernels in C++. The detailed sep-

aration is visualized in Figure 2, which resembles a high-

level call graph of the baseline LULESH implementation.

The white methods are re-implemented in ScalaLoci, while

the blackmethods are kept inC++ and called via JNI. Thereby,

OpenMP based parallelization is kept in the C++ methods.

Communication Setup. A core advantage of the ScalaLoci

adaption is the explicit definition of the peer architecture.

For the global communication, we define a single Master peer,

while all processes simulating a domain are abstract Worker

peers connected to Master:

1 @peer type Master <: { type Tie <: Multiple[Worker] }

2 @peer type Worker <: { type Tie <: Single[Master] }

Moreover, for each of the possible 26 communication di-

rections, we define a Worker peer. These peers define pairs,

which are directly connected. For each pair the peers have

the same name that indicates the face/edge/corner and the

suffix Pos or Neg for the orientation. For example, the pair for

the communication over faces along the row axis are shown

in Listing 4.

Furthermore, for all 27 possible oriented connection com-

binations, a Domain peer is defined. These types are the instan-

tiated worker processes. Listing 5 shows the peer definition

for one of the 8 corner domains in the simulation space.

1 @peer type FaceRowPos <: Worker {

2 type Tie <: Single[Master] with Single[FaceRowNeg] }

3 @peer type FaceRowNeg extends Worker {

4 type Tie <: Single[Master] with Single[FaceRowPos] }

Listing 4. Example neighborhood peers for LULESH.

1 @peer type CornerPlanePosRowPosColPosDomain <:

2 FacePlanePos with FaceRowPos with FaceColPos with

3 EdgePlanePosRowPos with EdgePlanePosColPos with

4 EdgeRowPosColPos with CornerPlanePosRowNegColNeg {

5 type Tie <: Single[Master] with Single[FacePlanePos]

6 with Single[FaceRowPos] with Single[FaceColPos] with

7 Single[EdgePlanePosRowPos] with

8 Single[EdgePlanePosColPos] with

9 Single[EdRowPosColPos] with

10 Single[CornerPlanePosRowPosColPos] }

Listing 5. Example of a Domain peer for LULESH.

While such explicit definitions require a significant amount

of code, they also grant a significant advantage to developers.

Since all communication channels and their directions are

explicit, communication between adjacent domains can now

be implemented without any syntactic overhead. In addition,

the communication flow is represented explicitly in the code,

helping developers to understand the application logic.

Communication Patterns. For global synchronization af-

ter each main loop iteration, the C++ implementation of

LULESH uses the synchronous MPI_Allreduce function, which

collects values from all domain processes before continu-

ation. Our ScalaLoci implementation instead uses reactive

events, on which each domain publishes its values, and the

master aggregates the worker events to a central event. This

is done for example for the global time step evaluation:

1 val elapsedTime: Evt[Double] on Worker = // [...]

2 def mainIteration(): Unit localOn Worker = placed { // [...]

3 elapsedTime fire duration

4 }

5 val elapsedTimeGlobal: Event[Double] on Master = placed {

6 elapsedTime.asLocalFromAllSeq.fold(/∗ [...] ∗/) { /∗ [...] ∗/ }

7 }

While this code looks in first place more complicated, it

decouples the aggregation communication, which might be

necessary for future optimizations of the program.

For communication between neighbors, the C++ imple-

mentation uses asynchronous MPI message passing func-

tions. However, this requires a lot of dynamic checks, whether

a domain has a neighbor in the direction it wants to commu-

nicate, because there is no explicit architecture definition.

Moreover, the addressing is based on indexes, which is not

intuitive, provides no static correctness guarantees and is as

such potentially error-prone. The explicit peer architecture

in ScalaLoci with peers for each communication direction

improves this by addressing directions by intuitive names,

which makes dynamic checks for partners obsolete, and by

ensuring correctness of the communication pattern statically.
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For instance, the nodal mass value of the adjacent neighbor

located at the face in the positive row direction is transferred:

1 val nmFaceRowPos: Event[Double] on FaceRowPos = // [...]

