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Abstract

Cloud computing offers an attractive and cost-efficient com-
puting platform and hence it has been widely adopted by the
industry and the government. At the same time, cloud com-
puting poses a serious security challenge because sensitive
data must often be outsourced to third party entities that can
access the data and perform computations on them.

Partial homomorphic encryption is promising for secure
computation, since it allows programs to be executed over
encrypted data. Despite advances in cryptographic tech-
niques have improved the expressivity of such programs, in-
tegration with mainstream languages has seen little progress.
To this end, we present SecureScala, a domain-specific lan-
guage in Scala that allows expressing secure programs with-
out requiring any cryptographic knowledge. SecureScala is
based on a novel combination of free monads and free ap-
plicative functors and supports parallel execution and static
analyzability. We evaluate our approach through several case
studies, demonstrate its expressivity, and show that it incurs
in limited performance overhead.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Domain-specific language, Secure computation

1. Introduction

Cloud computing offers on-demand provisioning of re-
sources, seemingly unlimited scalability and other desirable
properties, e.g., fault tolerance, minimal maintenance and
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cost reduction. To take advantage of these opportunities, the
program representing a computation at hand and the asso-
ciated data is uploaded into the cloud and executed there.
Moving computations to the cloud, however, forces devel-
opers to face a number of security challenges. While the
cloud is a viable approach for non-sensitive and public data,
it is problematic for scenarios where data is sensitive, requir-
ing protection from both adversaries and the cloud provider.
Traditional encryption targeted to protect data while passing
communication channels does not offer a solution for the
cloud-based computation scenario because the program run-
ning on the remote hardware is not allowed to decrypt the
data during the execution — plain text data would be available
to the owners of the remote host.

Homomorphic encryption schemes [10] allow computa-
tions over encrypted data. Hence, private data can be up-
loaded to the cloud and processed in the encrypted form,
without leaking information. Available homomorphic en-
cryption schemes differ in the operations they support. Fully
homomorphic encryption schemes (FHE) support at least
multiplication and addition, from which all other operations
can be derived. While in theory FHE seems to be the ulti-
mate solution to the problem of computing over encrypted
data, the computational overhead makes it unviable in prac-
tice [11]. Partial homomorphic encryption (PHE) schemes
are less expressive — they support computation over en-
crypted data with respect to specific operations, but in con-
trast to FHE, exhibit acceptable performance. Examples
of such schemes are Paillier [20] (addition), ElGamal [9]
(multiplication), OPE [6] (order comparisons) and AES [11]
(equality comparisons).

PHE schemes have been used in several systems to
provide practical and provable security [13, 21, 26]. Yet,
these approaches adopt special-purpose languages, such as
SQL [21] or PigLatin [26] to specify computations. A PHE
embedding in a general-purpose language that enables reuse
of existing libraries, fostering modularity and composition
of secure computations, is still open research.



To fill this gap, we present SecureScala, an embedded
domain-specific language (DSL) for Scala, that allows de-
velopers to write computations over encrypted data without
requiring sophisticated cryptographic knowledge, without
forfeiting integration with a general-purpose language. Se-
cureScala is based on a novel combination of a well known
approach using free monads [24, 25] and more recent re-
search on free applicative functors [7]. While applicative
functors are less expressive than monads, the latter suffer
from the lack of static analyzability and do not allow im-
plicit parallelism. The resulting DSL allows programmers to
combine these styles, retaining the benefits of both. Since
each PHE scheme supports only a limited set of operations,
conversions — transparent to the user — allow to express
programs that include unsupported operations. Different in-
terpreters allow processing locally for testing purposes, on
remote hardware in a distributed fashion, or with an op-
tional variety of optimization such as implicit parallelism
and transformations achieved via static analysis.

We evaluate SecureScala demonstrating the benefits of
embedding a DSL into a general-purpose language for se-
cure computation. Our scenarios include queries over en-
crypted event streams — integrating with the complex event
processing engine Esper [1] — and graphical user interfaces
using encrypted data — based on the RxScala [2] reactive pro-
gramming framework. More specifically, we make the fol-
lowing contributions:

* We analyze techniques for developing an embedded DSL
for computations over encrypted data in Scala, contrasting
a DSL using free monads with another using free applica-
tive functors.

* We combine the two DSLs into SecureScala to get the best
of both approaches by allowing programs to depend on
previous effects, still exploiting implicit parallelism and
static analyzability for the applicative parts.

* We evaluate SecureScala with case studies and bench-
marks that show the performance of our solution and
demonstrate the interaction with existing libraries due to
PHE support integrated into a general-purpose language.

