
Quality-Aware Runtime Adaptation in
Complex Event Processing

Pascal Weisenburger∗, Manisha Luthra†, Boris Koldehofe†, Guido Salvaneschi∗
Technical University of Darmstadt, Germany

∗{lastname}@cs.tu-darmstadt.de, †{firstname.lastname}@kom.tu-darmstadt.de

Abstract—Complex event processing (CEP) is a fundamental
paradigm for a software system to self-adapt to environmental
changes. CEP provides efficient means to detect (complex) events
corresponding to environmental changes by performing a real-
time analysis on many, possibly heterogeneous, data sources.
The way current CEP systems detect events is determined at
design time without accounting for dynamic changes of the
environment monitored by the CEP system. This can lead to
situations where the performance, quality and reliability of event
detection significantly drop (e.g., due to mobility) since initial
assumptions of the environment are violated or stated too general.
In this paper, we propose ADAPTIVECEP, a CEP system that is
able to self-adapt to detected changes in environmental conditions.
We propose a CEP query language that allows specifying changes
in the behavior of the CEP system and its mechanisms in
detecting events dependent on environmental conditions. This
way, ADAPTIVECEP can select the best-suited configurations for
given quality demands. In our evaluation, we show by means
of a reference concept how the flexibility exposed by the query
language helps to achieve significant performance gains.

I. INTRODUCTION

The behavior and functioning of software systems in many

cases depend on the environment in which they operate.

Providing methods to adapt dynamically to the environment is,

therefore, fundamental to ensure correct and efficient operation.

Adaptation of software systems [38], [9] has been achieved

in many different ways, e.g., with component-based software

architectures, aspect-oriented programming, metaprogramming

and agent-oriented languages [26], [42].

A key aspect in adapting a software system is to detect

environmental changes to which the software system needs to

react. In doing so, software systems deal with incoming streams

from an increasing number of data sources such as stationary

and mobile devices, as well as maintain state information of

the devices and software components. In the age of the Internet

of Things and with the significant rise of the mobile devices

(predicted to be two-third of the total traffic by 2020 [10]),

software systems need to analyze huge and heterogeneous input

streams. For most of the applications, this analysis has to be

in real-time, to timely detect events of interest corresponding

to the changes in the environmental conditions. To efficiently

capture events of relevance to a software system, Complex Event
Processing (CEP) has emerged as the paradigm of choice. CEP

supports the detection of so-called complex events derived from
primary event sources. CEP is a fundamental building block

for very large and highly dynamic and distributed software

systems and is used in a wide field of applications like finances,

traffic monitoring, monitoring data centers and logistics [19].

CEP allows for the specification of event patterns occurring
in time-changing event streams by means of a query language.

For example, to trigger an alarm, an event pattern may comprise

a sequence of k outliers within the last n events of the stream or

within a timespan of duration T . Event patterns like the alarm
may be used for the specification of other event patterns. With

CEP, it is therefore relatively easy to specify large software

systems through event composition. In addition, CEP also

offers ways to efficiently notify software systems about detected

events. This is typically achieved with the help of an execution

environment in charge of executing event processing operators.

Operators select appropriate event streams and detect complex

events for specific event patterns. According to the composite

nature of an event specification, the operators form an operator

graph given by operators (nodes) and event transmission among

them (edges).

While occurrences of events are very dynamic in nature and

the execution environment may support dynamic mapping of op-

erators to hosts, CEP systems typically do not allow developers

to specify requirements on quality attributes depending on the

environmental conditions. This imposes major limitations on

the ability of the CEP system to self-adapt in a highly dynamic

environment, e.g. in a system environment with mobile devices.

In such scenarios, the assumed static properties like the type

of data sources may change (e.g., due to device mobility), and

in turn require changes to the composition of event patterns

and the operator graph. For instance, the maximum latency

until an alarm is detected depends on the location of the

users to be notified. Being aware of environmental changes

offers a high potential for self-adapting CEP systems. This is

done by dynamically selecting the best-suited mechanisms and

algorithms for placement and execution of operators. Thus it is

necessary to identify conditions that trigger adaptations. That

allows a CEP system to be self-adaptive to new situations and

self-optimizing under changing conditions.

In this paper, we aim to enable CEP to self-adapt to the

dynamic environmental changes it encounters. We present

the design and implementation of ADAPTIVECEP, a CEP

system that automatically adapts to predicted changes in the

environment. This way, the system is capable of ensuring a

given level of quality by adapting to a configuration, which can

fulfill those demands. The ADAPTIVECEP language allows

developers to define an adaptive CEP system in a concise, high-

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.10

140

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.10

140

2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

978-1-5386-1550-8/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAMS.2017.10

140

level way, easing development and maintenance of this class

of systems. The language accounts for functional requirements

such as event processing computations but – contrarily to

existing languages [12] – also for non-functional requirements

like quality constraints for event delivery. We design our

query language and system utilizing user knowledge on the

variability of the environment and depending quality attributes,

e.g., latency, to adapt the CEP system at run time.

To the best of our knowledge, none of existing CEP systems

is equipped with programmable self-adaptation, nor exists any

CEP language that allows developers to specify high-level

requirements for the system. Specifically, in this work, we

make the following contributions:

• We propose a self-adaptive CEP system, enabling the use

of CEP in highly dynamic environments.

• We present a CEP query language embedded into Scala

which allows specifying queries over event streams as

well as quality demands that the system needs to fulfill.

• We design a runtime environment which allows expert

developers to access the CEP system configuration via

an interface based on Functional Reactive Programming

(FRP) and to specify new adaptation strategies.

• We provide a reference implementation of ADAPTIVECEP

on top of Akka actors and evaluate our approach showing

that with ADAPTIVECEP the CEP system is capable of

remaining effective in changing conditions.

In this work, we focus on methods providing the ground

for self-adaptation in CEP. Since these can be applied to

a wide range of adaptation strategies it is out of scope to

investigate specific (advanced) adaptation strategies (e.g, [7])

or the combination of multiple strategies [16] – both subject

of extensive research in the past. Plugging those results into

our framework to achieve better adaptation results is planned

for future work.

The paper is structured as follows: Section II provides

background on CEP and FRP. Section III gives an overview of

the ADAPTIVECEP system and its query language. Section IV

describes the API available to expert developers. Section V

provides insights into the implementation. Section VI discusses

the evaluation. Section VII presents related work. Section VIII

concludes and outlines future work.

II. BACKGROUND SECTION

A. Complex Event Processing
A CEP system comprises both (i) methods to specify complex

events in form of a query language and (ii) methods to perform

the efficient detection of events. Consider for example a video

game based on augmented reality. In this scenario, players send

updates for their current game state, e.g., if they are actively

playing or have paused the game. Hence, the playerInfoStream
carries player state events, which have a gamePaused field.

