
Consistency Types
for Safe and E�cient Distributed Programming

Alessandro Margara

Politecnico di Milano

alessandro.margara@polimi.it

Guido Salvaneschi

TU Darmstadt

salvaneschi@cs.tu-darmstadt.de

Abstract
Consistency is a long standing problem in distributed systems.

Low consistency levels are considered a necessity for scalability.

High consistency is required for critical tasks such as payment

and identi�cation. Modern (geo-)distributed systems rely on the

data propagation mechanisms and consistency guarantees of the

distributed data store they build upon, which makes the imple-

mentation of a system that mixes di�erent levels of consistency

complex and error prone. In this paper we present preliminary work

on ConSysT, a programming language that supports heterogeneous

consistency speci�cations at the type level. In ConSysT, developers

assign consistency levels directly to the data and the type system

ensures the correct behavior of the application even with computa-

tions that mix data at multiple consistency levels. Our vision is that

the ConSysT runtime automatically determines the most e�cient

mechanism to achieve the desired level of consistency among those

o�ered by the underlying data store.

ACM Reference format:
Alessandro Margara and Guido Salvaneschi. 2017. Consistency Types

for Safe and E�cient Distributed Programming. In Proceedings of FTFJP’17,
Barcelona, Spain, June 18-23, 2017, 2 pages.

DOI: 10.1145/3103111.3104044

1 Introduction
Brewer’s CAP theorem states the impossibility to simultaneously

achieve always-on experience – availability – and to read the latest

written version of a distributed data store – linearizable consistency
– in the presence of partial failures – partitions [4]. The ubiquity

and ever-growing size of distributed systems makes partition toler-

ance indispensable. Thus the choice remains between the desired

level of consistency and availability (or low latency). Higher levels

of consistency are not negotiable in monetary transactions, mis-

sion critical and security applications. Lower levels of consistency

– thus, high availability – has been e�ectively leveraged in sev-

eral systems such as social media applications, which may accept

(temporary) inconsistency in the content they provide to clients.

Eventual consistency has become a de-facto standard in this class

of systems [11].

However in practise, the classi�cation of systems into those that

require high consistency and those for which low consistency is

acceptable is not sharp. In fact, many systems mix functionalities

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

FTFJP’17, Barcelona, Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-5098-3/17/06. . . $15.00

DOI: 10.1145/3103111.3104044

that require high consistency such as payment, with functionalities

that are perfectly compatible with lower levels of consistency, such

as advertising. To meet these requirements, some work propose

mixing data at multiple levels of consistency to provide low latency

when possible and high consistency when needed [9].

Programming on top of a weakly consistent data store is arguably

di�cult, since the developers need to identify possible anomalies

that arise from data inconsistency and compensate their e�ects [2].

Multiple levels of consistency further require reasoning on the

possible interactions of data elements with di�erent levels.

We claim that a programming language that is aware of data

consistency can support and ease the development of distributed

applications. Moving from this premise, this paper introduces Con-
SysT, a programming language that supports de�ning computations

on data at di�erent consistency levels, thus enforcing high consis-

tency where needed without sacri�cing the performance gain of

using low level consistency when it is allowed to do so. We sketch

a type system that is aware of the consistency levels and ensures

that data at di�erent levels are not mixed in a way that breaks the

expected semantics of the application.

2 The ConSysT Programming Language
ConSysT is a programming language for distributed systems. Values

of type Shared[T] are replicated on multiple peers with each peer

holding a local copy to increase fault tolerance and availability.

When the variable is written, the new value is propagated to the

other replicas. The code below shows – in a syntax similar to Scala

– three peers sharing the variables a and b:

1 val a: Shared[Int] = 1
2 val b: Shared[Int] = 8

3 // Peer P1
4 a = 5
5 ...

5 // Peer P2
6 b = a++
7 ...

7 // Peer P3
8 a + b
9 ...

Depending on the speci�c propagation mechanisms adopted,

and on the level of consistency they provide, the operation a + b on

P3 can lead to di�erent results. (1) P3 computes the value 9 = 1 + 8

if it performs the + operation before observing the updates on a

and b performed in the other two peers. (2) P3 computes the value

7 = 1 + 6 if P2 receives the update a = 5 before computing b = a++, and

P3 observes the update of b (b = 6) from P2 but not the update a = 5

from P1. The latter case exempli�es a violation of causal consistency
because P3 sees the new a but not the value of a that caused it. In

ConSysT, this problem can be addressed by de�ning the values a

and b causally consistent (CC). This de�nition guarantees that if

P3 sees the new value of b, it also sees the value of a that caused it,

ruling out case (2).

1 val a: CC[Int] = 1
2 val b: CC[Int] = 8

Various levels of consistency – and corresponding update propa-

gation mechanisms – exist that provide di�erent balances between

the guarantees o�ered to the developers and the performance cost

for ensuring these guarantees.

FTFJP’17, June 18-23, 2017, Barcelona, Spain Alessandro Margara and Guido Salvaneschi

In ConSysT, the developers can specify consistency at the gran-

ularity of individual values, to enforce a high level of consistency

only in cases that strictly require so. For instance, the following

code snippet de�nes a variable users as eventually consistent (EC)

and a variable dashboardText as causally consistent.

1 val users: EC[Int] = ...
2 val dashboardText: CC[String] = ...

An obvious problem is how di�erent consistency levels interact

in the same application, for instance, in the case a function takes

in input both dashboardText and users to produce another value. Also,

another problem is when a program tries to assign e.g., a CC[Int]

value to a EC[Int] value. The ConSysT type system disciplines the

interactions between values at di�erent levels of consistency by

ensuring that values with low consistency levels do not �ow into

computations that demand for higher consistency levels.

