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Reactive Programming Technology
Technische Universität Darmstadt

Darmstadt, Germany
koehler@cs.tu-darmstadt.de

Guido Salvaneschi
Reactive Programming Technology
Technische Universität Darmstadt

Darmstadt, Germany
salvaneschi@cs.tu-darmstadt.de

Abstract—
Reactive programming languages and libraries, such as Reac-

tiveX, have been shown to significantly improve software design
and have seen important industrial adoption over the last years.
Asynchronous applications – which are notoriously error-prone
to implement and to maintain – greatly benefit from reactive
programming because they can be defined in a declarative style,
which improves code clarity and extensibility.

In this paper, we tackle the problem of refactoring existing
software that has been designed with traditional abstractions
for asynchronous programming. We propose 2RX, a refactoring
approach to automatically convert asynchronous code to reactive
programming. Our evaluation on top-starred GitHub projects
shows that 2RX is effective with common asynchronous constructs
and it can provide a refactoring for 91.7% of their occurrences.

Keywords-refactoring; asynchronous programming; reactive
programming; Java;

I. INTRODUCTION

Asynchrony is essential for long-running tasks or computa-
tions that involve intensive CPU load or I/O, such as network
communication and database access. Hence, asynchronous
programming has become more and more important over
the last years to allow a large class of software – Web
applications (e.g., with AJAX), mobile apps, or Internet-of-
Things applications – to stay responsive to user interaction
and to environmental input. Also, in a number of cases like
event driven scenarios, where event streams originate from
touch screens, GPS, or sensors, asynchrony is the natural pro-
gramming model as events can be processed concurrently [1].

Most programming languages offer means for developers
to define asynchronous computations. A widespread solution
is to fork concurrent asynchronous executions using basic
thread/process mechanisms, e.g., with java.lang.Thread in
Java. However, this approach is very low level and com-
plicates the communication with the main thread. For this
reason, modern programming languages provide abstractions
for asynchronous computations. For example, C# provides
the async and await keywords, and the Java concurrency
package has been continuously enhanced through various Java
releases to support high level abstractions such as Futures and
the Fork/Join execution model [2]. Similarly, popular libraries
provide their own constructs for asynchronous computations,
such as AsyncTask for Android and SwingWorker for the
Java GUI Swing library. These solutions significantly improve

over low level abstractions like threads, but come with their
own limitations. For example, AsyncTask does not easily
support composition, like sequencing multiple asynchronous
computations.

Recently, Reactive Programming (RP) has emerged as a
programming paradigm specifically addressing software that
combines events [3]. Crucially, RP allows to easily express
computations on event streams that can be chained and
combined using high-order functional operators. This way,
each operator can be scheduled independently, providing a
convenient model for asynchronous programming. As a result,
RP provides means to describe asynchronous programs in a
declarative way. Previous research showed that RP improves
software design of reactive applications [4], [5]. Also, em-
pirical studies indicate that RP increases the correctness of
program comprehension, while requiring neither more time to
analyze the program, nor advanced programming skills [6],
[7]. This feature has been crucial in popularizing recent RP
languages, including ELM [8], Bacon.js and Rx/ReactiveX [9]
– originally developed by Microsoft – which received major
attention after being adopted for the redesign of Netflix’s
streaming server backend.

Unfortunately, most existing software still implements asyn-
chronous computations with traditional techniques. While the
benefits of RP design are widely recognized, and new projects
can easily adopt RP abstractions right away, this technology is
not portable to existing software without a manual refactoring
that is tedious and error-prone [10]. As a result, a number of
software applications do not benefit from the design improve-
ments provided by RP.

In this paper, we propose an approach to automatically
refactoring asynchronous code to the RP style based on
ReactiveX’s Observable, which is a programming abstrac-
tion that emits events that are asynchronously handled by
Observers. ReactiveX uses operators from RP to compose
computations on Observables. Using these operators, it is
straight-forward to extend asynchronous computations, thus
increasing extensibility. Our methodology applies to common
abstractions for defining asynchronous computations in Java,
including Future, and Swing’s SwingWorker. We imple-
mented our approach in 2RX, an extensible Eclipse refactoring
plugin. Our evaluation on a number of third-party popular
GitHub projects – including Apache Zookeeper, Jabref, JUnit,
and Mockito – shows the broad applicability of our technique



1 Observable<Data> data = getDataFromNetwork();
2 data
3 .filter(d -> d != null)
4 .map(d -> d.toString() + " transformed")
5 .subscribeOn(Schedulers.computation())
6 .subscribe(d ->
7 System.out.println("onNext => " + d));

Fig. 1: RxJava example, adapted from ReactiveX’s introduc-
tion to RP [9].

(on more than 7K projects) as well as its correctness, as
the technique was able to correctly refactor 91.7% of the
occurrences of asynchronous constructs (the other cases where
ruled out by refactoring preconditions).

In summary, the contributions of the paper are as follows:
• We propose a technique to refactor common Java asyn-

chronous constructs to RP.
• We design 2RX, an extensible approach implemented

as an Eclipse plugin that provides such technique for
RxJava.

• We evaluate our approach with automatic testing and
code inspection, showing that it is broadly applicable,
it provides a large coverage of construct instances and
exhibits acceptable execution time.

• We release a new large dataset of third-party projects
suitable for research on asynchronous programming in
Java.

In this paper, we do not address the problem of refactoring
synchronous code to asynchronous code – an issue addressed
elsewhere [1], [11], [12] – nor we aim at refactoring imper-
ative programming into functional programming – which has
been tackled, e.g., in [13], [14]. Also, formally proving the
correctness, of refactorings is an open research question [15],
[16]. As a first step, we provide supporting evidence for the
soundness of our refactoring technique using standard methods
like manual inspection and automated testing [1], [11], [12],
[14], [17]–[25].

II. REACTIVE PROGRAMMING FOR ASYNCHRONOUS
APPLICATIONS

In this section, we first introduce ReactiveX, then we
demonstrate refactoring to RP through a running example.