A central coordinator keeps the game score for all players.

Updates to the player’s score are sent over gameInfoStream.
Players need to be constantly updated about the actions of the

other players. A possible query that players may submit to the

system is illustrated in Figure 1. The query generates a complex

1 infoStream :=
2 (playerInfoStream WINDOW 30 sec SLIDING)
3 JOIN (gameInfoStream WINDOW 30 sec SLIDING)
4 ON (playerInfoStream.id == gameInfoStream.playerId)
5 WHERE NOT gamePaused

Figure 1: The online game query.

event stream infoStream that comprises state information of
all active players. The state is composed of local state updates

from the players and updates on the score produced by the

central coordinator. The resulting complex event stream carries

the score for every player that is currently active, i.e., players

who have not currently paused their game instance.

A sliding window collects all events of playerInfoStream
and gameInfoStream that occurred within in a period of 30 s.
Over the events in the window, a join (��) operator (JOIN clause)
links information from playerInfoStream and gameInfoStream
based on the value of the id attribute used in the first stream and

the value of the playerId attribute used in the second stream
to identify the player. The selection (σ) operator (WHERE clause)
ensures that only state of active players is forwarded by filtering

all events where the value of the attribute gamePaused is false.
The execution environment of the CEP system, therefore, has to

execute multiple operators. The corresponding operator graph

for the query – imposing the flow of events from producer to

consumer – is shown in Figure 2.

𝞂 gamePaused=false

30 sec ⋈ 30 sec

infoStream

playerInfoStream gameInfoStream

Figure 2: Operator graph for the online game query.

The performance of a CEP system will depend on (i) how

the query is specified, (ii) how the query is mapped to the

operator graph and (iii) how the operators are mapped to

available hosts of the software system. In the system design for

ADAPTIVECEP, we will mainly aim to improve the adaptivity

of CEP by improving the specification of queries. However, as

we will show later, this offers also higher flexibility and the

potential for the subsequent steps in adapting a CEP system.

B. Functional Reactive Programming

FRP has been introduced to address the issues of the

Observer design pattern, which has been criticized in literature

for long. The main drawbacks include (i) lack of composability

as callbacks return void, (ii) need of globally updated variables

and (iii) complexity of analysis and comprehension due to

inversion of control [28]. FRP has been introduced in the

context of animations [18] and it has been successfully applied

141141141

to other areas including user interfaces [28], [13], robotics [20]

and sensor networks [25].

In FRP, signals represent continuous time changing values
which are automatically updated by the language runtime. For

example, in the following code snippet:

1 val position: Signal[(Int, Int)] = mouse.position

the position signal always contains the updated value of

the mouse position. Expressions that contain signals are also

automatically updated by the runtime. For example in the

following code, the shifted signal always contains a mouse
position that results from shifting the real one.

1 val shifted: Signal[(Int, Int)] =
2 Signal { mouse.position() + (10, 10) }

Signals inside Signal {...} expressions require () to trigger
the DLS machinery that registers them as dependencies. In FRP,

discrete time changing values are represented as events. Events

and signals can be combined. The following code snippet

defines a signal for the mouse position of the last click by

snapshotting the mouse position signal when the click event

occurred.

1 val clicked: Event[Unit] = mouse.clicked
2 val lastClick: Signal[(Int, Int)] =
3 position snapshot clicked

We decided to use FRP for the interface of our system for

expert developers (Section IV) in the cases where the system

configuration can be conveniently modeled with time-changing

values – FRP provides abstractions to compactly process them.

III. ADAPTIVECEP QUERY LANGUAGE

ADAPTIVECEP provides a CEP query language that devel-

opers of event-based adaptive systems can immediately use.

Expert developers may also want to program the internal details

of the adaptation strategies. In this section, we present the

ADAPTIVECEP system and query language to define complex

event streams and their quality demands. The next section

presents a more advanced use of ADAPTIVECEP introducing

more fine-grained details of the adaptation process.

A. A Bird’s Eye View of ADAPTIVECEP.
Considering the augmented reality gaming scenario (cf. Sec-

tion II-A), additional requirements arise in a real-world setting.

For example, the scenario requires low communication latency

to keep the information about the other players constantly up

to date.

The query in Figure 3 provides the same basic functionality

as the query in Figure 1. However, it takes into account that

the information of proximate players in the game requires

synchronization closer to real-time and therefore updates from

these players have stricter latency demands. Events for players

in close proximity, i.e., within the range of 100m (Line 7),

should be made available locally with a latency lower than

50ms (Line 6). The query is submitted to the system using

the run method (Line 12). Noticeably, quality demands do not
change the functional dependencies in the operator graph. As

1 val playerInfoStream: Stream[PlayerInfo] = ...
2 val gameInfoStream: Stream[GameInfo] = ...
3

4 val infoQuery: Query[ResultInfo] =
5 ((playerInfoStream window 30.sec.sliding)
6 demand (latency lower 50.ms when
7 (proximity within 100.m))
8 join (gameInfoStream window 30.sec.sliding)
9 on ('id === 'playerId)
10 where { infoEvent => !infoEvent('gamePaused) })
11

12 val infoStream: Stream[ResultInfo] = infoQuery.run
13

14 infoStream fired { result: ResultInfo =>
15 updateGame(result) }

Figure 3: The online game query in ADAPTIVECEP.

a result, the operator graph for the query in Figure 3 is still

the one in Figure 2.

Further details about the query are given in Section III-B.

For now, it suffices to say that after being submitted, the query

becomes standing and outputs an event stream, which can

be directly consumed or composed with other streams in a

different query. User code can attach event handlers to the

stream produced by a query (Line 14). The handler is executed

whenever an event in the stream is fired.

The operators in the operator graph are mapped to hosts

(e.g., servers, player’s mobile devices, or network elements)

along the physical path from the consumers to the producers.

As pointed out in Section II-A, this mapping is crucial for the

resulting performance. For example, deploying an operator on

an unloaded host can increase its processing rate, and selecting

event sources on hosts that are physically close can significantly

decrease event communication latency.

𝞂

⋈

𝞂

⋈

(a) Initial deployment. (b) Deployment after transition.

Figure 4: Transition between deployment configurations.

A possible deployment for the operator graph of Figure 2

representing the query in Figure 3 is shown in Figure 4a. Dotted

arrows indicate on which hosts operators are deployed. Event

producers, i.e., the stream from the central game controller

and a stream from another player, run on different network

devices. Similarly, the join and the filter operator are placed on

separate hosts. Finally, the host for the filter operator provides

the stream to the end user device.

