
Tutorial: Developing Distributed Systems
with Multitier Programming

Pascal Weisenburger
Technische Universität Darmstadt

Darmstadt, Hessen, Germany

weisenburger@cs.tu-darmstadt.de

Guido Salvaneschi
Technische Universität Darmstadt

Darmstadt, Hessen, Germany

salvaneschi@cs.tu-darmstadt.de

ABSTRACT

Developing distributed systems is a complex task that requires to

program different peers, often using several languages on different

platforms, writing communication code and handling data serializa-

tion and conversion.

We show how the multitier programming paradigm can alleviate

these issues, supporting a development model where all peers in the

system can be written in the same language and coexist in the same

compilation units, communication code is automatically inserted

by the compiler and the language abstracts over data conversion

and serialization. We present multitier programming abstractions,

discuss their applicability step by step for the development of small

applications and discuss larger case studies on distributed stream

processing, like Apache Flink and Apache Gearpump.

CCS CONCEPTS

· Software and its engineering → Distributed programming

languages; Domain specific languages; · Theory of computation

→ Distributed computing models.

KEYWORDS

Distributed Programming, Multitier Programming, Reactive Pro-

gramming, Placement Types, Scala

ACM Reference Format:

Pascal Weisenburger and Guido Salvaneschi. 2019. Tutorial: Developing

Distributed Systems with Multitier Programming. In DEBS ’19: The 13th ACM

International Conference on Distributed and Event-based Systems (DEBS ’19),

June 24–28, 2019, Darmstadt, Germany. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3328905.3332465

1 SCALALOCI

In this tutorial, we present the programming style for distributed ap-

plications using the multitier programming paradigm [1, 3, 6], which

provides mechanisms to abstract over common tedious and error-

prone issues of distributed systems development, including network

communication, data conversions, and multi-language development.

The multitier approach allows a distributed program to be de-

veloped as a single code base generating the code specific to each

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DEBS ’19, June 24–28, 2019, Darmstadt, Germany

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6794-3/19/06.
https://doi.org/10.1145/3328905.3332465

component of the distributed system ś including communication

code ś automatically during compilation.

In the tutorial, we adopt ScalaLoci [7], a recent multitier lan-

guage designed as a Scala DSL. ScalaLoci provides placement types

to associate data and computations to locations. Developers can

control the placement by representing the different components

of the distributed system at the type level. In contrast to existing

multitier languages, ScalaLoci goes beyond the Web domain and the

clientśserver model and enables static reasoning about placement.

Also, ScalaLoci supports multitier reactives ś placed abstractions for

reactive programming [2, 4, 5] ś which let developers compose data

flows spanning over multiple distributed components.

2 TUTORIAL CONTENT

The goal of the tutorial is twofold. On the one hand, we would like

to introduce the audience to the general philosophy of multitier

programming, showing which fundamental abstractions in this par-

adigm help programmers to attack the complexity of distributed

systems. On the other hand, we would like to concretely guide

the audience through the steps of developing an application with

ScalaLoci, enabling the attendees of the tutorial to start adopting

ScalaLoci for simple projects.

The structure of the tutorial includes three parts.

Multitier programming philosophy and abstractions. In this part

we provide an introduction to the design of ScalaLoci. We first cover

the general philosophy of developing distributed applications with

multitier programming. We discuss the development of multiple

peers in the same compilation unit, placement of data and placement

of processing functions, and multitier event-oriented communica-

tion for coordination. Second, we provide an overview of the main

abstractions offered by ScalaLoci and how they can be combined

in complex applications. These include placement types, multitier

streams, remote blocks, and architecture specifications.

Getting started with multitier programming. This tutorial unit

covers the practical details of starting developing applications with

ScalaLoci. First, we discuss how to get started with a ScalaLoci

project and the generated deployment units. Second we demonstrate

how to develop a distributed application by using ScalaLoci step

by step. To this end, we use small applications, which are grown

incrementally during the presentation, like a minimal online chat, a

distributed tweet processing application and a system with a ring

topology that passes tokens along the ring.

Multitier programming case studies. The third part of the tutorial

discusses how to apply multitier programming to larger applications.

Because of the size of these applications, in the tutorial, we only

1



DEBS ’19, June 24–28, 2019, Darmstadt, Germany Pascal Weisenburger and Guido Salvaneschi

cover the main aspects of refactoring them tomultitier programs and

the design improvements achieved in the process. We consider two

stream processing applications, Apache Flink and Apache Gearpump.

In both cases, multitier programming raises the level of abstraction

hiding, e.g., communication details, makes the software architec-

ture explicit, and improves safety, replacing a number of potential

runtime failures with compile time checks.