We structure this paper starting with an overview of our
approach in Section 2 and then construct SecureScala in
steps in Section 3, Section 4 and Section 5. We show an em-
pirical evaluation in Section 6, we contrast our solution with
related work in Section 7 before concluding in Section 8.

2. Overview

We give an overview of the execution model and the encryp-
tion schemes we use and introduce Cryptographic data types
which form the basis of SecureScala.

2.1 Execution Model

Figure 1 shows an execution model of a program utilizing
a third party cloud service. The user submits a program for
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Figure 1: Execution model.

execution through the client interface. The client deploys the
program to the (untrusted) cloud service (along with any
required encrypted data) which executes the program over
encrypted data. The cloud service can utilize a trusted ser-
vice to overcome limitations of PHE, by re-encrypting data
as necessary, i.e., converting between encryption schemes
(Section 3.4). Upon program completion, the encrypted re-
sults are returned to the client, decrypted and returned to the
user in plain text.

2.2 Encryption Schemes

Table 1 shows the encryption schemes used to perform op-
erations over encrypted data, similar to those used in pre-
vious work [13, 21]. Some schemes are symmetric and use
a single secret key, others are asymmetric and use a pub-
lic/private key pair. Asymmetric schemes allow encrypting
data on the untrusted cloud since encryption in asymmet-
ric schemes only requires the public key. In contrast, sym-
metric schemes do not allow encryption operations on the
untrusted cloud. Hence it is necessary to provide encrypted
versions for all required values in advance , e.g., constants
like 0 and 1. A KeyRing(pub: PubKeys, priv: PrivKeys) class
encapsulates encryption keys for each scheme — PubKeys are
available only in asymmetric schemes.

Scheme | Operation | Input Data Types | Scheme Type
Paillier [20] Addition Integers Asymmetric
ElGamal [9] | Multiplication Integers Asymmetric

AES [12] Equality Integers, Strings Symmetric

OPE [6] Ordering Integers, Strings Symmetric

Table 1: Overview of the encryption schemes.

2.3 Cryptographic Data Types

A first step towards building a DSL for secure computation
is to define a set of data types that capture the semantics
of the operations supported by the encryption schemes de-
scribed above. Since the input data types (plain text data
types) of the encryption schemes we use are limited to in-
teger and string, we start by defining EncInt and EncStr as
sealed trait, representing an encrypted integer and an en-
crypted string respectively. For each, we further distinguish
the concrete scheme type. We present a simplified represen-
tation of our scheme types for the case of EncInt below:

sealed trait Enclnt

case class PaillierEnc(value: BigInt) extends EncInt

case class ElGamalEnc(x: BigInt, y: BigInt) extends EncInt
case class AesEnc(value: Array[Byte]) extends EncInt

case class OpeEnc(value: BigInt) extends EncInt

O T

EncInt represents an encrypted integer and case classes
represent an integer encrypted under a specific scheme.



Knowledge of the scheme indicates what operations are
allowed on the encrypted data. Our functions use pattern
matching to ensure operands are of the required scheme, or
make appropriate re-encryptions before the required compu-
tation. For example, to add two encrypted values, we must
ensure that the values are of type PaillierEnc which is the
scheme that supports addition over encrypted data. A sim-
plified version of the addition function is shown below.

| def addition(lhs: EncInt, rhs: EncInt): Option[EncInt] =

2 (1lhs,rhs) match {

3 case (PaillierEnc(l),PaillierEnc(r)) => Some(Paillier(l,r))
4 case _ => None
5

}

In the first case, both operands are encrypted under a com-
patible scheme, so the implementation delegates to the inter-
nal function Paillier to perform the encrypted addition. We
give more details on how we handle cases where one or more
operands are not encrypted under the required encryption
scheme in Section 3. Parameters of encryption schemes for
numbers are chosen such that we are able to encrypt 64 bit
integers, internally we represent the ciphertext as a BigInt.
In the following sections we use Cryptographic data types to
describe SecureScala.

3. A DSL Based on Free Monads

We present a simplified version of a DSL using free mon-
ads [24, 25] and show the design of an interpreter.

sealed trait CryptoF [+K]
case class Plus([K] (lhs: EncInt, rhs: EncInt,
k: PaillierEnc => K) extends CryptoF [K]
case class Mult[K](lhs: EncInt, rhs: EncInt,
k: ElGamalEnc => K) extends CryptoF [K]
case class Equals[K] (lhs: EncInt, rhs: EncInt,
k: Boolean => K) extends CryptoF [K]
case class Compare[K] (lhs: EncInt, rhs: EncInt,
9 k: Ordering => K) extends CryptoF [K]

LI T Y S T

Listing 1: A simplified version of the cryptoF functor.