The event processing system defined by ADAPTIVECEP

is self-adaptive thanks to the capability of reconfiguring the

operator graph and its mapping to the underlying physical

infrastructure to fulfill the demands expressed in the query. The

142142142

Operator Subquery
Stream source stream
Join (query0 window win0) join

(query1 window win1) on
join-condition

Filter query where predicate-function
Map query map mapping-function
Aggregation Min query min numeral-selection-function
Aggregation Max query max numeral-selection-function
Aggregation Avg query avg numeral-selection-function
Logical And query0 && query1
Logical Or query0 || query1
Logical Not !query
Temporal Sequence query0 -> query1

Table I: CEP Operators.

reconfiguration is based on a number of constraints, including

global performance optimizations, e.g., event selection moved

close to the sources, and local performance optimizations like

avoidance of high-latency communication paths.

The adaptation of the operator graph spans over different

axes. Operators that are shared by different queries can be

factorized and merged into single operators that serve both

queries, avoiding duplicated processing of the same events. On

the other hand, operators can also be duplicated to increase

processing speed. Operators can be migrated from one host to

another to satisfy quality demands, e.g., end-to-end latency –

possibly at the cost of other queries with more relaxed end-to-

end latency demands. We greatly take advantage of approaches

for operator migration discussed in detail in literature [33],

[35], [36]. In case of leaving nodes, we may encounter a quality

decay until the system has adapted itself.

In our example query (cf. Figure 3), communication latency

between players depends on the distance between them. A

possible adaptation for the query is depicted in Figure 4.

Compared to the initial operator placement (cf. Figure 4a),

the end user moved to another position (cf. Figure 4b). This

increases latency for the connection to the host on which the

filter operator is placed. To keep the latency demand satisfied,

the filter operator is migrated to a host closer to the new

location of the user.

B. Query Language
As we have seen, in ADAPTIVECEP, programmers express

processing of event streams via continuously active queries.

Each query defines event processing operators that receive

event streams and produce new streams of complex events.

The fundamental abstraction in ADAPTIVECEP is a Stream,
which is used to model event flows. The ADAPTIVECEP

query language provides operators on streams to compose

them, correlate events and process their payload. Event streams

are statically typed. The event stream playerInfoStream
(cf. Figure 3) carries events of type PlayerInfo (Line 1) and the
event stream gameInfoStream carries events of type GameInfo
(Line 2). Every event is a timestamped record of possibly

multiple fields with possibly different types. The fields of the

Demand Subquery
Demand on stream stream demand demand
Latency latency lower latency-value
Throughput throughput higher throughput-value
Bandwidth bandwidth higher bandwidth-value

(a) Quality demands

Condition Subquery
Condition on quality demands demand when condition
Condition on event producers stream only condition
Proximity proximity within length

proximity nearest count
Frequency frequency higher frequency-value

(b) Quality conditions

Table II: QoS Operators.

record can be named, e.g., the example query accesses the

id field of playerInfoStream (Line 9) and the playerId and
gamePaused fields of gameInfoStream (Line 9 and 10). Running
the query produces the resulting stream infoStream (Line 12).
Besides creating event streams through composition, events

can be fired explicitly using the Stream’s fire method, which
can be used to create event sources. For example, players can

fire events on their playerInfoStream to provide updates to
other players by using playerInfoStream.fire(myInfo). The
system supports CEP operators, which define the processing

logic, but also QoS operators to specify quality demands.
1) CEP Operators: ADAPTIVECEP supports (i) operators

typically found in the event algebras of CEP systems, i.e.,

disjunction and conjunction of events, sequencing and win-

dowing to recognize event patterns, (ii) aggregations, i.e.,

minimum, maximum and average, and (iii) relational operators,

i.e., selection, projection and joins of event streams. Table I

lists the available operators and shows how they are applied to

streams. Queries can be composed using the listed operators,

which have one or more subqueries as children, forming a

query tree with event streams in its leaves. The example

query composes two streams playerInfoStream (Line 5) and
gameInfoStream (Line 8) by joining them (Line 8) and selecting

only events which satisfy a given predicate (Line 10).
2) QoS Operators: In addition to CEP operators, ADAP-

TIVECEP also provides QoS operators that programmers can

adopt to specify non-functional requirements for the system,

e.g., to declare a minimum frequency for emitting events,

or latency bounds for delivering events to the consumer.

Table II presents the supported QoS operators. Quality demands

can be specified for streams as given in Table IIa, e.g.

playerInfoStream demand (latency lower 50.ms). The first

row in the table shows how to specify any quality demand

for a stream using the demand clause. The next rows show the

available demands.

Quality demands can be conditional as shown in Fig-

ure IIb, i.e., they can only apply if a given condition is

true, e.g., playerInfoStream demand (latency lower 50.ms)
when (proximity within 100.m). The first row in the table

shows how to specify a condition for a quality demand using

143143143

1 trait Demands {
2 def violatedDemands: Signal[Set[QoS]]
3 def adapting: Signal[Option[Set[QoS]]]
4 def adaptationPlanned: Event[Set[QoS]]
5 def delayAdaptation(delay: Event[Duration]): Unit
6 }

Figure 5: Demands interface.

the when clause and the second row shows how to specify a

condition for a stream using the only clause. Conditions on
streams are used to narrow down the set of producers for the

stream whose events are used, e.g., only producers in a certain

radius (stream only (proximity within 100.m)) or only the
nearest producer (stream only (proximity nearest 1)).
The next rows present the available conditions, which are

based on information monitored by ADAPTIVECEP, e.g.,

geographic position of hosts and frequency of emitting events.

The proximity condition restricts the consideration of quality
demands or the set of producers based on the spatial proximity

between event consumer and producer. The frequency condi-
tion represents a restriction based on the frequency of events

provided by a stream. Conditions are currently not based on

complex events themselves.

The example in Figure 3 specifies a quality demand using

the latency QoS operator in the demand clause (Line 6). The
demand is conditional, i.e., the latency demand is only taken

into consideration based on the proximity quality condition
(Line 7). A latency of less than 50ms is only demanded for

playerInfoStream producers within the range of 100m of the

infoQuery consumer.

C. Demands Violation

ADAPTIVECEP also provides mechanisms to (i) inform

user code about quality violations and (ii) introduce counter-

measures to restore the quality of service. When describing

the advanced ADAPTIVECEP development we will detail the

countermeasures. For now, we focus on user code notification.

A notification is triggered whenever a quality demand is not

satisfied and whenever the system is about to initiate a poten-

tially time-consuming adaptation. This allows the developer

to intervene appropriately, e.g., delay the adaptation or notify

the end user. Figure 5 presents the Demands interface1. User
code can use this interface to get access to the system’s current

state, i.e., violated quality demands and current adaptations.