2 placed[FaceRowNeg].local {

3 nmFaceRowPos.asLocal observe {

4 /∗ Processing with nodal mass from adjacent domain ∗/ }

5 }

This example shows the decoupled communication and visu-

alizes the intuitive way in which communication partners are

addressed in the code. Moreover, through the explicit archi-

tecture specification this implied value transfer is executed

automatically on all workers, which have such a neighbor,

and not deployed to any worker without such a neighbor.

4 Preliminary Performance Evaluation

We evaluate the run time of theC++ LULESH implementation

and our ScalaLoci version. All measurements are taken on a

c5.metal [34] AWS EC2 cloud computing instance with 96

cores of Intel’s Cascade Lake processors at 3.6/3.9 GHz turbo

frequencies, and 192 GB of memory.

We considered the execution in several configurations

AXY and BXY (Table 1) which are defined as follows. Each

configuration defines the number of processes n, the number

of OpenMP threads per process o, the total thread count

t = n · o, the LULESH size parameter s , and the resulting

computational problem size p = n · s3.

Figure 3 shows the results for the configurations defined

in Table 1; less run time is better. Generally, the ScalaLoci

version is slower. For the single process executions, we can

see that the ScalaLoci implementation benefits fromOpenMP

parallelization and is single threaded roughly 4 times slower

than the C++ reference.

For the measurements with 8 processes, both implemen-

tations have increasing run time with higher number of

threads due too OpenMP overhead at smaller per-domain

complexity. Moreover, the inter-process communication is

less efficient for ScalaLoci.

As major bottlenecks in our ScalaLoci adaption we iden-

tified that TCP based communication causes significant

overhead compared to many MPI implementations, for ex-

ample shared-memory communication in this case study. In

contrast to TCP, MPI also enables the usage of faster net-

working standards like Infiniband in computing clusters. To

make use of these techniques, a MPI based communication

backend for ScalaLoci is planed. Immutable objects for the

domain data structure are changed frequently and cause a

lot of short living objects. In this LULESH case study these

objects cause expensive overhead, because the size of the

domain causes the short lived objects to move out of Eden

heap space before they are released again. Therefore, garbage

collection is very expensive. This can be solved with mutable

data structures. JNI calls introduce a small time overhead.

Configuration A01 A02 A08 B01 B04 B12

Processes n 1 1 1 8 8 8

OMP Threads o 1 2 8 1 4 12

Total Threads t 1 2 8 8 32 96

Size Parameter s 20 20 20 10 10 10

Problem Size p 8 k 8 k 8 k 8 k 8 k 8 k

Table 1. Run time evaluation configurations.

.

A01

A02

A08

B01

B04

B12

0 20 40 60
Time [s]

C++
ScalaLoci

Figure 3. Run time results for LULESH.

Bundling of JNI calls and reduction of overhead will be con-

sidered. Alternatively, LLVM based techniques could further

reduce this overhead. The data exchange between C++ and

ScalaLoci is currently inefficient, because data is serialized

and copied in memory for each JNI call. Shared non-manged

memory buffers outside the heap could be accessed directly

by both techniques and reduce this overhead.

5 Outlook

The observations we collected through the LULESH case

study indicate our directions for future work.

Architectures. The LULESH case study adopts a well de-

fined architecture specification, as it is the case for HPC

applications which need to refer to the configuration of the

processors available for data processing. Future work shall

explore how code overhead to express complex architectures

can be reduced while maintaining the same static guarantees,

and how semi-dynamic architecture specifications could help

with this approach.

Communication Patterns. The experience with gained in

the development of the LULESH benchmark suggests that a

set of reusable distributed communication patterns should be

made available. We plan to work on this direction by extend-

ing ScalaLoci. These shall be solutions for load-balancing,

scalability and fault-tolerance for simplified development

of high quality HPC algorithms. Plugin implementations of

these patterns could be provided as ScalaLoci modules.

Automated Placement. Explicit placement like in ScalaLoci

offers the highest level of safety, but might hinder perfor-

mance optimizations based on automatic runtime placement

of computations. We plan to explore controlled and auto-

mated placement of values and functions ś statically at com-

pile time as well as dynamically at run time. Both can also be

leveraged for improvements on load-balancing, scalability

and fault-tolerance.
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Performance Improvements. Language techniques like vir-

tual methods dispatching or GC are common in managed lan-

guages but introduce significant overhead. Yet, we strongly

believe their benefits should be accessible to HPC developers.

