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Abstract

High resource utilization is important to operate compute

infrastructures and data centers efficiently. High utilization

is achieved by multiplexing several applications over the

same physical infrastructure. Yet, with this approach, the

different requirements of each application have to be taken

into account when scheduling resources.

We propose GRASS, a reactive domain-specific abstraction

that allows specifying application-tailored resource schedul-

ing policies. We demonstrate how the declarative approach

of GRASS enables extension and composition of scheduling

policies. Our evaluation shows the performance benefits of

considering application-specific information in a composi-

tion of scheduling policies that adapt at run time.
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1 Introduction

Highly virtualized compute infrastructures and data centers

promise high resource utilization and hence low operational

costs by multiplexing various applications over the shared

physical infrastructure. As multiple users can independently

run their applications on a common infrastructure, the users’

demands for each application are likely to be very heteroge-

neous. The availability of such flexible compute infrastruc-

tures is essential to ensure that services can take advantage

of the scalability offered by virtualized data centers still meet-

ing each service quality demands [20].

At the core of a flexible compute infrastructure is the

resource management framework (RMF) of a data center,

which is responsible for assigning the available resources

(i.e., servers, network communication facilities) to users that

execute applications by submitting jobs to the cluster. To

achieve such assignment, the RMF runs a scheduling pol-

icy which selects the best option according to a scheduling

goal, e.g., to minimize queuing time of submitted jobs or to

maximize successfully served jobs. Typically, such an RMF

infrastructure has an event-driven nature. The RMF need

to react to different kinds of events, including resource re-

quests sent by the application and status events provided by

the underlying infrastructure, for example, when resources

become un-/available.

For effective resource scheduling, the RMF should be able

to consider all information available, especially application-

specific information such as how containers of a requesting

application are going to communicate [3]. Furthermore, an

RMF with a fixed scheduling policy is likely to be not op-

timal in every situation [6], which calls for an RMF that

supports dynamically configured scheduling policies. The

recent trend in programmable networking hardware, which

allows running application-specific components on network-

ing devices (e.g., an in-network coordination service [21]),

further increases the need for an RMF with flexible schedul-

ing policies [3]. Unfortunately, developing and testing new

scheduling policies from scratch is non-trivial even for sim-

ple scheduling policies, mainly due to the challenging prob-

lem a scheduling policy has to solve (Section 2.1), but also
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because implementing an RMF with a new scheduling policy

requires non-negligible implementation effort.

In this paper, we propose Generic Reactive Application-

Specific Scheduling (GRASS), which provides high-level ab-

stractions that foster composability and reusability of sched-

uling policies, reducing the hurdles of implementing new

schedulers by allowing to extend and compose existing ones.

Scheduling policies are written in reactive style, which al-

lows schedulers to react to changing application require-

ments and network conditions. GRASS introduces (I) novel

domain-specific abstractions for expressing custom sched-

uling policies. (II) Scheduling policies can make use of in-

heritance for easily extending existing policies, or make use

of (III) run time compositions to dynamically select parts of

exiting scheduling policies. To address the variety of RMF

architectures, we show how to (IV) use GRASS to implement

RMF architectures of various kind, like queue or graph based

schedulers, or schedulers with a distributed architecture. In

summary, this paper makes the following contributions:

• Wepresent GRASS, a language-based approach to spec-

ify application-specific resource scheduling policies

based on reactive programming.

• We show how different scheduling policies can be

implemented based on a common reactive scheduling

interface.

• We outline how our design enables extension and com-

position of scheduling policies.

• We evaluate our approach in an event-based simulator,

demonstrating how the application-aware combina-

tion of different scheduling policies improves perfor-

mance.

The rest of the paper is organized as follows. Section 2

provides an overview over resource scheduling approaches

and introduces reactive programming. Section 3 describes

the design of our approach for specifying scheduling poli-

cies. Section 4 discusses different scheduler architectures

and how our abstractions support them. Section 5 presents

the evaluation. Section 6 discusses related work. Section 7

concludes.

2 Background

In this section, we introduce resource scheduling in cluster

architectures and we present the fundamental concepts in

the reactive programming paradigm.