The interface provides the set of currently violated demands

as time-varying signal violatedDemands. When the system
is adapting, the adapting signal contains the set of quality
demands to satisfy with the adaptation. When no adapta-

tion is in progress, the signal contains an empty Option.
Whenever an adaptation is planned but not yet performed,

the adaptationPlanned event is fired. It carries the quality

demands to fulfill in the adaptation. User code can choose

to delay a planned adaptation by firing an event passed to

1We use the term interface to generically refer to an abstract type that
defines method signatures. Scala uses the trait language construct to model
(among other things) interfaces.

delayAdaptation. The event carries the timespan for which
the adaptation should be delayed.

For example, the following code uses the infoQuery query
from Figure 3 and notifies the player of the game when

inconsistencies between his view and the other players’ views

on the game are anticipated due to high update latencies

between players.

1 ui.gameInconcistencyWarning = Signal {
2 if (infoQuery.violatedDemands().isEmpty)
3 None
4 else if (infoQuery.adapting().nonEmpty)
5 Some(optimizingMessage)
6 else
7 Some(warningMessage)
8 }

The code sets the gameInconcistencyWarning signal of the
user interface (Line 1). As long as no quality demands are

violated (Line 2), no warning is given (Line 3). If demands

are currently violated and the system is adapting (Line 4), the

player is informed that the game is currently being optimized

(Line 5). Otherwise, when quality demands are violated and no

adaptation is taking place, e.g., because the system is unable

to satisfy the quality demands, the player is informed about

potential inconsistencies in his view on the game (Line 7).

D. Language Integration
To increase the usability of the ADAPTIVECEP, its query

language is designed as a domain-specific language embedded

into Scala. The language is independent of the runtime backend

as explained in Section IV.

In the ADAPTIVECEP query language, queries are first-class

values, i.e., they can be used as function argument and return

value and be assigned to variables. This way, subqueries can be

bound to variables, which can then be used to compose the final

query. These variables can just be used in the query without

the need of splicing them into a string, which allows the Scala

compiler to ensure type-safety. For example, latency lower d
expects a value of type Duration for d and proximity within l
expects a value of type Length for l . A query that does not

satisfy the type constraints is rejected by the compiler.

A query expression can directly use the abstractions of the

host language. For instance, filtering an event stream can be

performed using a Scala function as predicate. The example

in Figure 3 uses a Scala lambda to filter events (Line 10).

Integration with the Scala host language allows the developer

to outsource a possibly more complex filter condition into its

own function, e.g., myCondition, and just pass this function as
filter in the query, i.e., query where myCondition.

IV. ADVANCED ADAPTIVECEP DEVELOPMENT

Expert developers can go beyond the high-level query

language presented in Section III in order to design different

approaches for handling unsatisfied demands. To control the

adaptation of the system at such lower level, we further

offer a more fine-grained API. In this section, we describe

ADAPTIVECEP’s interfaces to inspect the state of the system,

plug in new strategies and actuate changes to the system based

on the applied strategy.

144144144

1 trait CEPSystem {
2 val hosts: Signal[Set[Host]]
3 val operators: Signal[Set[Operator]]
4 }
5 trait QoSSystem {
6 val qos: Signal[Set[QoS]]
7 val demandViolated: Event[QoS]
8 }
9 trait System extends CEPSystem with QoSSystem
10

11 trait Host {
12 val position: Coordinate
13 val neighbors: Set[Host]
14 }
15 trait Operator {
16 val host: Host
17 val inputs: Set[Operator]
18 val outputs: Set[Operator]
19 }

Figure 6: System interface.

A. Reactive System Inspection Interface
ADAPTIVECEP provides an interface to access the current

configuration of the system and the current quality measure-

ments (Figure 6). The System interface is composed of the
CEPSystem interface to access the current hosts and operators
and the QoSSystem interface to access quality measurements
as time-varying signals. Sensor values are modeled as FRP

signals since, at any point in time, they represent the system’s

current state and this knowledge can change over time. Results

based on these signals are automatically recomputed whenever

a signal changes its value. Quality violations are discrete

time occurrences, hence they are provided as events in the

QoSSystem interface. The Operator interface provides access
to the upstream and downstream operators and to the host,

on which the operator is currently placed. Operators without

inputs are event sources and operators without outputs are

event sinks. The Host interface offers access to the geographic
coordinates of a host (if known) and of neighbor hosts, i.e.,

the next hops.

For example, the following definition of freeHosts uses the
System interface to find all hosts in the system on which no

operator is currently placed.

1 val freeHosts = Signal {
2 system.hosts() −− (system.operators() map { _.host })
3 }

The code snippet first maps all deployed operators to the

hosts on which they are placed via map { _.host }. Then it
removes those hosts from the set of all hosts currently connected

to the system. The resulting signal is automatically re-evaluated

whenever the hosts or the deployed operators change.

As an additional example, we show how to compute the

(time-varying) mapping from each operator to its potential

neighbor hosts and the current latency to each respective host:

1 val latenciesToOperatorNeighbors = Signal {
2 (system.operators() map { operator =>
3 operator −> (system.qos() collect {
4 case Latency(operator.host, host, latency) =>
5 host −> latency })
6 }).toMap
7 }

For each operator (Line 2), the code collects all latency

measurements and the respective host (Line 3). The line

host -> latency creates a pair, which assigns the measured
latency to the host. Finally, each operator is assigned the set of

the measured host–latency pairs (Line 3) and these assignments

are converted into a Map using toMap.

B. QoS-guided Adaptation Strategies

In ADAPTIVECEP, a strategy specifies the adaptation policy
to keep quality demands fulfilled based on the usual MAPE-

K control loop [22]. ADAPTIVECEP constantly monitors the

system’s state, i.e., joining and leaving hosts, their positions and

current quality measurements according to several parameters

such as latency, and update frequency. Quality measurements

are analyzed and matched against the specified quality demands.

Quality measurements and violations of quality demands are

provided to the strategy to plan the system’s adaptation. In this

paper, we consider adaptation strategies that migrate operators

to different hosts. Table III shows the supported demands and

exemplary strategies with countermeasures taken by the strategy

when the corresponding quality demand is not satisfied.

In the case of latency, a strategy can collect and analyze

network topology information to find the shortest or fastest

network path and place the operators of a query on hosts

such that the query respects the latency demand. In the case of

multi-objective optimization, strategies encapsulate the decision-

making process of potential trade-offs among multiple demands.

Strategy Development Interface: We adopt FRP for develop-
ing strategies because they naturally exhibit a reactive behavior,

i.e., they produce adaptations based on the current system

configuration (hosts and placement of operators) and current

time-changing quality measurements. In the API, a strategy

is a function which is given the System interface as input

and produces an event stream of adaptations. Strategies can

also monitor changes in the qos signal of the System interface
(Figure 6, Line 6) to proactively adapt the system when quality

measurements indicate that a demand violation is foreseen.

An example for a latency strategy which migrates operators

based on the fastest path to the sources is shown in Figure 7.