A. Reactive Programming in a Nutshell

ReactiveX [9] is a library for asynchronous RP that provides
abstractions and operators to process and combine event
streams. ReactiveX is available for several languages. In this
paper, we consider the Java implementation RxJava. The main
abstraction in ReactiveX is an Observable, which is the
source of an event stream. Similar to the Observer design
pattern, an Observer can register to an Observable and
it can be notified of event occurrences. In addition, however,
Observables can be chained and executed on different
threads. Hence, asynchronous programs can be specified in
a pipeline fashion with operators such as map or filter.

Fig. 2: Juneiform application.

Figure 1 demonstrates this design. Initially, we obtain a
stream of Data from the network as an Observable
(Line 1). Next, all data that is null gets filtered out
(Line 3) and the data is transformed to a String and
" transformed" is appended (Line 4). The Observable
is executed using the default scheduler (Line 5) – ReactiveX
provides a multitude of schedulers to enable asynchronous
operations. Finally, the result is printed to the command line
(Line 7).

This approach has several advantages: the computations
over the stream are extensible by adding new operations to
the stream and composable via combining streams through
functional operators. Since data flow gets disentangled from
control flow, programs are easier to comprehend and main-
tain [4]–[6].

B. Refactoring an OCR Application

Figure 2 shows Juneiform [26], an application for Optical
Character Recognition (OCR). In Juneiform, users load image
files in the UI. The application uses asynchronous program-
ming to load the documents and to process them in a separate
thread than the UI.

1) Asynchrony in Juneiform: The document loading func-
tionality is shown in Figure 3a. The DocumentLoader
class, which extends SwingWorker, loads the images into
Juneiform. The SwingWorker class is provided by the
Swing Java GUI library to help programmers implementing
asynchronous tasks. In SwingWorker, the asynchronous
functionality is defined in the doInBackground method
which is executed when the execute method is called. The
doInBackground method can both (1) return a value after
the computation has finished, and (2) publish intermediate
values during its execution.

In the example, DocumentLoader inherits from the
SwingWorker class (Line 2) and it assigns two type pa-
rameters. The first one is for the return type of the asyn-
chronous call – List<Document> as we want to load a
list of documents. The other one is for intermediate results
of the asynchronous execution – Document, to start han-
dling documents to the UI thread before the loading of all
documents completes. When the user selects the images from



1 public abstract class DocumentLoader
2 extends SwingWorker<List<Document>, Document> {
3
4 private File[] files;
5
6
7
8
9

10 protected List<Document> doInBackground()
11 throws Exception {
12 List<Document> results = ...
13 ...
14 for (File f : files) {
15 ...
16 Document d = new Document(... f ...);
17 results.add(d);
18 publish(d);
19 ...
20 }
21 return results;
22 }
23
24
25
26
27 public void load(File... files) {
28 this.files = files;
29 execute();
30 }
31 protected void process(List<Document> chunks){
32 fetchResults(chunks);
33 }
34 protected void done() {
35 ...
36 List<Document> documents = get();
37 ...
38 }
39 public abstract void fetchResult(
40 List<Document> result);
41 ...
42 }

(a) Original SwingWorker implementation.

1 public abstract class DocumentLoader
2 extends SWSubscriber<List<Document>, Document>{
3
4 private File[] files;
5
6 private Observable<SWEvent<List<Document>,
7 Document>> getObservable() {
8 Emitter<List<Document>, Document> emitter =
9 new SWEmitter<List<Document>, Document>() {

10 protected List<Document> doInBackground()
11 throws Exception {
12 List<Document> results = ...
13 ...
14 for (File f : files) {
15 ...
16 Document d = new Document(... f ...);
17 results.add(d);
18 publish(d);
19 ...
20 }
21 return results;
22 } };
23 return Observable.fromEmitter(emitter,
24 Emitter.BackpressureMode.BUFFER);
25 }
26
27 public void load(File... files) {
28 this.files = files;
29 executeObservable();
30 }
31 protected void process(List<Document> chunks){
32 fetchResult(chunks);
33 }
34 protected void done() {
35 ...
36 List<Document> documents = get();
37 ...
38 }
39 public abstract void fetchResult(
40 List<Document> result);
41 ...
42 }

(b) Refactored to ReactiveX. Changes are marked.

Fig. 3: Asynchronous file loading in Juneiform.

the file chooser dialog and clicks ”Open”, the load method
(Lines 27-30) of DocumentLoader is invoked with the
selected files as arguments. The files are cached in the private
files field (Line 28). Finally, execute (Line 29) invokes
doInBackground (Line 10-22) in a background thread.

Each Document holds the information for an image file,
e.g., name, absolute path and file content. To load the images,
the program iterates through all files, creates a Document
object for each of them and adds it to the results list.
Each Document is sent to the UI thread as an intermediate
result with the publish method (Line 18). Before being
processed, the results are stored in a buffer (not shown). Then
the callback method process is invoked with the buffer as
argument (Line 31). The buffer is necessary as the UI thread
may not be able to execute process before multiple results
have been published. To display the selected images in the UI,
the process method invokes the fetchResults method
(Line 40) with the intermediate results of the asynchronous
operation as argument.

The asynchronous operation ends when the
doInBackground method returns. The return value
of the doInBackground method, results, can be
accessed from the done method using get (Lines 34-38).
These methods are declared by the SwingWorker class.

2) The Refactoring: The refactoring replaces the
SwingWorker class with ReactiveX’s Observable
introduced in Section II-A. There are three aspects to
consider when refactoring SwingWorker to reactive code:
(1) Generate emissions on each publish invocation – rather
than only on the result – to capture the data stream nature
of SwingWorker, such that an Observer in the RP
implementation reacts to each emission of the Observable;
(2) all methods available in the SwingWorker API must be
available in the Observer and (3) the Observable must
stop sending items to the Observer if the latter has not
finished processing the last emission.

The result of the refactoring is in Figure 3b. The
getObservable method (Lines 7-25) creates a



1 DocumentLoader loader = new DocumentLoader();
2
3 // Setup observable
4 Observable<Document> observable =
5 loader.getObservable()
6 .flatMap(ev -> Observable.from(ev.getChunks()))
7 .filter(doc -> doc.getName().contains(".jpg"))
8 .subscribeOn(Schedulers.computation());
9

10 // Display document names
11 observable
12 .observeOn(SwingScheduler.getInstance())
13 .subscribe(doc -> label.setText(doc.getName()));
14
15 // Upload document to server
16 observable
17 .observeOn(Schedulers.io())
18 .map(doc -> jpgToBitmap(doc))
19 .subscribe(doc -> uploadToDropbox(document));
20
21 // Connect observable with subscribers
22 loader.load(files);

Fig. 4: Extending the Juneiform application.