We want to combine our approach with native code that is

then integrated into the ScalaLoci programming model. Such

native functions could be generated automatically, e.g., with

Scala Native, or they could be provided by the programmer.

6 Related Work

Wediscuss relatedwork regarding PGAS languages, multitier

programming and reactive programming.

PGAS/APGAS Languages. The Partitioned Global Address

Space (PGAS) model is a parallel programming model similar

to both the shared memory and the message passing com-

munication models. While cooperating processes may not

physically use the same memory space, they can access data

that resides on other processes ś the memory space appears

shared. Remote accesses usually require a special syntax, but,

in contrast to message passing, the actual communication to

access data from a remote memory space is transparent for

programmers. The survey by De Wael et al. [10] classifies

PGAS programming languages.

X10 [5] is an object-oriented programming language from

IBM Research aiming to increase programmer productivity

in HPC. X10 features distribution of arrays over so-called

places, abstractions that define a partitioning of the global

address space. For parallel programming, X10 introduces

asynchronous activities that can be spawned individually or

by using parallel loops. Activities are associated with a place.

Hence remote data can be accessed by spawning on a place

an activity which reads and returns the value or modifies it.

Chapel [4] has a similar data distribution model and sup-

ports both data and task parallelism. The language provides a

more general way of expressing distribution: Besides arrays,

other data structures, like sets or graphs, can be distributed.

In addition to distributed data structures, Fortress [1] fea-

tures constructs for explicit and implicit parallelism. To bring

programs closer to their mathematical counterpart and thus

increase productivity in scientific computing, the Fortress

syntax is designed to adopt unicode characters (e.g., the sum

operator Σ).

Multitier Languages. Multitier languages aim to remove

the separation of code between communicating processes.

In the Web context, this is achieved by compiling the client

code to JavaScript or by using JavaScript on the server, too. In

Links [7] and Opa [28], function annotations specify whether

a function is executed on the client or on the server. Simi-

larly, in StiP.js [25], annotations assign code fragments to

the client or the server. In addition, a program slicing mech-

anism detects dependencies between fragments and the rest

of the program and decides where functionalities are placed.

Ur/Web [6] is a multitier language for the Web similar to

Haskell. Eliom is a multitier extension of ML [26, 27]. Both

assign code placement based on user annotations and check

the correctness of placements in the compiler.

The approaches discussed so far focus on the Web. In-

stead, ML5 [23] is a multitier language for generic software

architectures. Similarly, ScalaLoci is a Scala extension that

supports distributed systems whose architecture is specified

by the user via an architectural specification. The compiler

then checks that the application complies with the specified

architecture.

Functional Reactive Programming. FRP [12] allows the

definition of data flows declaratively and concisely via dis-

crete time-changing values (events) and continuous time-

changing values (signals). The runtime of reactive languages

automatically propagates the changes to dependent values,

which usually form a dependency graph. Over time a number

of variants have been proposed, with different strategies for

the change propagation over the graph. Bainomugisha et al. [2]

provide an overview of the existing solutions.

Flapjax [20] introduced the use of FRP in Web applica-

tions, which has recently inspired a number of reactive li-

braries such as Rx.JS [19] and Bacon.js [24]. REScala [29] in-

tegrates event streams and time-changing values with object-

oriented abstractions. Its runtime provides an event propa-

gation system supporting dynamic dependencies for adding

event queries during the execution.

Recent research on RP focused on different propagation

strategies to achieve properties such as glitch avoidance [8],

efficient propagation over remote network connections [11]

or concurrent propagation in a Web environment [9].

7 Conclusion

In this in paper, we present our ongoing approach to increase

the level of abstraction in HPC programming. We propose

to apply multitier programming and reactive programming

techniques to access complex processor configurations uni-

formly and to specify their communication patterns. Our

work bases on ScalaLoci, which we use for a first case study

based on the LULESH benchmark, and shows that this re-

search has the potential to improve the software design of

HPC applications.
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