The implementation collects all events for violated latency

demands (Line 2), all current latency measurements (Line 7)

and uses both information to find possible operator migrations

(Line 12) to satisfy the demand. We assume the fastest path is

calculated by placeOnFastestPath, which returns the necessary
actuations, i.e., operator migrations.

The latencies signal (Line 7) wraps its computation into
a Signal expression. The expression accesses the system.qos
signal (Line 8). Hence, the value of latencies depends on the
value of system.qos. By using reactive abstractions, the value
of latencies is automatically updated to reflect changes of
system.qos. For the definition of adaptation (Line 12), we
use an Event expression, which generates a new event for every
occurrence of the latencyViolatedOperator event (Line 13)
and uses the current values of system.hosts and latencies
(Line 14) to compute the new fastest path.

145145145

Quality Strategy Countermeasure for Violated Demand

Frequency a) Adapt source frequency Notify event source to change frequency for emitting events
b) Choose another source Find new sources that can satisfy the demand

Latency a) Choose shortest path Find path with minimal number hops
b) Choose fastest path Find path with minimal round trip time
c) Choose another source Find an equivalent source with lower latency

Proximity a) Choose another source Find an equivalent nearer source

Throughput a) Choose path with higher throughput Find path over hosts which can provide a higher throughput regarding their processing power
b) Choose multiple intermediate hosts Find a set of hosts which can provide a higher throughput regarding their processing power

when each host processes a slice of all events

Bandwidth a) Choose path with higher bandwidth Find path over hosts which can provide whose network link all provide higher bandwidth

Table III: Demands operators in ADAPTIVECEP and adaptation Strategies.

1 system: System => {
2 val latencyViolatedOperator: Event[Host] =
3 system.demandViolated collect {
4 case Violation(operator, Latency(_, _, _)) =>
5 operator }
6

7 val latencies: Signal[Latency] = Signal {
8 system.qos() filter {
9 case latency @ Latency(_, _, _) =>
10 latency }
11 }
12 val adaptation: Event[Adaptation] = Event {
13 latencyViolatedOperator() map { placeOnFastestPath(
14 _, system.hosts(), latencies())) }
15 }
16 adaptation }

Figure 7: Latency fastest-path strategy.

C. QoS Monitoring Service Interface

Different monitoring services can be implemented for

ADAPTIVECEP, which are responsible for measuring the

quality of service in the system. Multiple monitoring services

for different quality types are simultaneously active. Since

accessing the quality values depends on low-level implementa-

tion details (e.g., measuring latency requires to interact with

the communication system used by the middleware), expert

developers are not expected to add new quality measures.

Our backend implementation already provides monitoring

services for the quality demands supported by ADAPTIVECEP.

Expert developers can combine the primitives offered by our

system to provide more elaborated implementations for quality

measurements. More complex implementations could also run

ADAPTIVECEP queries to monitor the quality of service.

An example for a latency monitoring service, which pe-

riodically performs latency measurements is in Figure 8. A

monitoring service is a function, which is given the CEPSystem
interface (cf. Figure 6) as input and produces an event stream

of quality measurements. Based on a timeout event timerEvent
(Line 3), the exemplary monitoring service triggers latency

measurements between every host and each of its neighbor

hosts. It constructs a new Latency value to represent the

latency between two hosts. The low-level implementation of

measureLatency (Line 8) directly interacts with the system
backend. A possible implementation could ping each neighbor

and base the latency measurement on the ping round-trip time.

1 system: CEPSystem => {
2 Event {
3 timerEvent() map { _ =>
4 system.hosts() flatMap { host =>
5 host.neighbors map { neighbor =>
6 Latency(
7 host, neighbor,
8 measureLatency(host, neighbor)) } } } } }

Figure 8: Sample implementation for latency monitoring.

V. IMPLEMENTATION

1) Embedded DSL: The ADAPTIVECEP query language is
implemented based on Scala’s DSL support that includes infix

notation for methods, implicits and operator overloading [31],

which are heavily used to support the syntax of the DSL.

In the language, the payload of each event is represented by

statically typed tuples, i.e., events offer index-based access to

their fields of different types. Since using a name instead of an

index number is more convenient for developers, we allow to

assign names to fields by using Shapeless [37], a Scala library

which provides advanced typing functionalities. Shapeless

supports heterogeneous lists (HLists), which are type-checked

based on the specific type of each element. For example,

for a generic list of type String ::Int :: HNil, the compiler
checks that val a: String = list(0); val b: Int = list(1) is
correct. Since heterogeneous lists in Shapeless are essentially

extensible records where a name can be assigned to every

element, we use them to model events. The extensibility of

the records is particularly useful when joining event streams,

where the resulting tuple is a type-safe concatenation of the

fields of both joined tuples [23]. The following example joins

two streams which carry events of type (String, Long) and
(Long, Double), respectively:

1 val stream0: Stream[(String, Long)] = ...
2 val stream1: Stream[(Long, Double)] = ...
3

4 val query: Query[(String, Long, Double)] =
5 join ((stream0 window 30.seconds.sliding)
6 (stream1 window 30.seconds.sliding)
7 on (_1 === _0))

The streams are joined on the second element of stream0
and first element of stream1 using the _1 === _0 join condition.
The compiler checks not only that the types of the fields in

the join condition, i.e., Long in the example, match, but also

146146146

that the result type of the query (String, Long, Double) is a
concatenation of both streams’ fields except that the field of

the join condition is only present once. This kind of check

would not be possible using standard Scala or Java generics.

The type of the query can also be inferred by the compiler

when not given explicitly.

The developer can directly work with extensible records or

plain Scala tuples and use Shapeless’ generic programming

functionality for converting from/to each other or from/to other

isomorphic algebraic data types like Scala case classes.

2) Runtime Environment: We use the Akka actor system [2]

to encapsulate and distribute operators. Each actor implements

a single operator and streams are implemented via messages

passed from one operator to another. Simple operators directly

work on the event messages, e.g. filtering is implemented by

forwarding only events that fulfill a given predicate. For more

complex operators, e.g., joins or sequences, we integrate with

the Esper CEP engine [1] to aggregate and correlate events.

We do not use another intermediate layer like Akka Streams

– which also provide event processing operators – because it

lacks support for complex correlations, like joins.

Our implementation of QoS operators is based on the

interaction of (i) measuring quality of service via monitoring

services for each quality demand and (ii) applying adaptation

strategies, which take action depending on the measured

values. In the current implementation, the values obtained from

monitoring on each host are forwarded to a central coordinator,

which executes the strategies that can assume global knowledge

of the system’s state. For example, our implementation monitors

latency by measuring the round-trip delay time from each

host to its neighbors. The measurements are transmitted to

the coordinator, where a corresponding strategy triggers an

adaptation when the latency for a query exceeds the threshold

specified in the query.