SWEmitter object that emits a value whenever the
doInBackground method produces a result (Lines 9-
22). The Observable emits values of type SWEvent.
SWEvent objects carry either an intermediate value or the
final result of the asynchronous computation.
SwingWorker has functionalities not available in

Observable, such as starting the asynchronous operation
with the execute method, or storing the current state of the
execution (i.e., whether it has completed). In our approach,
the SWSubscriber class implements these functionalities:
In the refactored version, DocumentLoader is a subclass
of SWSubscriber (Line 2). The load method remains un-
changed except calling the executeObservable method
(Line 29) to start the asynchronous computation instead of
the execute method of the SwingWorker class. Similarly,
the process method (Line 31), and the done method
(Line 34) override the methods in the SWSubscriber
class with the same semantics as the corresponding meth-
ods in SwingWorker. The body of all these methods re-
mains unchanged in the refactoring. The user-defined method
fetchResults (Line 40) remains unchanged as well.

3) Extending Juneiform: The refactoring described above
is of limited interest per se – the approach in Figure 3b is
arguably not better than the solution in Figure 3a. However, the
refactoring is beneficial because it enables taking advantage of
RP’s support for extensibility and asynchronous programming
via event stream combination.

Let’s consider the case in which a developer wants to extend
the Juneiform application such that (1) only files with jpg
extension are loaded, (2) the GUI displays the name of the
file currently processed to provide the user feedback on the
loading progress, and (3) the image file is converted from jpg
to Bitmap and uploaded to Dropbox for backup.

Implementing these changes in the case of Figure 3a is
challenging. First, the steps in the computation exhibit de-

pendencies (e.g., transform an image to a Bitmap and then
upload it to Dropbox). Hence, a programmer needs to store
intermediate results – hiding the logic of the processing
sequence. A harder problem is that the long-running tasks
in (3) should be executed in separate threads and processing
should happen as soon as new files are available. Finally, (2)
should be executed on the GUI thread to avoid race conditions
on the (non-synchronized) GUI components.

These functionalities can be of course achieved with a
complex combination of non-composable imperative trans-
formations, intermediate state, asynchronous constructs for
the execution on separate threads, and callbacks to achieve
responsive push-based processing of new files.

Alternatively, developers can implement these features right
away with RP operators such as filter. Figure 4 shows an
implementation of these features that extends the refactored
version from Figure 3b. First, the getObservable
method retrieves the Observable (Line 5) previously
defined in the DocumentLoader class. For (1) – load
only jpg files – the flatMap operator applied to the
Observable (Line 6) provides a stream of Documents,
since the Observable produces events containing values
of type List<Document>. From this stream, the filter
method produces a stream with only jpg files (Line 7). These
functionalities are executed in a background thread as specified
by Schedulers.computation() (Line 8). For (2) –
display in the GUI the name of the file currently processed
– Lines 11-13 directly specify to execute this operation in the
UI thread. Finally, for (3), the file is converted from jpg to
Bitmap as well as uploaded to Dropbox (Lines 16-19). These
operations are executed asynchronously and independently of
each other – the latter executes as soon as a result from
the former is available. Loading the files starts the emission
(Line 22). Further extensions are also trivial to support and
can be implemented adding new operators to the pipeline.

4) Discussion: We have shown that, thanks to the refac-
toring to RP, the asynchronous Juneiform application benefits
from the advantages of RP design – extensibility and com-
posability. The refactoring we just described requires some
observations. In the example, the refactored code is slightly
longer and it introduces new concepts, such as Observable
or Subscriber, which may harden program comprehension
for developers. However, here is no way around learning new
concepts when switching to a new programming paradigm,
and our target are developers who are already familiar with RP.
On the other hand, automated refactoring may help novices to
adapt to RP without the burden to manually introduce the new
concepts in the codebase. Another potential downside is that
the refactored code may not be as performant.For example, one
factor that influences performance is the configuration of the
scheduler for the asynchronous computations (e.g., Futures),
which cannot be faithfully reproduced in the refactored code.
Yet, RxJava provides access to the scheduler configuration so
that the developer can easily tune the scheduling policy, e.g.,
by subscribing an Observable to a different scheduler.



III. 2RX: REFACTORING TO REACTIVE PROGRAMMING

We designed 2RX, a tool that automatically refactors se-
lected asynchronous constructs to ReactiveX. The key idea
of the refactoring is to transform the values generated by
asynchronous computations into an event stream that emits
an event whenever a new value is generated. For exam-
ple, SwingWorker produces (several) intermediate values
and a final result, both of which can be represented as an
event stream. 2RX’s refactoring strategy is to replace the
asynchronous construct with a ReactiveX Observable. The
Observable emits an event for each results generated by
the asynchronous computation. We target two Java constructs
for asynchronous programming:

• javax.swing.SwingWorker: SwingWorker is a con-
struct defined in the Java Swing library. It asynchronously
executes the code in its doInBackground method,
which returns the result of the computation. Also,
SwingWorker can emit intermediate values during the
asynchronous execution.

• java.util.concurrent.Future: A future is a value that
has not been computed yet, but is available eventu-
ally [27]. In Java, the Future interface has several
implementations. Although Future does not emit mul-
tiple values, refactoring to RP relieves developers from
handling the emission of the value explicitly and en-
ables RP’s support for functional composition and asyn-
chronous execution.1

The constructs above are not the only way to define an
asynchronous task. For example, a primitive way to implement
asynchronous execution of long-running computations is via
threads, i.e., by implementing the java.lang.Runnable inter-
face or by subclassing the java.lang.Thread class.

2RX does not support refactoring threads, because threads
are not only used for asynchronous computations, but also
for, e.g., parallel execution and scheduling. Threads expose
a general interface to programmers which enables executing
any computation in the thread. The communication with other
threads takes place through shared state. Crucially, threads do
not provide a well-defined interface for asynchronous compu-
tations that return values, making them unsuitable for refactor-
ing to RP as there is no return value that can be processed by
the Observable chain. Unfortunately, the cases in which
threads express proper asynchronous computations are hard
to distinguish because assignment to shared state can equally
be due to thread communication in a concurrent application
or to synchronization among parallel tasks – without the
programmer intention being explicit.