Some further topics will be discussed based on time availability

and interest of the audience, including the ScalaLoci fault tolerance

model and formal models for multitier programs.

3 EXPECTED OUTCOME

The expected outcome of the tutorial is that attendees understand the

principles of developing distributed systems with multitier program-

ming and are able to start the development of simple applications

based on the ScalaLoci multitier language right away.

4 REQUIRED BACKGROUND

The tutorial does not require any special background. It may fit into

a lecture on programming distributed systems in a Master class of

a CS course. ScalaLoci is based on Scala, but the tutorial does not

require specific Scala knowledge. The Scala syntax will be explained

when needed, especially in the aspects that differ from Java. Basic

programming skills in a high-level language (e.g., Scala/Java) are

necessary to follow the code examples.

5 PRIOR EXPERIENCE

The authors gave a talk on multitier programming for distributed

systems in ScalaLoci at the REBLS workshop in 2016 and at the

OOPSLA conference in 2018. A demo on the same topic has been

given at the <Programming> conference in March 2019.

6 ABOUT THE AUTHORS

Pascal Weisenburger. Pascal is a PhD student at the Technical Uni-

versity of Darmstadt. His research interests focus on programming

language design, in particular multitier programming, reactive pro-

gramming and event-based systems. He is the main developer of the

ScalaLoci multitier programming language. His recent publications

appear in the OOPSLA conference and in the ECOOP conference.

Guido Salvaneschi. Guido is an assistant professor at the Tech-

nical University of Darmstadt. His current research interests focus

on programming language design of reactive applications, such

as event-based languages, dataflow languages and functional reac-

tive programming. His work includes the integration of different

paradigms, incrementality and distribution. He obtained his PhD

fromDipartimento di Elettronica e Informazione at Politecnico di Mi-

lano, under the supervision of Prof. Carlo Ghezzi with a dissertation

on context-oriented programming and language-level techniques

for adaptive software. He has co-organized the REBLS workshop

at SPLASH for several years and has been program chair of the

<Programming> conference. Some of Guido’s recent publications

appear in OOPSLA, PLDI, ECOOP, ICFP, FSE, ICSE and DEBS.

ACKNOWLEDGMENTS

This work has been supported by the German Research Foundation

(DFG) within the Collaborative Research Center (CRC) 1053 MAKI

and 1119 CROSSING, by the DFG projects SA 2918/2-1 and SA 2918/3-

1, by the Hessian LOEWE initiative within the Software-Factory 4.0

project, by the German Federal Ministry of Education and Research

and by the Hessian Ministry of Science and the Arts within CRISP,

and by the AWS Cloud Credits for Research program.

REFERENCES
[1] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007. Links: Web

Programming Without Tiers. In Proceedings of the 5th International Conference on
Formal Methods for Components and Objects (FMCO’06). Springer-Verlag, Berlin,
Heidelberg, 266ś296. http://dl.acm.org/citation.cfm?id=1777707.1777724

[2] A. Margara and G. Salvaneschi. 2018. On the Semantics of Distributed Reactive
Programming: The Cost of Consistency. IEEE Transactions on Software Engineering,
(TSE) 44, 7 (July 2018), 689ś711. https://doi.org/10.1109/TSE.2018.2833109

[3] Matthias Neubauer and Peter Thiemann. 2005. From Sequential Programs to Multi-
tier Applications by Program Transformation. In Proceedings of the 32Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’05).
ACM, New York, NY, USA, 221ś232. https://doi.org/10.1145/1040305.1040324

[4] Guido Salvaneschi, Patrick Eugster, and Mira Mezini. 2014. Programming with
Implicit Flows. Software, IEEE 31, 5 (Sept 2014), 52ś59. https://doi.org/10.1109/MS.
2014.101

[5] G. Salvaneschi, S. Proksch, S. Amann, S. Nadi, and M. Mezini. 2017. On the Positive
Effect of Reactive Programming on Software Comprehension: An Empirical Study.
IEEE Transactions on Software Engineering, (TSE) PP, 99 (2017), 1ś1. https://doi.
org/10.1109/TSE.2017.2655524

[6] Manuel Serrano, Erick Gallesio, and Florian Loitsch. 2006. Hop: A Language
for Programming the Web 2.0. In Companion to the 21th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, Peri L. Tarr andWilliam R.
Cook (Eds.). ACM, 975ś985. https://doi.org/10.1145/1176617.1176756

[7] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Distributed
System Development with ScalaLoci. Proceedings of the ACM on Programming
Languages 2, OOPSLA ’18’, Article 129 (2018).

2


	Abstract
	1 ScalaLoci
	2 Tutorial Content
	3 Expected Outcome
	4 Required Background
	5 Prior Experience
	6 About the Authors
	Acknowledgments
	References