3) Language–Runtime Interface: To keep the ADAP-

TIVECEP language independent of the runtime, our im-

plementation of the language is parametrised over an in-

terface that defines the underlying runtime. For example,

run (Figure 3, Line 12) takes a reference to the system

runtime as argument. Crucially, the argument does not

need to be given explicitly, but it can be inferred using

Scala’s implicit argument resolution. By declaring an implicit

system value implicit val sys: System = AkkaEsperBacked(),
the run method uses the specified system as back-end. This way,

the user-code configuration for the System sys is decoupled
from the queries it executes, i.e., configurations with different

monitoring services and strategies.

VI. EVALUATION

The goal of our evaluation is to assess the ability of a

CEP system implemented with ADAPTIVECEP to satisfy the

demands set by the user upon changing conditions.

A. Evaluation Setup
We simulate the execution of a CEP system constituted of

25 fully-connected hosts which can exchange events over their

connections. In the experimental setup, we model variability

in environmental conditions (e.g., changing quality of data

connection in a mobile device) by randomly changing latency

and bandwidth of connections over time rather than using a

full-fledged network simulator. Event producers and consumers

are placed on fixed hosts. The adaptation process dynamically

changes the placement of intermediate operators based on the

activated strategy. We now present the simulation scenarios.

Static vs. Adaptive case: We consider two kinds of sim-

ulations, Static and Adaptive. Both simulations start with

the same initial configuration. In the static case, operator

placement is fixed. In the adaptive simulation, the strategy

checks the current quality measurements on a regular basis and

reconfigures the system if the quality demands are not satisfied

by finding an operator placement that fulfills the demands. If

the system is about to cross the defined threshold, the strategy

compares the current configuration against a set of potential

new configurations, where operators are relocated to other hosts,

and adapts the system to the configuration which performs

best under the given demand. Some adaptations may improve

a performance measure at the detriment of another one. In

such case, the system assumes it only has to optimize for the

demand constrained by the user in the query. In case multiple

demands are specified, we implemented a strategy that balances

between both quality demands in case of conflicts by choosing

a new configuration which maximizes the quality gains as

compared to the current configuration. We use a metric which

assigns equal weight to the proportional changes of all quality

measurements when going from the current to a potential new

configuration. For example, a possible new configuration which

doubles bandwidth but also doubles latency compared to the

current configuration will be considered neither gainful nor

involving losses. For different use cases, strategies with other

cost metrics may be more suitable. Resolution of conflicting

demands opens a wide design space for strategies.

Demands: We consider two demands, latency and bandwidth,
because they are crucial in online mobile scenarios for inter-

active multi-user applications. In the simulation, their values

change randomly over time, modifying the quality properties

of communication links in the simulated infrastructure.

Queries: We consider two queries. The first query used

for the simulation has a structure similar to the example in

Figure 3. We simulate one consumer and two producers. The

event streams from the producers are joined by one operator and

filtered by a second one. The second query is more complex,

extending the first query by joining its result with the stream

of another event producer.

Adaptation Rate: We consider two adaptation rates. In the
High adaptation rate, adaptation occurs every second. In the

Low adaptation rate, it occurs only once a minute.

B. Evaluation Results
Figure 9 shows the simulation results. Each plot reports the

latency (blue lines) and bandwidth (green lines) measurements

for both the static and the adaptive approach. The adaptive

approach aims to keep latency below the latency threshold

147147147

Latency [ms] and bandwidth [100 kbps] on y-axis plotted over time [min] on x-axis
Static Simulation: Latency Adaptive Simulation: Latency Static Simulation: Bandwidth Adaptive Simulation: Bandwidth

Query 1, adaptation every second Query 1, adaptation every minute Query 2, adaptation every second Query 2, adaptation every minute

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

(a) Optimizing for latency.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

(b) Optimizing for bandwidth.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

(c) Optimizing for both latency and bandwidth.

Figure 9: Evaluation results.

(upper red horizontal bar) and bandwidth above the bandwidth
threshold (lower red horizontal bar). The first and second

column display the results for Query 1, the third and fourth

column for Query 2. The first and third column show the

high adaptation rate for the adaptive simulation, the second

and fourth column show the low adaptation rate. The static

simulation looks the same in the first two and the last two

columns, respectively, since it does not adapt to changing

conditions.

Figure 9a shows the results for a given latency demand. For

the adaptive strategy, the demand is never violated during the

simulation, i.e., it stays below the threshold (upper horizontal

bar) for both queries. In the non-adaptive static case, the

latency is distinctly higher, exceeding the threshold for the

most part of the simulation time. With the low adaptation rate,

the latency demand is violated in a few cases before the system

reconfigures itself. Figure 9b shows the system behavior in

case of a bandwidth demand. Some adaptations performed

to increase bandwidth actually result in higher latency. The

system assumes it can make such trade-offs because the user

defined a bandwidth but not a latency demand. The system is

especially successful in ensuring the bandwidth demand for the

second query using a high adaptation rate. Also, in the other

three cases, the adaptive simulation regularly adapts to improve

bandwidth (steep increases), which keeps it above the threshold

compared to the static case, where bandwidth stays below the

threshold for long periods of time. Figure 9c shows the results

for users specifying demands on both latency and bandwidth.

For such a multi-objective scenario, it is often impossible

to satisfy both demands at the same time and more demand

violations will occur. Also, quality of service for each demand

does not decrease to the same extent as seen in Figure 9a

and 9b, where the strategy is allowed sacrificing one demand

for the other.

The simulation shows that system adaptations allow meeting

the specified quality demands and quality awareness can be used

to improve the system’s performance. By providing language

abstractions to the developer for specifying important demand

characteristics for an application, ADAPTIVECEP can adapt

itself to satisfy the given demands.

VII. RELATED WORK

The work in this paper spans over different areas. We

consider related work in CEP and operator placement. We

also provide an overview of FRP, which we extensively use

in the design of our API and we consider previous (non-CEP)

work on language-level adaptation.

A. Languages for CEP
As CEP deals with queries over streams of data, researchers

have investigated dedicated languages to express those queries.

CEP languages offer means to define event streams and

operators to express their combination and correlation.

Event streams in CEP can be thought of as time-changing

database tables. Queries are evaluated every time a new

148148148

event occurs, i.e., a new entry in the table is added. Not

surprisingly, languages for CEP have similarities with query

languages for databases, e.g., SQL. Hence, they also share

many limitations of database query languages, most notably,

CEP queries are usually specified as strings, like in Esper [1],

SASE [46], Cayuga [15] and TESLA [12]. As such, they

do not take advantage of language integration, including

safety guarantees from the compiler and integration with other

language abstractions such as inheritance or late binding.