Many modern libraries/languages provide dedicated sup-
port for asynchronous computations, like C#’s async/wait,
Java’s java.util.concurrent.Future, and Scala’s Async,
substantially deprecating the use of raw threads for concur-
rency. Our approach targets these cases.

1For this reason, RxJava already provides a fromFuture method to
convert a Future into an Observable.

For the java.util.concurrent.Executors class, considera-
tions similar to those made above for Threads apply. The class
provides an API to submit asynchronous computations and
to decouple task submission from the mechanics of running
the task, i.e., thread use and scheduling. Yet, in some cases,
the Executors class produces Java Futures. In the cases
where the return value is used by the rest of the program, hence
the future object is available, 2RX performs the refactoring for
java.util.concurrent.Future.

A. Refactoring Asynchronous Constructs

In this section, we provide an overview of our refactoring
approach for each asynchronous construct.

1) SwingWorker: Refactoring SwingWorker to
Observable requires to consider two major differences
between the two constructs: (1) SwingWorker does not
only emit a final result, but also intermediate results with
a different type, and (2) SwingWorker keeps track of the
current status of the computation – if it is still running or
if it has already finished. To achieve the functionalities of
SwingWorker with Observable, we implemented an
extension to ReactiveX consisting of three helper classes
(Figure 3b): SWEmitter emits an event for each call to
the publish method and for the final result (Line 8);
SWSubscriber implements the SwingWorker API
on top of the emitter (Line 2); SWEvent is the type of
events produced by the Observable, holding either an
intermediate or a final result (Line 7). These three classes are
added to the project’s class path during the refactoring.

The actual refactoring consists of replacing SwingWorker
with SWSubscriber. The SwingWorker definition is split
into two parts by 2RX. (1) The Observable is wrapped
around the SWEmitter class to support further asynchronous
computations. (2) The SWSubscriber class subscribes to
the Observable and provides the SwingWorker API. The
body of the SwingWorker class is then rewritten such that
the doInBackground method is placed in the SWEmitter.
The other methods remain unchanged.

2) Java Futures: Figure 5a shows the use of a Future in
conjunction with an ExecutorService to schedule asyn-
chronous tasks. The example is taken from Elasticsearch [28],
a distributed search engine.

First, the ExecutorService is initialized (Line 1), and
a list of Future is created (Line 3). A task is submitted
to the ExecutorService (Line 7). The task is defined in
the call method of Callable (Lines 9-15) which returns a
Future for the task result that is then added to the list. In the
example, the task waits for the result of another executor and
retrieves the result – the List<T> returned by the Future
(Line 14). The task is executed asynchronously, i.e., it does
not block the execution of the main thread. The computation
only blocks when the result of the Future is retrieved to
store it in a list of results (Line 20).

Figure 5b shows the refactored version. The initialization of
the ExecutorService does not change (Line 1). The list
now stores Observable instead of Future (Line 3). An



1 ExecutorService pool = ...
2 List<Future<List<T>>> list =
3 new ArrayList<Future<List<T>>>();
4
5 for (int i = 0; i < numTasks; i++) {
6 list.add(
7 pool.submit(new Callable<List<T>>() {
8 @Override
9 public List<T> call() throws Exception {

10 List<T> results = new ArrayList<T>();
11 latch.await();
12 while(count.decrementAndGet() >= 0) {
13 results.add(executor.run()); }
14 return results;
15 }
16 })); }
17 ...
18
19 for (Future<List<T>> future : list) {
20 results.addAll(future.get()); }

(a) Original code.

1 ExecutorService pool = ...
2 List< Observable<List<T>>> list =
3 new ArrayList< Observable<List<T>>>();
4
5 for (int i = 0; i < numTasks; i++) {
6 list.add( Observable.fromFuture(
7 pool.submit(new Callable<List<T>>() {
8 @Override
9 public List<T> call() throws Exception {

10 List<T> results = new ArrayList<T>();
11 latch.await();
12 while(count.decrementAndGet() >= 0) {
13 results.add(executor.run()); }
14 return results;
15 }
16 }), Schedulers.computation() )); }
17 ...
18
19 for ( Observable<List<T>> future : list) {
20 results.addAll(future. blockingSingle() ); }

(b) Refactored code. Changes are marked.

Fig. 5: Refactoring Java Future. Code extracted from the Elasticsearch search engine [28].

Observable is created from the same Callable that was
submitted to the executor (Lines 9-15). The Observable
uses a Scheduler (Line 16) to run asynchronously.
Note that the Future is still executed according to the
ExecutorService – only the Observable operates on
the Scheduler.

3) Discussion: The drawback of the helper classes used in
the SwingWorker refactoring is that they are an extension
to the ReactiveX library, while a clean refactoring should be
based on ReactiveX only. Helper classes enable refactoring
more cases, as they take over some of the responsibility of
preserving the functionality during the refactoring. But, helper
classes also complicate the code introducing additional classes
and functionalities. We believe that the satisfactory refactoring
results for Java Future do not justify the loss of such clean
approach for those cases.

B. Checking Preconditions

Before applying a refactoring, it is crucial to check whether
certain conditions (refactoring precondition [29]) are satisfied
to guarantee that the refactoring is possible and the result
is correct. Figure 6 shows a problematic case. The origi-
nal code is in Figure 6a. Two futures are created (Line 1
and 4). The first future does not use the standard Future
interface but the Future subclass ScheduledFuture,
on which the cancel method is invoked (Line 9). This
configuration leads to a non-refactorable Future instance,
because (1) Observable does not support the equiva-
lent of a cancel method in the Future class, and (2)
the ScheduledFuture subclass provides additional func-
tionalities that are not supported by a refactoring that tar-
gets Future. The precondition check finds non-refactorable
Future instances and excludes them from the refactoring.