2.1 Resource Scheduling

A data center resource management framework (RMF) re-

ceives jobs (resource requests) submitted by the user and

data center resources (e.g., CPU, storage, memory) as an in-

put and finds a valid allocation of resources to jobs. In case

there are more jobs awaiting than resources available, some

jobs remain in a queued status and are served later. Preemp-

tion and migration are two common operations performed

by schedulers that allow one to free up resources without

waiting for jobs to complete. Migration allows the scheduler

to move running jobs to different resources without affecting

the execution. Preemption, on the other hand, terminates

the execution of a job completely: A preempted job needs to

be rescheduled at a later point in time.

The RMF performs scheduling with objectives like reach-

ing high data center resource utilization, achieving the low-

est queuing latency, or maximizing the number of fulfilled

resource requests. The data center resource scheduling prob-

lem is usually challenging due to the size of modern data

centers, which can easily comprise a number of servers in

the order of multiple thousands within a large multi-path

network fabric. In addition, the RMF has to deal with a mix of

jobs with different requirements like priority and expected

run time. In order to achieve the target objectives for re-

source scheduling, an RMF should be aware of such aspects,

as well as of the heterogeneity of the resources available in

the cluster [20].

2.1.1 Scheduling Architecture

Motivated by the complexity of the scheduling problem,

RMFs implement different scheduling architectures to tackle

the scheduling problem, mainly centralized, fully distributed,

and offer-based using a two-level architecture, or a hybrid

of these [10, 17, 31, 33, 34]. Figure 1 shows the high-level

interaction of users with the RMF and the resources.

Centralized A centralized RMF consists of a single sched-

uler instance, which holds all the responsibilities of resource

allocation. Before executing the scheduling algorithm, the

scheduler collects information about the resources and the

current requests for the cluster. When a user receives a re-

source token from the scheduler, it can use the token to

allocate resources for its application. A centralized architec-

ture has the advantage of a consistent state across the data

center. Yet, scalability might be an issue even though recent

work shows centralized schedulers with good scalability, e.g.,

Firmament [16].

Two-Level Offer-Based A two-level RMF (e.g., [17]) sepa-

rates the scheduling logic into two phases. (1-2) a (central)

allocator bundles a set of free resources and offers these

resources to one of the many schedulers. (3-4) when a sched-

uler receives requests from users, it uses its resource offers

to run the scheduling logic. As a result, the scheduler either

returns the offered resources to the allocator (if those cannot

be used), or the scheduler hands over resource tokens to the

user so that the resources can be used. During the time a

scheduler owns a resource offer, the allocator cannot hand

over the same resource offer to any other scheduler, i.e., the

two-level architecture uses a pessimistic concurrency model.
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Figure 1. Generic Scheduling Architectures

A two-level scheduler has the advantage to support to

run different scheduler logic at the same time by using dedi-

cated scheduler instances. A drawback is the strict separa-

tion of the running scheduler instances due to the separated

resource offers, i.e., the allocator needs to be aware of all

schedulers and of their internal state (e.g., how many jobs

are queued), in order to make useful resource offers to the

scheduler instances.

Fully Distributed A fully distributed scheduler architec-

ture (e.g., [31]) tries to combine the advantage of running dif-

ferent scheduler logic at the same time by using an optimistic

concurrency model. All schedulers use their own shadow

copy of the data center resources’ state. Each time when

any of the schedulers finds a valid allocation, the schedulers

use a transaction-like protocol to synchronize their state

and to agree on a subset of valid allocations. This optimistic

concurrency model allows running the scheduling logic si-

multaneously on the same set of resources, but with a risk

of allocation conflicts.

Hybrid Architectures Many schedulers do not strictly be-

long to any of the previously mentioned architectures, but

use a modified version or a combination of multiple archi-

tectures. For example, YARN [33] is a centralized scheduler

which also uses a lightweight distributed scheduler respon-

sible for requests of low priority or short duration for each

node-manager (the instance which controls a server).

Hydra [6] is another hybrid scheduler which extends

YARN to split a data center into smaller sub-clusters, each

controlled by a dedicated centralized scheduler. If a job spans

across multiple sub-clusters, the affected schedulers commu-

nicate and share scheduling information.

2.1.2 Scheduling Logic

At the core of an RMF’s scheduler is its scheduling logic,

expressed in the scheduling policy. The existing scheduling

policies (Section 6) differ in their algorithmic design of how

they solve the resource scheduling problem, and also in the

information they consider for the scheduling algorithm.