Core ConSysT We introduce a core calculus for ConSysT. The

syntax includes function applications and abstractions, variables,

consistency types and base types:

t ::= t t | λx : T . t | v Terms

v ::= λx : T . t | ... Values

H ::= EC[T] | SC[T] | CC[T] | F I FO [T] | Shared [T] | T Types

T ::= Int | Str inд | ... Base Types

The semantics is standard for call by value lambda calculus. For

ease of explanation, we hereby consider �ve levels of consistency:

eventual EC[T], FIFO FIFO[T], causal CC[T], sequential SC[T], and no

consistency guaranteed by the language Shared[T]. Other consistency

levels can be de�ned to accommodate the needs of applications and

the guarantees provided by speci�c data store implementations.

Besides the standard ones, the typing rules for ConSysT are:

Γ ` t : SC[T]
Γ ` t : T (T-Coerce)

SC[T]<:CC[T] (T-Sub1)

CC[T]<: F I FO [T] (T-Sub2)

F I FO [T]<: Shared [T] (T-Sub3)

SC[T]<: EC[T] (T-Sub4)

EC[T]<: Shared [T] (T-Sub5)

Shared[T]

FIFO[T]

CC[T]

SC[T]

EC[T]

With T-Coerce sequentially consistent values can be treated as a

local value. The other rules de�ne subtyping relations that prevent

assigning lower consistency levels to higher consistency levels.

Outlook We are currently working on a Scala embedding of Con-
SysT. Open questions in the design and implementation of ConSysT
include:

• De�ning complex data types with �elds at heterogeneous con-

sistency levels.

• Devising a suitable backend for the implementation. We are

currently considering Apache Cassandra as a possible candidate.

• Integrating transactional updates that involve multiple opera-

tions and are possibly executed with various levels of isolation.

• Considering restrictions to the operations allowed on certain

data types – for example, commutative operations – to guaran-

tee a higher consistency level even with low synchronization

overhead.

3 Related Work
Databases and distributed systems Internet-scale distributed

systems highlight the tension between performance – availability –

and consistency. Motivated by the observation that eventual consis-

tency often behaves as stronger consistency levels since anomalies

seldom occur, various NoSQL data stores favor performance over

correctness and adopt some form of eventual consistency [11] or

causal consistency [3]. Under certain conditions, values are guar-

anteed to converge in a self-stabilizing manner, despite any fail-

ure. This kind of datatypes are known as con�ict-free replicated

datatypes (CFRDs) [10]. RedBlue consistency [9] exploits the e�-

ciency of eventual consistency to propagate (operations on) CFRDs,

and propagates other datatypes with protocols that ensure stronger

consistency. SIEVE [8] automatically recognizes CFRDs and selects

the least expensive update propagation mechanism. An orthog-

onal line or research studies protocols to ensure stronger levels

of consistency than eventual consistency – for example, bolt-on

causal consistency [3] and high-available transactions (HAT) [1] –

without incurring in high synchronization costs.

Programming Languages and Type Systems Cloud types [5]

are a way to ensure eventual consistency in distributed systems.

AJ [6] is a programming language that takes a data centric approach

to concurrency. In AJ, object �elds are grouped into sets that must be

updated atomically. Code fragments, referred to as units of work are

associated to atomic sets, and the compiler automatically adds syn-

chronization operations to preserve the consistency of the atomic

set. Holt et al. [7] introduce consistency types but with an inheri-

tance hierarchy inverted compared to ours, letting values with low

consistency �owing into values with high consistency. In addition

to expressing consistency, their types can embed probabilistic guar-

antees on the latency of propagation or on the maximum di�erence

between the values stored at each replica. DCCT is a language that

mixes multiple consistency levels [12]. In contrast to ConSysT– a

general purpose language with consistency types – DCCT is a data-

oriented language where actions – for example, queries – access a

distributed storage, and annotations de�ne consistency of values.

References
[1] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013.

HAT, Not CAP: Towards Highly Available Transactions (HotOS ’13). USENIX

Association.

[2] Peter Bailis and Ali Ghodsi. 2013. Eventual Consistency Today: Limitations,

Extensions, and Beyond. Commun. ACM 56, 5 (2013), 55–63.

[3] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-on

Causal Consistency (SIGMOD ’13). ACM.

[4] Eric Brewer. 2012. CAP twelve years later: How the "rules" have changed. (2012).

[5] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood.

2012. Cloud Types for Eventual Consistency (ECOOP’12). Springer-Verlag.

[6] Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri,

and Jan Vitek. 2012. A Data-centric Approach to Synchronization. ACM Trans.
Program. Lang. Syst. 34, 1 (May 2012).

[7] Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin, and Luis

Ceze. 2016. Disciplined Inconsistency with Consistency Types (SoCC ’16). ACM.

[8] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and

Viktor Vafeiadis. 2014. Automating the Choice of Consistency Levels in Repli-

cated Systems (USENIX ATC’14). USENIX Association, 281–292.

[9] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and

Rodrigo Rodrigues. 2012. Making Geo-replicated Systems Fast As Possible,

Consistent when Necessary (OSDI ’12). USENIX Association.

[10] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.

Con�ict-free Replicated Data Types (SSS’11). Springer.

[11] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (2009), 40–44.

[12] Nosheen Zaza and Nathaniel Nystrom. 2016. Data-centric Consistency Policies:

A Programming Model for Distributed Applications with Tunable Consistency

(PMLDC ’16). ACM.

	Abstract
	1 Introduction
	2 The ConSysT Programming Language
	3 Related Work
	References