The refactored code is in Figure 6b. Because of the problem
above, the first Future is not refactored (Line 1) and our

tool issues a warning for it. The second Future instance
passes the precondition check as, contrary to the first Future,
it uses the default Future interface and it only calls the
get method. The refactoring for this instance is correct
(Line 4 and 7). The example demonstrates the need for flow-
sensitive source code analysis in 2RX, e.g., to find out on
which instances cancel is invoked, and to selectively reject
refactoring those instances.

Our preconditions are defined to disallow using functionali-
ties of asynchronous constructs that can not be translated into
corresponding functionalities of Observable. We define
similar preconditions as Yin and Dig [30]: Asynchronous
constructs are only used by executing and retrieving their
result, and subclasses are disallowed. Preconditions are defined
on occurrences of asynchronous constructs. An occurrence is
the coherent usage of a construct. For example, in Figure 6,
there are two occurrences of Future. Concretely, we define
three preconditions for our refactoring approach. Occurrences
where at least one precondition is not satisfied are excluded
from the refactoring.

• The asynchronous computation is not cancelled. Reac-
tiveX provides no way to cancel asynchronous computa-
tions of Observables, but only to unsubscribe an ob-
server (which does not cancel the running computation).

• The state of an asynchronous execution is not retrieved.
Asynchronous constructs often provide ways to directly
retrieve the current state of an asynchronous execu-
tion, e.g., Future.isDone() checks whether an asyn-
chronous computation has completed. Observables
lack such functionality.

• The asynchronous construct is not used through a
subclass that provides additional functionalities. This
case includes classes specific to a single project,
as well as unsupported library constructs like, e.g.,
ScheduledFuture from Figure 6.



1 ScheduledFuture<Void> cleanup =
2 executor.schedule(...);
3 ...
4 Future<String> futureResult =
5 executor.submit(...);
6 ...
7 String result = futureResult.get();
8 ...
9 cleanup.cancel(false);

(a) Original code.

1 ScheduledFuture<Void> cleanup =
2 executor.schedule(...);
3 ...
4 Observable<String> futureResult =
5 Observable.fromFuture(executor.submit(...));
6 ...
7 String result = futureResult. blockingSingle() ;
8 ...
9 cleanup.cancel(false);

(b) Refactored code. Changes are marked.

Fig. 6: Precondition example. Code extracted from the DropWizard RESTful Web service framework.

C. Implementation

We designed 2RX as an Eclipse plugin for refactoring Java
projects. The plugin consists of an extensible core that pro-
vides Eclipse integration and an API for the basic functionali-
ties required by all refactorings. The API allows retrieving the
AST of a compilation unit, performing static data flow anal-
yses, identifying a specific Java construct, manipulating the
AST, and outputting the refactored code. We implemented an
extension for the two asynchronous constructs in Section III,
Java Future and SwingWorker. Each extension uses the
API to search for a specific construct and to implement the
associated transformation. We have implemented an automatic
precondition checker for both the constructs currently sup-
ported. The checker is based on a flow-sensitive static analysis
on Java source code [31]. The extensible architecture simplifies
adding new refactorings for other constructs, which is ongoing
work.

IV. EVALUATION

In this section, we evaluate our refactoring approach. First,
we define our research questions.

A. Research Questions

Our evaluation answers the following research questions.
First, we want to evaluate which fraction of all asynchronous
constructs available in Java can be targeted by 2RX.

Q1 (Applicability): Which fraction of asynchronous
constructs used in real-world projects is supported
by 2RX?

Second we want to know, among the occurrences of asyn-
chronous constructs supported by 2RX, how many cases satisfy
the preconditions that 2RX requires to perform the refactoring
and lead to refactored code that is correct and achieves the
same functionality of the original code.

Q2 (Correctness): How many occurrences of the
supported asynchronous constructs can 2RX cor-
rectly refactor?

Finally, we want to ensure that our refactoring tool is usable,
e.g., the refactoring process must complete in a reasonable
time even for large projects.

Q3 (Efficiency): Is 2RX fast enough to be usable by
developers?

Next we present the methodology for creating the datasets
to evaluate our work. Finally, we present the answer to
the research questions above, e.g., the evaluation results on
applicability, correctness and efficiency of our solution.

B. Methodology

In the following, we describe the methodology to answer
the research questions.

1) Global Dataset: First, we identified the asynchronous
constructs that are used in Java. We looked for documentation
and tutorials that introduce asynchronous programming in Java
and we considered the documentation of frameworks, such
as Spring [32], which provide asynchronous constructs to
users. Further, we talked to other researchers and developers,
personally and over StackOverflow, about which asynchronous
constructs they use. With this process, we have identified the
14 asynchronous constructs listed in Table I. We used
Boa [33] – a language and infrastructure for mining software
repositories – to identify projects that contain these constructs.
Boa provides a snapshot of all public GitHub projects from
2015, consisting of 380,125 projects. We considered the
275,879 projects containing Java source files. We found 46,208
Java projects that contain at least one asynchronous construct.

The global dataset is composed of GitHub open-
source projects that use one of the constructs above. We
identified projects containing an asynchronous construct
by searching for the class name and the corresponding
import in the AST. We also searched for classes that are
created by the factory classes akka.dispatch.Futures
and java.util.concurrent.Executors, such as
Future, Executor, ExecutorService and
ScheduledExecutorService, respectively. For
the class javax.enterprise.concurrent.ManagedTask,
we also considered projects that use one of the
associated classes ManagedExecutorService or
ManagedScheduledExecutorService. This approach
ensures that we find constructs that are adopted in the project
even if they do not appear syntactically in the code (e.g., in
case they are returned by a method call and used without
assigning them to an intermediate variable). We used the
global dataset to evaluate applicability of our methodology.

2) Refactoring Dataset: We filtered the global dataset to se-
lect relevant projects for each of the two constructs supported
by 2RX, generating the refactoring dataset.



First, we filtered out all projects that do not contain one
of the two constructs supported by 2RX: SwingWorker, and
Java Future. Out of the 46,208 Java projects in the global
dataset, we found a total of 7,133 projects that use at least
one of the two supported constructs; 5,718 projects use Java
Future and 1,651 projects use Swingworker (236 projects
use both). Next, we removed projects that do not use one of
the popular build tools Maven [34] or Ant [35] to – at least
partially – automate the evaluation, as we automatically tested
the refactored code as well as checked whether the refactored
code compiles. We identified projects that use a build tool
based on the respective build file, i.e., pom.xml for Maven
and build.xml for Ant. We ended up with 4,652 projects
for Future and 1,118 projects for SwingWorker.