The algorithmic design either requires the scheduler to

consider all resource requests in each scheduling attempt,

e.g., if the scheduler is transforming the scheduling problem

to a graph problem as in Firmament [16]. Other algorithmic

designs require to consider only a subset of a single resource

request for each scheduling attempt, e.g., if the scheduler is

using a priority queue of pending resource requests.

The most basic set of resource request information is a

set of server resources (e.g., CPU and memory). If there is

no information available of how long a job will be running,

a scheduler needs to do speculative scheduling (e.g., Spar-

row [28]). In contrast, if a resource request contains infor-

mation on how long a job will be running, schedulers can

use this information and run a combinatorial optimization

problem to (approximately) solve the corresponding mixed

integer linear problem (e.g., Firmament [16]). Some sched-

ulers also require knowledge on topological information and

on how the containers of a resource request communicate

for choosing the set of resources (e.g., CloudMirror [22]).

2.2 Reactive Programming

Functional reactive programming (FRP) [12] overcomes the

issues of the Observer design pattern. Observers lack of

composability requiring global variables to propagate state

changes and add have a negative effect on code comprehen-

sion due to inversion of control [24].

FRP allows for data flows to be defined declaratively and

more concisely. When declaring a reactive time-changing

value 𝑣 , the reactive system keeps track of all other reactive

values on which 𝑣 depends. The system updates 𝑣 automati-

cally whenever one of its dependencies changes. Changes are
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propagated through the reactive system until all transitively

dependent values are updated.

In FRP, signals (sometimes referred to as behaviors) repre-

sent continuous time-changing values which are automat-

ically updated by the language runtime. REScala [30] sup-

ports signal expressions for defining time-changing values.

For instance, the signal expression Signal { s1() + s2() }

depends on the signals s1 and s2. The expression is auto-

matically recomputed whenever s1 or s2 changes. Discrete

occurrences of values are represented by events. Events sup-

port various operators for mapping, filtering or merging

event streams and can interoperate with signals. For exam-

ple, the following code merges two event streams e1 and e2,

filters out all negative numbers and folds the discrete stream

into a time-changing value, which contains the sum over all

event occurrences and is updated automatically whenever

one of the events fires:

((e1 || e2) filter { v => v >= 0 }).fold(0) { (acc, v) =>

acc + v

}

3 Implementing Schedulers in GRASS

This section introduces the main features of GRASS. In the

following, we discuss the scheduling of containers across

multiple servers as an example. The proposed abstractions,

however, can be easily extended to other kind of resources

such as network switches.

We first describe the reactive scheduling interface used

by developers to implement scheduling policies (Section 3.1)

and provide an insight into how resource allocation is man-

aged internally by the runtime by composing reactive values

(Section 3.2). Second, we present examples for two different

scheduling policies and show how they can be implemented

using the reactive scheduling interface (Section 3.3 and 3.4).

Last, we demonstrate how schedulers can be extended and

how different schedulers can be composed, reusing existing

scheduler policies (Section 3.5).

3.1 Reactive Scheduling Interface

The GRASS domain-specific abstractions for defining sched-

uling policies is based on a reactive interface to interact with

both the application layer and the network controller. Sched-

uling policies specify resource allocation. Listing 1 shows

the representation of resources. A Container is represented

by a unique identifier and the resources it requires to be exe-

cuted. A Resource can be uniquely identified and provides

a specific amount of virtual CPU cores (cpu) and memory

(memory ś counted in megabytes).

Applications must be assigned resources prior to being

executed. By sending a resource request (ResourceRequest)

to the scheduler, applications tell the scheduler about the re-

source requirements (ResourceRequirement) they have, i.e.,

how many CPU cores and memory they need per container.

Listing 1. Resource representation.

1 case class Container(id: ContainerId,

2 res: ResourceRequirement)

3 case class Resource(id: ResourceId, cpu: Int, memory: Int)

4 case class ResourceRequest(id: ApplicationId,

5 requirements: List[ResourceRequirement])

6 case class ResourceRequirement(cpu: Int, memory: Int)

Listing 2. Reactives runtime interface.

1 val allResources: Signal[List[Resource]]

2 val freeResources: Signal[List[Resource]]

3 val allocs: Signal[List[(ResourceRequest, List[(Container,

4 Option[Resource])])]]

5 val requestResource: Event[ResourceRequest]

6 val shutdownContainer: Event[Container]

If, for example, an application comprises three containers, the

list will contain three instances of ResourceRequirement,

one for each container.