Recent languages for real-time analytics, like Microsoft

Trill [8] for C#, make an attempt at language integration and are

designed as embedded DSL in mainstream languages. Similarly,

macros have been used to embed SQL-like expressions into

Scala [3]. The recent introduction of lambdas in Java 8 allows

to define queries over streams in a declarative way using pure

Java syntax. Similar to our case, in Spark Streaming [47]

developers express the event processing logic in a Scala DSL.

Yet, a fundamental limitation of existing languages for CEP,

including all those mentioned above, is that they capture only a

single aspect of the system: the definition of event combination

and correlation. None of these languages takes into account

elements like quality demands or conditions nor they provide

an adaptation mechanism to fulfill those demands. In fact they

provide CEP operators but no quality operators.

B. Operator Placement
Finding the optimal placement according to the performance

and cost models is known as the operator placement problem.

Existing work involves identifying an appropriate host to place

an operator [35], [4] based on metrics like throughput and

latency, but it does not take into account other constraints that

are important in real-world systems, such as spatial location.

In the context of event-based communication, techniques

exists to achieve low latency [44], to minimize the utilized

bandwidth [43], to achieve reliable detection and delivery of

events [24], or to achieve confidential transmission and ensuring

privacy [45]. In MCEP [32], the delivered events are based on

a range query whose focal point is the current location of the

mobile device. The system ensures that the operator graph can

always be mapped to new producers of information.

Though a number of operator placement algorithms are dy-

namic, i.e., exploiting runtime information to guide placement,

to the best of our knowledge, no existing approach allows to

select specific demands in the CEP language nor it is open to

the implementation of new strategies like ADAPTIVECEP.

C. Functional Reactive Programming
FRP [18] allows to define data flows declaratively and con-

cisely via time-changing values. The runtime of the language

automatically propagates the changes to dependent values. Over

time a number of variants have been proposed. Bainomugisha

et al. [5] provide an overview of the existing solutions.

Flapjax [28] introduced the use of FRP in Web applications,

which has recently inspired a number of reactive libraries

such as Rx.JS [27] and Bacon.js [34]. REScala [41] integrates

event streams and time-changing values with object-oriented

abstractions. Its runtime provides an event propagation system

supporting dynamic dependencies for adding event queries

during the execution. i3QL [29] adopts techniques from

relational algebra and language-level optimizations to speed

up event processing and enable incremental computation.

Recent research on RP focused on different propagation

strategies to achieve properties such as glitch avoidance [11],

efficient propagation over remote network connections [17] or

concurrent propagation in a Web environment [13].

D. Languages for Adaptive Systems
Context-oriented programming (COP) [39] has been sug-

gested to implement adaptive systems based on the MAPE-K

autonomic computing model [40]. In this paradigm, the pro-

gramming language provides layers, dedicated abstractions to
represent behaviors that can be composed based on the change

of external conditions. EventCJ [21] allows to control layer

activation based on user-defined events and their combination.

SCEL [30] is a core language inspired by process calculi

with a formal semantic foundation to reason about autonomic

systems behavior. It provides dedicated abstractions to model

behaviors, knowledge and aggregation based on policies, and

to support context-awareness, self-awareness and adaptation.

Degano et al. [14] propose a COP language which features

the separation into a declarative part for the context and a

functional part for actual computing. The formal approach

allows to statically verify correctness properties for adaptations

based on a type and effect system. S-CLAIM [6] is a declarative

agent-oriented language for developing reactive mobile agents

to achieve ambient intelligence and context-sensitivity.

Despite events being supported in some form by many

of these languages (e.g., messages exchanged by processes,

event conditions to trigger an adaptation, messages in agent

communication), none of them specifically targets CEP.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented ADAPTIVECEP, a novel CEP

language and system that allows developers to specify not only

event processing operators, but also quality demands that the

system should fulfill. ADAPTIVECEP supports programmable

dynamic adaptation via strategies that implement the actual

adaptation plan. An interface based on FRP allows to access

and modify the current system configuration. Our evaluation

shows that ADAPTIVECEP allows to satisfy quality demands

despite dynamic changes in the execution environment.

We are currently working on extending ADAPTIVECEP

to support more operators, e.g., ones that express complex

movement patterns of event sources and sinks. Our vision is

that such operators will allow not only to adapt the systems’

behavior when necessary, but also to proactively trigger an

adaptation when a demand violation is foreseen.

IX. ACKNOWLEDGMENTS

This work has been co-funded by the German Research

Foundation (DFG) as part of project C2 within the Collaborative

Research Center (CRC) 1053 – MAKI, by the European

Research Council, grant No. 321217, and by the LOEWE

initiative (Hessen, Germany) within the NICER project.

149149149

REFERENCES

[1] EsperTech – Esper. http://www.espertech.com/esper/, 2006. Accessed
05-01-2017.

[2] Akka. http://akka.io/, 2009. Accessed 05-01-2017.
[3] Slick (Scala Language Integrated Connection Kit). http://slick.typesafe.

com/, 2012. Accessed 05-01-2017.
[4] Y. Ahmad and U. Çetintemel. Network-aware query processing for

stream-based applications. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30, VLDB ’04, pages
456–467. VLDB Endowment, 2004.

[5] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d.
Meuter. A Survey on Reactive Programming. ACM Computing Surveys,
45(4):52:1–52:34, Aug. 2013.

[6] V. Baljak, M. T. Benea, A. E. F. Seghrouchni, C. Herpson, S. Honiden,
T. T. N. Nguyen, A. Olaru, R. Shimizu, K. Tei, and S. Toriumi. S-CLAIM:
An Agent-based Programming Language for Ami, A Smart-Room Case
Study. Procedia Computer Science, 10:30 – 37, 2012.

[7] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw. Software Engineering for Self-
Adaptive Systems. chapter Engineering Self-Adaptive Systems Through
Feedback Loops, pages 48–70. Springer-Verlag, Berlin, Heidelberg, 2009.

[8] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C.
Platt, J. F. Terwilliger, and J. Wernsing. Trill: A high-performance
incremental query processor for diverse analytics. Proceedings of the
VLDB Endowment, 8(4):401–412, Dec. 2014.

[9] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Anders-
son, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,
H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A.
Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle.
Software Engineering for Self-Adaptive Systems: A Research Roadmap,
pages 1–26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[10] Cisco. Cisco Visual Networking Index: Forecast and Methodology.
Technical report, 2005-2020.

[11] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a
call-by-value language. In ESOP, pages 294–308, 2006.

[12] G. Cugola and A. Margara. TESLA: A formally defined event
specification language. In Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems, DEBS ’10, pages 50–61,
New York, NY, USA, 2010. ACM.

[13] E. Czaplicki and S. Chong. Asynchronous Functional Reactive Program-
ming for GUIs. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, pages
411–422, New York, NY, USA, 2013. ACM.

[14] P. Degano, G.-L. Ferrari, and L. Galletta. A Two-Component Language
for Adaptation: Design, Semantics and Program Analysis. IEEE
Transactions on Software Engineering, 42(6):505–529, June 2016.