On GitHub, projects can be starred by other users to follow
their updates. We used GitHub stars as a metric for the
popularity of a project [36]. As stars are not included in
the Boa dataset, we counted them checking the respective
online GitHub project. We took the projects for Future and
SwingWorker and sorted them by their number of GitHub
stars. Then, we took the top 10 ranked projects that we were
able to compile, resulting in the refactoring dataset. As we
use the Boa 2015 dataset, some projects required dependencies
that were no longer available. We filtered out these projects
as we were not able to compile them. For Future, this is
the case for 5 projects, for SwingWorker, it is the case for
16 projects. The datasets that we created are available to re-
searchers interested in studying Java asynchronous constructs.

3) Automatic Test Generation: To evaluate the correctness
of the refactorings, we ran unit tests for each project. We
assume that, when the unit tests pass before as well as after the
refactoring, the refactoring does not change the functionality
of the code. Unfortunately, for many projects, existing tests
provided in the project already failed even with the original
code, or did not cover the refactored code. For this reason, we
opted for automatic test generation to create tests for exactly
the parts of the code that were refactored.

To automatically test the refactored code, we implemented a
framework based on Randoop [37]. The generated tests capture
the behavior of the original code, and are run again on the
refactored code to ascertain that programs are behaviorally
equivalent to the original code. Automatic test generation
to assess correct refactorings has been used before, e.g., by
Soares et al. [38]. Formal verification of the correctness of
refactorings is a very recent research direction [16].

To ensure that test generation remains feasible for large
projects, the testing framework accurately generates tests only
for methods changed by the refactoring. When the refactoring
changes the signature of a method, i.e., name, parameter or
return types, the framework generates tests for methods that
call the changed method. The same holds for methods that are
not directly accessible, e.g., because they are private. Methods
that are nondeterministic or have side-effects across method
calls (such as writing/reading from a file) are not amenable
for automated testing, because calls to the same method result

TABLE I: Asynchronous constructs in Java – global dataset.
For each asynchronous construct, the absolute number of projects (Column
total) and the percentage over all projects that use at least one asynchronous
construct (Column %) is given. Projects can contain multiple asynchronous
constructs.

Constructs total %

java.lang.Thread 40,988 14.86%
java.util.concurrent.Executors 11,708 4.24%

java.util.concurrent.Future 5,718 2.07%
javax.swing.SwingWorker 1,651 0.60%

java.util.concurrent.FutureTask 1,372 0.50%
com.google....ListenableFuture 295 0.11%

javafx.concurrent.Task 163 0.06%
akka.dispatch.Futures 122 0.04%

java.util.concurrent.ForkJoinTask 92 0.03%
javax.ejb.AsyncResult 82 0.03%

javax.ws.rs.container.AsyncResponse 31 0.01%
javax.enterprise.concurrent.ManagedTask 19 0.01%

java.util.concurrent.CompletableFuture 7 <0.01%
org.springframework.scheduling.annotation.Async 1 <0.01%

Projects with asynchronous constructs 46,208 16.75%
All Java projects 275,879 100.00%

in different behaviors. The framework detects nondeterministic
methods by recognizing varying test results for those methods.
All tests for nondeterministic methods are discarded.

4) Evaluation Methodology: For Q1 (Applicability), we
determined the most common asynchronous constructs used by
developers in the global dataset and reported which percentage
of them is supported by 2RX. For Q2 (Correctness), we
checked which fraction of the occurrences of asynchronous
constructs in the refactoring dataset are correctly refactored by
2RX. Correctness is evaluated by checking that the project still
compiles after the refactoring and by executing the generated
tests. For compilation and testing, we use the Boa 2015 version
of the projects. We only considered occurrences that 2RX
actually refactors, i.e., occurrences that are not rejected by the
preconditions. For Q3 (Efficiency), we measured the time
that 2RX requires to refactor a project. This time includes
parsing the source code and constructing the AST, finding
the appropriate constructs, analyzing them, and generating the
refactored code.

C. Results

Table I and Table II summarize the evaluation results
from, respectively, the global dataset and from the refactoring
dataset. We describe the tables and then we refer to them to
answer our research questions.

In Table I, for each construct, we show the total and relative
number of projects where the construct is used. We found a
total of 46,208 projects that use at least one asynchronous
construct. Table II provides the results of the refactoring for
each asynchronous construct in the refactoring dataset.

a) Q1 (Applicability): Table I shows that Thread
and Executor are the two most used asynchronous con-
structs in Java. Similar to Thread, the Executor in-
terface can be used for arbitrary concurrent computations,
usually via its ExecutorService extension. However, con-
trary to Thread, Executor provides an API to submit



TABLE II: Refactoring popular GitHub projects – refactoring
dataset.
Column Stars shows the number of stars (i.e., “followers”) on GitHub. Column
cond shows how many occurrences pass (y) or violate (n) the preconditions,
respectively. Column time indicates how long it takes to refactor the whole
project. LOC are the lines of code, and files the number of source files in the
pre-refactored project both measured with CLOC [39]. Columns c? and t?
indicate whether the refactored program has been successfully compiled or
tested, respectively. 3 indicates that the compilation/testing was successful,
and � in the t? column indicates that the automatic test generation failed.

Stars Project cond Time LOC files c? t?y n (ms)

3058 Zookeeper 8 0 16,051 83,956 671 3 �
1777 Disunity 1 0 7,733 5,720 113 3 3
1285 Gitblit 3 0 13,378 63,910 415 3 3

661 OptaPlanner 2 0 31,138 60,219 946 3 �
565 Jabref 1 0 20,756 93,268 698 3 3
486 Nodebox 2 0 9,926 32,244 283 3 3
150 ATLauncher 1 0 5,941 46,292 348 3 �
109 CookieCadger 4 0 1,976 4,415 18 3 3

89 PIPE 3 0 13,676 73,597 732 3 3
70 BurpSentinel 3 0 1,056 10,217 132 3 3

(a) SwingWorker.