The scheduler runtime provides a set of time-changing

reactive values that can be used to gather information about

available resources and resource allocations (Listing 2). The

signal allResources provides a list of all available resources,

while freeResources only provides a list of available re-

sources. These signals are constantly updated by the runtime

whenever new resources are added to or removed from the

system andwhen resources are allocated or freed. The former

allows modeling various real-world scenarios including fail-

ing resources or putting resources into maintenance mode.

The allocs signal provides information about resource al-

locations. For each resource request, it provides a mapping

between each container and the resource this container is

allocated to. We use an Option for the resource to be able

to express that a container has not been allocated yet. Fi-

nally, the requestResource event is triggered whenever an

application requests resources from the scheduler.

All scheduler implementations need to adhere to the in-

terface shown in Listing 3. A scheduler is implemented in

terms of four events, assign, reject, migrate and preempt,

which are the most basic events shared among all common

scheduling approaches. Based on this common interface,

different schedulers ś as described in Section 2.1.1 ś can

be implemented. These events are handled by the sched-

uler runtime to update the current resource allocations. An

assign event is fired to instruct the scheduler to allocated a

specific resource for a container. The reject event allows

rejecting a container from being allocated to any resource.

The migrate event allows migrating a container from one

resource to another and preempt allows stopping the execu-

tion of a container and free its resources.
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Listing 3. Scheduler interface.

1 trait Scheduler {

2 val assign: Event[(Container, Resource)]

3 val reject: Event[Container]

4 val migrate: Event[(Container, Resource, Resource)]

5 val preempt: Event[(Container, Resource)]

6 }

3.2 Scheduler Runtime

The internal implementation of the scheduler runtime that

processes the events defined as part of the scheduler pol-

icy (assign, reject, migrate and preempt) is presented in

Listing 4. The mapAlloc methods changes the resource as-

sociated to container from from to to for the given list

of resource allocations (Line 4). The implementation of the

allocs signal computes the list of all containers and their

associated resources for every resource request (Line 1). The

signal is implemented as a fold over the event streams from

the application (Line 15 and 20) and the scheduler (Line 20,

29, 32 and 35).

Every requestResource event adds the new resource re-

quest to the allocation list and associates every requested

container with None (Line 17), i.e., newly requested contain-

ers are initially not allocated. The change of the allocs

signal will automatically propagate to the scheduler, which

is responsible for finding an allocation. The reject and the

shutdownContainer event (Line 20) remove containers from

the list of allocations. The association of a given container

to a given resource is added, changed or removed for the

assign, migrate or preempt events, respectively.

Next, we demonstrate how the abstractions provided by

GRASS can be used to implement different schedulers with

varying complexity.

3.3 Greedy Scheduler

Listing 5 shows an example implementation of a greedy

scheduling algorithm. The greedy scheduler tries to allocate

the first container that is not yet allocated to some free re-

source. It will never migrate, preempt or reject for allocating

a container. The implementation therefore just implements

the assign event (Line 6). Whenever the current resource

allocations or the set of available resources change (Line 7),

we first collect all containers that have not yet been allocated

(Line 10). In the next step the containers are sorted by some

criteria (Line 11). This step is optional but provides more flex-

ibility. For example, by sorting the containers based on the

amount of resources they require, it is possible to schedule

the largest or the smallest containers first. For each con-

tainer, we try to find a resource that has enough capacity to

run the container (Lines 12ś16). The find operation on the

freeResources signal returns an Option, where None indi-

cates that no resource is available that fulfills the resource

requirements of the respective container. Finally, we select

Listing 4. Runtime implementation of allocs.

1 type Alloc = (ResourceRequest, List[(Container,

2 Option[Resource])])

3

4 def mapAlloc(allocs: List[Alloc])(container: Container,

5 from: Option[Resource], to: Option[Resource]) =

6 allocs map { case (request, jobAllocs) =>

7 request ❂> (jobAllocs map {

8 case (❵container❵, ❵from❵) => container ❂> to

9 case alloc => alloc

10 })

11 }

12

13 val allocs: Signal[List[Alloc]] =

14 Events.foldAll(List.empty[Alloc])(allocs => Events.Match(

15 requestResource >> { request =>

16 (request ❂> (request.requirements map { requirement =>

17 Container(requirement, createId()) ❂> None

18 })) :: allocs

19 },

20 (shutdownContainer || reject) >> { container =>

21 (allocs

22 map { case (request, jobAllocs) =>

23 request ❂> (jobAllocs collect {

24 case jobAlloc @ (❵container❵, _) => jobAlloc

25 })