[15] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards
expressive publish/subscribe systems. In Proceedings of the 10th
International Conference on Advances in Database Technology, EDBT’06,
pages 627–644, Berlin, Heidelberg, 2006. Springer-Verlag.

[16] A. Diaconescu, Y. Maurel, and P. Lalanda. Autonomic Management via
Dynamic Combinations of Reusable Strategies. In Proceedings of the 2Nd
International Conference on Autonomic Computing and Communication
Systems, Autonomics ’08, pages 16:1–16:10, ICST, Brussels, Belgium,
Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[17] J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini. Distributed
REScala: An Update Algorithm for Distributed Reactive Programming.
In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA
’14, pages 361–376, New York, NY, USA, 2014. ACM.

[18] C. Elliott and P. Hudak. Functional reactive animation. In Proceedings
of the second ACM SIGPLAN international conference on Functional
programming, ICFP ’97, pages 263–273, New York, NY, USA, 1997.
ACM.

[19] A. Hinze, K. Sachs, and A. Buchmann. Event-based Applications and
Enabling Technologies. In Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, DEBS ’09, pages 1–15.
ACM, 2009.

[20] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots,
and functional reactive programming. In Summer School on Advanced
Functional Programming 2002, Oxford University, volume 2638 of

Lecture Notes in Computer Science, pages 159–187. Springer-Verlag,
2003.

[21] T. Kamina, T. Aotani, and H. Masuhara. EventCJ: A Context-oriented
Programming Language with Declarative Event-based Context Transition.
In Proceedings of the Tenth International Conference on Aspect-oriented
Software Development, AOSD ’11, pages 253–264, New York, NY, USA,
2011. ACM.

[22] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, Jan. 2003.

[23] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly Typed Heterogeneous
Collections. In Proceedings of the 2004 ACM SIGPLAN Workshop on
Haskell, Haskell ’04, pages 96–107, New York, NY, USA, 2004. ACM.

[24] B. Koldehofe, R. Mayer, U. Ramachandran, K. Rothermel, and M. Völz.
Rollback-recovery without checkpoints in distributed event processing
systems. In Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems, DEBS ’13, pages 27–38, New York,
NY, USA, 2013. ACM.

[25] G. Mainland, G. Morrisett, and M. Welsh. Flask: Staged functional
programming for sensor networks. In Proceedings of the 13th ACM
SIGPLAN International Conference on Functional Programming, ICFP
’08, pages 335–346, New York, NY, USA, 2008. ACM.

[26] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng.
Composing adaptive software. Computer, 37(7):56–64, July 2004.

[27] E. Meijer. Reactive extensions (Rx): Curing your asynchronous
programming blues. In ACM SIGPLAN Commercial Users of Functional
Programming, CUFP ’10, pages 11:1–11:1, New York, NY, USA, 2010.
ACM.

[28] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: a programming language for
ajax applications. In Proceeding of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications,
OOPSLA ’09, pages 1–20, New York, NY, USA, 2009. ACM.

[29] R. Mitschke, S. Erdweg, M. Köhler, M. Mezini, and G. Salvaneschi.
i3QL: Language-integrated Live Data Views. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’14, pages 417–432, New York,
NY, USA, 2014. ACM.

[30] R. D. Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A Formal Approach
to Autonomic Systems Programming: The SCEL Language. ACM
Transactions on Autonomous and Adaptive Systems, 9(2):7:1–7:29, July
2014.

[31] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A
Comprehensive Step-by-Step Guide, 2nd Edition. Artima Incorporation,
USA, 2nd edition, 2011.

[32] B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, D. Lillethun, and
U. Ramachandran. MCEP: A mobility-aware complex event processing
system. ACM Transactions on Internet Technology, 14(1):6:1–6:24, Aug.
2014.

[33] B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran.
MigCEP: Operator migration for mobility driven distributed complex
event processing. In Proceedings of the 7th ACM International Conference
on Distributed Event-based Systems, DEBS ’13, pages 183–194, New
York, NY, USA, 2013. ACM.

[34] J. Paananen. Bacon.js. http://baconjs.github.io/, 2012. Accessed 05-01-
2017.

[35] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer. Network-aware operator placement for stream-processing
systems. In Proceedings of the 22nd International Conference on Data
Engineering, ICDE ’06, pages 49–, Washington, DC, USA, 2006. IEEE
Computer Society.

[36] S. Rizou, F. Durr, and K. Rothermel. Solving the multi-operator placement
problem in large-scale operator networks. In Proceedings of 19th
International Conference on Computer Communications and Networks,
pages 1–6, Aug 2010.

[37] M. Sabin. Shapeless. http://github.com/milessabin/shapeless, 2011.
Accessed 05-01-2017.

[38] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive
Systems, 4(2):14:1–14:42, May 2009.

[39] G. Salvaneschi, C. Ghezzi, and M. Pradella. Context-oriented Program-
ming: A Software Engineering Perspective. Journal of Systems and
Software, 85(8):1801–1817, Aug. 2012.

[40] G. Salvaneschi, C. Ghezzi, and M. Pradella. ContextErlang. Science of
Computer Programming, 102(C):20–43, May 2015.

150150150

[41] G. Salvaneschi, G. Hintz, and M. Mezini. REScala: Bridging between
object-oriented and functional style in reactive applications. In Proceed-
ings of the 13th International Conference on Modularity, MODULARITY
’14, pages 25–36, New York, NY, USA, 2014. ACM.

[42] Y. Shoham. Software agents. chapter An Overview of Agent-oriented
Programming, pages 271–290. MIT Press, Cambridge, MA, USA, 1997.

[43] M. A. Tariq, B. Koldehofe, G. G. Koch, and K. Rothermel. Distributed
spectral cluster management: A method for building dynamic publish/sub-
scribe systems. In Proceedings of the 6th ACM International Conference
on Distributed Event-Based Systems, DEBS ’12, pages 213–224, New
York, NY, USA, 2012. ACM.

[44] M. A. Tariq, B. Koldehofe, and K. Rothermel. Efficient content-based
routing with network topology inference. In Proceedings of the 7th ACM
International Conference on Distributed Event-based Systems, DEBS
’13, pages 51–62, New York, NY, USA, 2013. ACM.

[45] M. A. Tariq, B. Koldehofe, and K. Rothermel. Securing Broker-Less
Publish/Subscribe Systems Using Identity-Based Encryption. IEEE
Transactions on Parallel and Distributed Systems, 25(2):518–528, 2014.

[46] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’06, pages
407–418, New York, NY, USA, 2006. ACM.

[47] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized
streams: Fault-tolerant streaming computation at scale. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 423–438, New York, NY, USA, 2013. ACM.

151151151