Stars Project cond Time LOC files c? t?y n (ms)

23495 Elasticsearch 4 0 261,132 370,006 3,595 3 3
6152 JUnit 1 0 4,577 24,218 375 3 3
5820 DropWizard 2 1 48,910 17,708 361 3 3
4871 Mockito 2 0 104,409 52,871 822 3 �
4790 Springside4 0 2 8,266 20,293 199 3 3
4424 Titan 1 3 116,117 40,301 531 3 �
3774 AsyncHttpClient 105 0 15,402 29,739 344 3 �
3327 Graylog2Server 0 5 47,839 138,663 2,014 3 3
3018 Java Websocket 0 1 1,653 5,117 52 3 3
2840 B3log 0 1 16,217 14,635 173 3 3

(b) Java Future.

asynchronous computations which return a Java Future.
We are able to refactor these occurrences of Future
with 2RX. These occurrences are already included in the
projects using Futures in Table I. Java Future, i.e., the
java.util.concurrent.Future interface, provided in the Java
standard library, is the next most used construct. Standard ways
to create a Future are either through ExecutorService
– as we already mentioned – or by directly instantiating
one of the various Future implementations: FutureTask,
SwingWorker and AsyncResult implement the Future
interface. The other constructs are responsible for the remain-
ing asynchronous computations.

2RX provides refactoring support for SwingWorker,
and java.util.concurrent.Future as well as FutureTask.
FutureTask is an implementation of the Future interface
that does not add any further functionality. For this reason,
2RX is able to refactor this construct. As already discussed
(Section III), Thread and Executor are excluded from the
refactoring because they express computations that are not
suitable for the RP model. As a result, 2RX targets a total of
7,552 projects, which is ∼2.7% of all projects, and ∼16.3% of

all projects that contain at least one asynchronous construct.
We conclude that 2RX is applicable to some of the most used
Java constructs for asynchronous computations.

b) Q2 (Correctness): Table II presents the refactoring
dataset with the amount of asynchronous constructs refactored
for each project and the results of the automatic testing. As
described in Section III-B, the code needs to fulfill refactoring
preconditions to ensure that the refactoring can be applied
correctly. We evaluate the correctness of the refactoring by
checking that the refactored code (1) can be compiled (ensur-
ing that the refactoring produces valid Java), and (2) passes
the automatically generated tests.

In the SwingWorker case (Table IIa), all occurrences of
asynchronous constructs pass the preconditions. Compilation
after refactoring succeeds for every project. Automatic test
generation fails for 3 projects. The reason is that the methods
under test are within inner classes, hence it is not possible
to automatically generate tests with Randoop (Section IV-B3).
For the other projects, all tests succeed.

In the case of Future (Table IIb), we were able to refactor
∼89.8% of the occurrences. As mentioned in Section III-B,
the precondition check excludes asynchronous constructs that
are (1) subclasses of Future, that are (2) cancelled via
Future.cancel(), or that (3) retrieve the state of the
asynchronous computation via Future.isCancelled()
or Future.isDone(). The precondition check rejects 13
occurrences, where 6 are cancelled, 6 are subclasses, and 1
is both. The compilation of all projects succeeds after refac-
toring, but the automatic test generation fails for 3 projects,
because of inaccessible methods and abstract classes. For the
other 7 projects, tests are generated successfully and the tests
succeed.

The evaluation shows that the use of helper classes in the
case of SwingWorker allows us to perform significantly
more refactorings than in the case of Future for which no
helper classes are used. In summary, 2RX is capable of refac-
toring ∼91.7% of cases. All refactored cases can be compiled
correctly. For 6 projects, the automatic test generation failed,
but for the other projects, all tests are executed successfully.

c) Q3 (Efficiency): At last, we discuss the efficiency of
our approach. We present the run time for each refactoring in
Table II. The times were measured on an Intel Core i5-7200U,
with 16 GB memory running Linux Kernel 4.15.

On average, our approach requires ∼366 ms/1K LOC for
SwingWorker, and ∼1121 ms/1K LOC for Java Future.
The SwingWorker refactoring is faster than the Future
refactoring, because the precondition analysis of Future is
more involved, since the helper classes in the SwingWorker
refactoring obviate the need of preconditions. The upper bound
of the refactoring time, the Elasticsearch project in the Java
Future refactorings, requires ∼261 seconds. This relatively
high amount of time is due to the size and the complexity of
the code base. The Elasticsearch project consists of a total of
3,602 compilation units, and 261,132 LOC. We still consider
this time acceptable, as the refactoring only has to be done
once for the entire project: It is faster than the time that



would be required for a programmer to find the 4 asynchronous
constructs and to manually refactor them. For smaller projects,
the refactoring is faster and only takes a few seconds.

V. THREATS TO VALIDITY

In this section, we discuss the threats to the validity [40] of
our work.

1) Internal Validity: The results of the evaluation of cor-
rectness rely on our testing framework described in Sec-
tion IV-B3. The framework generates extensive tests that
increase the confidence in the behavioral equivalence of the
original code and of the refactored code. Testing is, how-
ever, by definition not complete and it could be that some
differences are not detected. To mitigate this threat, we also
inspected all refactorings manually and found them correct.
The manual inspection has been done independently by two
scientific staff members not involved in the project and by
the authors. When necessary, we investigated conflicts in the
inspection by manually writing small code examples which
capture the essence of the inspected code. We then tested that,
after refactoring, the examples behave the same as before. It
is possible that refactored methods cannot be tested directly,
because, e.g., methods are not accessible or the refactoring
changes a methods signature. For this reason, the test gener-
ation framework creates tests for methods that call the refac-
tored methods. This approach increases the number of methods
that can be tested. Some refactoring cases, however, cannot
be automatically tested, because they rely on nondeterministic
methods. In these cases, the evaluation of the refactoring has
to rely on manual inspection and on ensuring that the project
compiles correctly. Nondeterministic methods are detected by
the testing framework and are excluded from the automatic
test generation. In summary, we use the automated testing
approach to increase our confidence in the soundness of our
work, rather than relying on it. There exist ad hoc testing
techniques that specifically target certain refactorings [41], but
none of them directly apply to the refactorings used in this
paper, opening an interesting direction for future work.