26 }

27 filter { case (_, jobAllocs) => jobAllocs.nonEmpty })

28 },

29 assign >> { case (container, res) =>

30 mapAlloc(allocs)(container, None, Some(res))

31 },

32 migrate >> { case (container, from, to) =>

33 mapAlloc(allocs)(container, Some(from), Some(to))

34 },

35 preempt >> { case (container, res) =>

36 mapAlloc(allocs)(container, Some(res), None)

37 }

38 ))

the first container for which a free resource exists (Lines 17ś

19). For the case that no free resources or containers which

have not been allocated exist, the flatten operator prevents

the assign event from being fired (Line 20).

3.4 Preemptive Scheduler

The preemptive scheduler implementation shown in Listing 6

tries to prevent starvation by preempting containers for free-

ing additional resources if the available resources are not

sufficient. The assign event is again triggered by a change

in the resource allocations or the available resources (Line 6).

In this example, the scheduler always tries to schedule the

largest container (Line 10), which has not been allocated yet

(Line 9). Which criteria is used is omitted from the listing for

brevity, but for example, it could be the number of virtual

CPU cores required. The scheduler always tries to allocate a

container to the largest free resource (Lines 11ś17).
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Listing 5. Greedy scheduler implementation.

1 class GreedyScheduler extends Scheduler {

2 val migrate = Event.empty

3 val preempt = Event.empty

4 val reject = Event.empty

5

6 val assign: Event[(Container, Resource)] =

7 ((allocs.changed || allResources.changed) map { _ =>

8 (allocs()

9 flatMap { case (_, jobAllocs) => jobAllocs }

10 collect { case (container, None) => container }

11 sortBy { /* sort to some criteria */ }

12 map { container =>

13 container ❂> (freeResources() find { res =>

14 res >= container.res

15 })

16 }

17 collectFirst {

18 case (container, Some(res)) => container ❂> res

19 })

20 }).flatten

21 }

The preemption logic is implemented similar to the as-

signment logic (Lines 20ś38). In case there are no resources

to allocate the largest container that is not allocated yet,

the code picks a container that is currently allocated on the

largest free resource and shuts it down preemptively, freeing

resources for allocating the largest container. After preemp-

tion, the runtimewill update the allocs signal, which causes

the scheduling policy to be re-executed. The scheduler will

then either allocate the largest container or preempt another

already allocated container to free more resources.

3.5 Composing Schedulers

We can easily extend the functionality of existing sched-

ulers by refining the definition of the event streams of the

Scheduler interface. For example, Listing 7 shows how we

reuse the PreemptiveScheduler implementation to prevent

starvation, but using a less aggressive from of preemption.

Line 2 instantiates the PreemptiveScheduler, which was

previously described.We define a usePreemption signal that

changes automatically whenever the number of available

resources changes. In the example, we specify a policy where

preemption is used only if resource utilization is above 80 %

(Line 3), i.e., the preempt event is filtered based on the value

of the usePreemption signal.

We further support dynamic composition of different sched-

ulers, which allows switching between scheduling policies

at run time. Listing 8 shows a scheduler that either uses

the greedy or the preemptive policy. The implementation

instantiates both the GreedyScheduler (Line 2) and the

PreemptiveScheduler (Line 3). The code defines a metric

(left out for brevity) for switching between both scheduler

Listing 6. Preemptive scheduler implementation.

1 class PreemptiveScheduler extends Scheduler {

2 val migrate = Event.empty

3 val reject = Event.empty

4

5 val assign: Event[(Container, Resource)] =

6 ((allocs.changed || allResources.changed) map { _ =>

7 (allocs()

8 flatMap { case (_, jobAllocs) => jobAllocs }

9 collect { case (container, None) => container }

10 maxByOption { /* sort to some criteria */ }

11 flatMap { container =>

12 val res = freeResources().max

13 if (res >= container.res)

14 Some(container ❂> res)

15 else

16 None

17 })

18 }).flatten

19

20 val preempt: Event[(Container, Resource)] =

21 ((allocs.changed || allResources.changed) map { _ =>

22 (allocs()

23 flatMap { case (_, jobAllocs) => jobAllocs }

24 collect { case (container, None) => container }

25 maxByOption { /* sort to some criteria */ }

26 flatMap { container =>

27 val res = freeResources().max

28 if (res >= container.res)

29 None

30 else

31 (allocs() flatMap { case (_, jobAllocs) =>

32 jobAllocs collectFirst {

33 case (container, Some(❵res❵)) =>

34 container ❂> res

35 }

36 }).headOption

37 })

38 }).flatten

39 }

Listing 7. Scheduler extension.

1 class LessPreemptiveScheduler extends Scheduler {

2 val ps = new PreemptiveScheduler

3 val usePreemption = Signal {

4 freeResources().sum / allResources().sum > 0.8

5 }

6

7 val assign = ps.assign

8 val reject = ps.reject

9 val migrate = ps.migrate

10 val preempt = ps.preempt filter { _ => usePreemption() }

11 }

(Line 5) and chooses the scheduler depending on this metric

(Line 6). The assign, reject, migrate and preempt events

are forwarded to the chosen scheduler.
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Listing 8. Scheduler composition.

1 class AdaptiveScheduler extends Scheduler {

2 val greedyScheduler = new GreedyScheduler

3 val preemptiveScheduler = new PreemptiveScheduler

4

5 val switch: Signal[Boolean] = Signal { ... }

6 val scheduler: Signal[Scheduler] = Signal {

7 if (switch()) greedyScheduler else preemptiveScheduler

8 }

9

10 val assign = (Signal { scheduler().assign }).flatten

11 val reject = (Signal { scheduler().reject }).flatten

12 val migrate = (Signal { scheduler().migrate }).flatten

13 val preempt = (Signal { scheduler().preempt }).flatten

14 }

4 Building Resource Management
Frameworks with GRASS

RMFs exist with a variety of architectures (e.g., centralized,

two-level, distributed), using different internal scheduler

designs (e.g., using a queue for pending requests or a graph

which holds all requests), and considering a different set of

available information about jobs and resources (e.g., with

topology awareness of servers or with knowledge about the

expected duration of a job at the time of submitting the job to

the RMF). In the following, we show how Generic Reactive

Application-Specific Scheduling (GRASS) supports building

an RMF of these kinds.

4.1 Scheduler Architecture

The most simple architecture is a centralized architecture,

where a single scheduler policy is performing the resource

scheduling of an RMF (Section 2.1). For a centralized ar-

chitecture, like the one used by (the very first version of)

YARN [33], the GRASS runtime has a data-center-wide view

of the resources and jobs and is therefore able to update the

signals.

A more complex architecture is the two-level architecture,

like the one used by Mesos [17]. In such an RMF, the GRASS

runtime serves multiple scheduling policies. The two-level

architecture is based on a pessimistic concurrency model,

hence before a scheduling policy is able to use resources for

scheduling purpose, an allocator component (Section 2.1)

sends resource offers to a scheduling policy (making these

resources available for scheduling purpose). GRASS supports

two ways of realizing a two-level architecture. A straightfor-

ward implementation uses the GRASS runtime to act as the

allocator, i.e., making the decision of which policy gets which

resources in its allResources and freeResources signal. A

drawback of this approach is that none of the scheduling poli-

cies could influence the decision of which resources are going

to which scheduling policy. GRASS, however, also allows to

delegate the allocator component to a composition of sched-

uler policies. This brings the benefit that allResources and

freeResources contain all data-center-wide resources, al-

lowing the composition of scheduler policies to consider

policy-specific objectives when performing the allocation

logic.

The distributed architecture, like the architecture used by

Omega [31], implements an optimistic concurrency model.

Similar to the two-level architecture, multiple scheduling

policies run at the same time. However, instead of using an

allocator component (two-level architecture) which sends

resource offers, each scheduling policy considers (always) all

resources when performing scheduling. This could lead to

potential conflicts of scheduling decisions (when scheduling

policies compete for the same resources). GRASS supports

two approaches of resolving scheduling conflicts. A simple

solution is to delegate the resolution logic to the GRASS

runtime, which hides it from the scheduling policies. A better

approach would leave the resolve logic to the composiion

of scheduling policies, allowing to consider more policy-

specific objectives when resolving allocation conflicts.