2) External Validity: Another threat to validity is whether
our results can be generalized. The projects considered for
the evaluation are open-source projects available on GitHub.
We considered projects that have a high amount of stars
(followers) which is on one hand an indication of popular-
ity, but also of a certain code quality [36]. The refactoring
dataset contains software applications that belong to different
domains, including a distributed database (Titan), a computer
game launcher (ATLauncher) and a testing framework (JUnit).
In addition, since we adopt projects in the wild for our
evaluation, we consider codebases developed by different
teams, which promises variety in coding style. In particular,
manual inspection showed a diverse usage of asynchronous
constructs, e.g., Future is used with Executor, custom
implementations, or as part of collections, amongst others.

These considerations increase our confidence that the results
presented in this paper generalize to most Java projects that
include the supported asynchronous constructs.

VI. RELATED WORK

We organize related work into languages for functional
reactive programming, recent results on refactoring techniques,
and approaches to refactor existing software to asynchronous
execution.

1) Reactive Programming: Functional reactive program-
ming has been introduced in the Fran [42] animation system.
Over the last years, abstractions from FRP – such as event
streams, time-changing values and combinators to support
their modular composition – have been introduced in a number
of extensions of mainstream languages. These include Ba-
con.js [43] (Javascript), Flapjax [5] (Javascript), FrTime [4]
(Scheme), REScala [44] (Scala), Scala.React [45] (Scala),
and RxJava [9] (Java). Such approaches differ, among the
other features, in the abstractions they support (e.g., event
streams and behaviors [4], [5], [44], or events only [9], [43])
as well as in the consistency guarantees they provide (e.g.,
glitch-freedom [4], [5], [44], eventual consistency [9], [43] or
multiple consistency levels [46]). Some approaches (e.g., [44])
use synchronous RP. For a complete overview of RP the reader
can refer to the survey by Bainomugisha et al. [3].

Tool support for reactive programming is still in an early
stage, with recent proposals to support interactive debug-
ging [47], [48].

2) Refactoring: Refactoring refers to the process of mod-
ifying a program – usually to improve the quality of the
code – such that the behavior remains the same [29], [49].
In a broader sense, refactoring can also change nonfunctional
requirements of programs, e.g., performance. Studies have
shown that refactoring can improve maintainability [50] and
reusability [51] of existing software. Unfortunately, despite
the availability of dedicated tools, developers tend to apply
changes manually to fulfill the new requirements [52].

Operationally, refactoring consists of a series of transfor-
mations after checking that the refactoring candidate satisfies
some preconditions. If any step in the sequence fails, all the
transformations already done should be rolled back [53].

Due to space reasons, it is not possible to provide a
complete overview of previous research on refactoring. We
only focus on recent work in representative areas. Wloka et
al. propose a refactoring to transform global state of Java
programs to thread-local state, where possible, to introduce
parallelism [17]. Schäfer et al. [18] propose a refactoring
from Java’s built-in locks to a lock implementation that can
be fine-tuned to improve performance. Schäfer et al. [54]
found that many refactorings are not safe for concurrent code
and propose a technique to make refactoring concurrent Java
source code more reliable. Tsantalis et al. propose to use Java 8
lambda expressions to refactor clones with (small) behavioral
differences [19].

Other recent refactoring approaches target introducing
Java 8 default methods into legacy software [20], automatic
detection of refactorings for object-oriented models [21], clone
refactoring [22], as well as performance improvement [23]
using a database with an ad hoc representation of source



code. Liebig at al. [55] address refactoring with preprocessor
directives and propose an approach to preserve the behavior of
all variants. Meng at al. propose to use refactoring for clone
removal [56]. Jongwook et al. investigate scripting refactor-
ings to retrofit design patterns in Java [57]. LAMBDAFICA-
TOR [14] is a tool that – motivated by the new features
of Java 8 – converts anonymous inner classes to lambda
expressions and converts for-loops that iterate over Collections
to high-order functions. None of these works tackles the issue
of refactoring existing applications to RP.

3) Refactoring Asynchronous Code: The line of work by
Dig and colleagues, addressed the issue of refactoring asyn-
chronous code in the context of mobile applications. This line
of research starts from the observation that most available
documentation focuses on creating asynchronous apps from
scratch rather than on refactoring existing synchronous code.
Hence not enough tools are available to support developers to
perform the refactoring [1].

With Asynchronizer [11], developers select certain state-
ments of a program and the tool creates an AsyncTask which
executes the selected code asynchronously. A static analysis
informs the programmer in case the generated code introduces
data races.

Lin et al. [24] found that many developers use the wrong
construct when dealing with the GUI: in Android, the asyn-
chronous construct IntentService is more efficient than
AsyncTask which uses shared-memory. Lin et al. devel-
oped ASYNCDROID, a tool for refactoring AsyncTask into
IntentService.

Okur et al. [12], propose a tool to refactor asynchronous
C# programs based on two components. ASYNCIFIER trans-
forms legacy code that uses callbacks into code that uses
the built-in async/await constructs. CORRECTOR recog-
nizes performance anti-patterns and issues like deadlocks of
async/await constructs. The tool corrects most cases of
undesirable behavior found through an empirical study based
on GitHub public repositories.

Brodu at al. [25], propose a tool to transform callbacks to
Dues – a construct similar to Promises [27], [58] – based
on the observation that callbacks lead to code that is hard to
understand – an issue known as Callback Hell [59].

All these approaches either (1) introduce asynchronous
execution for otherwise sequential code [11], or (2) refac-
tor asynchronous code to use more specific constructs (e.g.,
async/await [12], IntentService [24], Promises [25]).
Our approach is complementary to (1) as it can refactor
applications to RP after asynchronous execution has been
introduced. Conceptually, our approach targets the output of
(1) and (2) to convert it to RP.

VII. CONCLUSION

In this paper, we presented a method to refactor asyn-
chronous programming constructs to RP. We implemented
an Eclipse plugin which automates the refactorings and we
evaluated it on popular third-party projects from GitHub.

The results show that our tool correctly refactors some
common constructs for asynchronous programming in Java.
We are currently extending 2RX to support more constructs and
improve its applicability. We hope that, equipped with 2RX,
more and more programmers can bring the design benefits of
RP to their projects.
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