4.2 Scheduler Designs

The resource scheduling problem itself, i.e., considering a

set of available resource and making the allocation decisions

of which job gets which resource share, is a computationally

expensive problem due to several factors like the number of

involved jobs and resources (Section 2.1). This is why RMFs

use scheduler designs which transform the problem to a prob-

lem of less complexity. In general, there are two approaches

how the scheduling logic solves the scheduling problem.

Either the scheduler considers all jobs when performing a

scheduling attempt, or the scheduler considers only a small

subset of all jobs or a single job for each scheduling attempt.

Firmament [16] transforms the resource scheduling prob-

lem into a graph problem where it solves a min-cost max-

flow problem, i.e., Firmament needs to consider all jobs for

each scheduling attempt. Sparrow [28] shows the opposite

and considers only a single job for each scheduling attempt,

simply by using a queue which orders jobs for processing.

TheGRASS runtime provides the list of allocations allocs,

which also holds entries for each newly arrived resource re-

quest (Section 3.2), which allows a scheduling policy to build

up the internally required representation of requesting jobs

to run its scheduling logic, like building a queue of demand-

ing jobs or updating a graph each time a job arrives.

4.3 Extending Resources and Requests

Akey aspect of GRASS is the possibility to design application-

specific scheduling policies. Application-specific policies

bring the advantage to come up with scheduling policies that

consider special requirements or preferences when selecting

resources specifically for each individual resource request.

The GRASS runtime provides the resource requirements of

each request using a ResourceRequirement, and the details

about all data center resources using Resource (Section 3).
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This interface can be easily extended to support for exam-

ple topology-aware scheduling policies like Kraken [15] or

CloudMirror [22].

To support topology-aware scheduling policies, we ex-

tend Resource with the resource location in the data center,

which could be a reference to a graph representation. Typical

use case for using topological information of resources are to

check the distance between two resources or to check which

resource belongs to which availability zone [16].

For scheduling policies which require the application to

include a topology in a resource request, we further extend

ResourceRequirement with a notion of how the requested

containers want to communicate. Typical representations

use a virtual cluster abstraction, which gives the requesting

application the illusion of connecting containers to a single

centralized switch with guaranteed bandwidth capacity [15].

A more flexible representation uses a directed graph of con-

tainer groups, which allows for expressing more fine-grained

communication patterns of the requested containers [22].

The GRASS runtime is not restricted to any of these repre-

sentations by simply extending ResourceRequirementwith

the required information.

5 Evaluation

The objective of the evaluation is to assess how implement-

ing different scheduling policies according to the application

requirements and changing between these policies at run

time influences the resource scheduling performance. We

evaluated different resource schedulers implemented with

GRASS in a discrete event-based simulator, similar to the

Omega simulator [31]. The simulator simulates the data cen-

ter resources and the users which send jobs, i.e., resource

requests, and runs the scheduler providing the scheduling

logic. The workload generator uses a trace of a Google data

center [29] comprising 12 500 servers over about a month-

long period. The trace contains information about the time

when a resource request occurred and various details about

the resource request itself, e.g., which resources have been re-

quested. For this paper, we scaled the trace down to a cluster

with 500 machines and ran a simulation of 48 hours. When

a scheduler performs a scheduling attempt, we set the think

time of the scheduler as a function of the number of con-

tainers a job (resource request) contains. This is a common

scheme to evaluate the performance of data center resource

schedulers [16, 31].

Setup We evaluated three different schedulers. The greedy

scheduler without any preemption (Section 3.3), an preemp-

tive scheduler that always preempts running jobs if the cur-

rently considered job cannot be scheduled (Section 3.4), and

an adaptive scheduler that preempts other jobs depending on

the overall data center resource utilization with different up-

per and lower utilization thresholds (Section 3.5). The latter
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Figure 2. Comparison of different scheduling policies.

was evaluated using five different configurations. The sched-

uler switched to preemptive scheduling if the resource uti-

lization𝑢 was 1.𝑢 ≤ 80% 2. 80% ≤ 𝑢 ≤ 99% 3. 90% ≤ 𝑢 ≤ 99%

4. 96% ≤ 𝑢 ≤ 99% and 5. 98% ≤ 𝑢 ≤ 99%.

In each experiment, we run the exact same workload (re-

source requests) using a different configuration of the sched-

uler that is responsible for doing resource scheduling. We

repeated each experiment 11 times, each time using a dif-

ferent seed, where the seed determines which subset of the

overall trace is used. As a metric, we take the number of

completed jobs, i.e., jobs that got all requested resources and

finished their container workload, and the number of pre-

empted allocations, i.e., the number of allocations that the

scheduler preempted during scheduling. Depending on the

objectives of the RMF, a scheduling policy might optimize for

a lower number of preempted allocations (since preempted

containers might loose processing progress), and/or a higher

number of completed jobs. This paper proposes not a specific

scheduler logic, but rather a generic way of expressing com-

posites of different scheduling logic using GRASS. Hence,

we show how a combination of scheduling policies changes

the performance characteristics of the involved scheduling

policies.

Evaluaton Results Figure 2 shows both, the number of

preempted allocations as well as the number of completed

jobs for the different scheduling policies. All results are nor-

malized to the experiment when the preemptive scheduler

is running. For adaptive preemption, the numbers indicate

the minimum and maximum data center resource utilization

for which preemption is performed (if necessary).

The preemptive scheduler achieves two times more com-

pleted jobs, at the cost of more preemptions. The adaptive

preemption scheduler with an upper threshold of 80 % shows
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the same performance as the greedy scheduler, hence pre-

emption does not get triggered in this experiment when data

center utilization is below 80 %.

The adaptive preemption schedulers that start preemp-

tion if data center utilization is above 80% show more pre-

emptions than the other schedulers, but also achieve higher

numbers in completed jobs. Finding the best configuration

of the adaptive scheduler should be a run time task, in or-

der to be able to consider the ongoing performance char-

acteristics and constraints given by the resource requests.

GRASS allows such a design to build an RMF tailored to

the application-specific requirements with a composition of

scheduling policies that adapt at run time.

6 Related Work

This section discusses related work both in the field of data

center resource scheduling and reactive programming.

6.1 Data Center Resource Scheduling

Data center resource scheduling is a very active research

area over the last years [20]. Different scheduler architec-

tures have been proposed, including two-level [17], central-

ized [33] and distributed schedulers [4, 6, 8, 31, 34]. Another

line of research focuses on the information on which sched-

ulers rely to make scheduling decisions, (e.g., run time es-

timates [16, 19, 32], speculative resource assignment [28])

or the optimization strategy (e.g., guaranteeing network

bandwidth among allocated containers [2, 15]). Some sched-

ulers combine multiple aspects of the before-mentioned as-

pects [9, 10]. GRASS unifies all these different aspects of

resources schedulers in a single language.

A recent distributed RMF, Hydra [6], allows for changing

the used scheduling policy at run time using an interceptor

design pattern, but is restricted to run only one scheduling

policy at the same time for each sub-cluster of a data center.

The compositionality of GRASS allows for capturing both

dimensions in the scheduler implementation.

6.2 (Functional) Reactive Programming

FRP ś introduced by Elliott and Hudak [12] to define vi-

sual animations in a declarative style ś has been applied to

various areas including robotics [18], wireless sensor net-

works [26] and network switch programming [14]. While

FRP is traditionally defined over continuous time and is

given denotational semantics [1, 27], some languages devi-

ate from the purely functional approach, e.g., resulting in an

FRP-like abstractions defined over discrete time [30]. User in-

terfaces are an especially popular field of application for FRP.

Flapjax [24] is a JavaScript-based language for implement-

ing client-side user interfaces of web applications. Other

approaches like Elm [7], a purely functional language, com-

pile to JavaScript. Reactive Extensions offer abstractions for

event streams and are available for a number of languages,

e.g., RxScala, RxJava or RxJS.

Similar to our approach of specifying resource schedul-

ing policies by leveraging reactive programming, FRP has

been applied to compute the operator placement for complex

event processing operators [36]. Recent research on RP fo-

cuses on issues such as concurrency [11], fault tolerance [25],

distribution [35, 37], different levels of consistency [23] and

the application to areas such as autonomous vehicles [13]

and IoT and edge computing [5].

7 Conclusion

In this paper, we presented GRASS, a programmable re-

source management framework that allows the definition

of application-specific resource scheduling policies via a

domain-specific abstractions. The abstractions are based on

reactive programming, enabling the declarative specification

of scheduling policies which react to changing application

requirements as well as changing network conditions.

We demonstrated how our language design supports ex-

tension and composition of scheduling policies, simplifying

the implementation of application-tailored schedulers and

improving their performance.
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