3.1 Free Monads

We define the base functor for the Scalaz [4] free monad and
specify the possible operations in the DSL, reusing the defi-
nition of EncInt. We also define a new type CryptoF and add
cases for every operation, i.e., addition (P1lus), multiplication
(Mult), equality (Equals) and order comparisons (Compare), as
shown in Listing 1. We present details for the P1us operation
and the corresponding smart constructor add below. Other
cases are analogous.

def add(lhs: EncInt, rhs: EncInt): Crypto[EncInt] =
Free.liftF(Plus(lhs,rhs,identity))

def multiply(lhs: EncInt, rhs: EncInt): Cryptol[EncInt] =
Free.liftF(Mult(lhs,rhs,identity))

def equal(lhs: EncInt, rhs: EncInt): Crypto[Boolean] =
Free.liftF(Equals(lhs,rhs,identity))

def compare(lhs: EncInt, rhs: EncInt): Crypto[Ordering] =
Free.liftF(Compare(lhs,rhs,identity))
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Listing 2: Smart constructors perform the lifting.

The add constructor shown in Line 2 of Listing 2 takes the
left- and right-hand operands for the addition operation and

a function from PaillierEnc to K. The latter is a continuation
which receives an argument of type PaillierEnc — the result
of interpreting the P1us operation and the operands. Return-
ing PaillierEnc instead of EncInt retains information useful
for next steps. Classes representing operations are not ex-
posed directly to users, instead we expose smart constructors
for each case (Listing 2). Based on cryptoF, we define a type
alias for our free monad: type Crypto[A] = Free[CryptoF,A]

3.2 Simple Programs

With the DSL described so far, we can write a first program
that increments an encrypted integer. We assume all vari-
ables have been properly initialized to hold the required en-
crypted values.

1 lazy val one: EncInt = ...
2 def plusi(in: EncInt): Crypto[EncInt] = add(in,one)

The result type Crypto[EncInt] implies that given an EncInt,
running the program results in a value of the Cryptographic
data type EncInt. The use of a free monad enables monadic
combinators, as well as Scala’s for-comprehensions. To
avoid encrypting constants (non-sensitive data) in advance
we extend the DSL with a new encryption operation:

sealed trait Scheme
case object Paillier extends Scheme
case object ElGamal extends Scheme
case class Encrypt[K] (s: Scheme, plain: Int,
k: EncInt => K) extends CryptoF [K]
6 def encrypt(s: Scheme) (plain: Int): Crypto[EncInt] =
7 Free.liftF(Encrypt(s,plain,identity))

[ T

We now present a program that adopts three different
DSL primitives, namely addition, multiplication and equal-
ity comparison to return a Boolean value after interpretation
shown in Listing 3. The program takes 2 encrypted parame-
ters. It increments the first parameter and multiplies it by 2
before comparing it with the second parameter. Lines 2 and
3 of Listing 3 encrypt the values 1 and 2 under Paillier and
ElGamal respectively. We stress that encrypting values dur-
ing a program’s execution does not offer confidentiality for
these values since the values are already available in plain
text form, and should hence be used only for non-sensitive
values, e.g., constants one and two. These encrypted values
can then be used in computations involving other encrypted
sensitive information, e.g., in1 and in2.

| def isAnswer_(inl: EncInt, in2: EncInt): Crypto[Boolean] =
> for {one <— encrypt(Paillier) (1)

3 two <— encrypt(ElGamal) (2)

4 x1 <— add(inl, one)

5 x2 <— multiply(x1, two)

6 x3 <— equal(x2, in2)

7} yield x3

Listing 3: Using Scala’s for-comprehension.

3.3 Local Program Execution

Programs in the DSL issue a result of type Crypto[Al, where
A is the concrete return type, €.g., Int, Double etc. The reason
is that so far we showed only descriptions of programs which



are either a suspended computation represented by a functor
or they end with a concrete result — the final value of the
computation based on the definition of the free monad. This
is represented by Scalaz’s Either equivalent \/, where Left
is -\/ and Right is \/-.

Running program descriptions, requires an interpreter
for crypto programs. We start with the assumption of ac-
cess to both private and public keys. Listing 4 shows
an interpreter for the Plus and Encrypt case of CryptoF —
other cases differ with regard to the concrete encryption
scheme required for the operation. We rely on helper func-
tions (1) convertToPaillier to convert between EncInt and
PaillierEnc, and (2) asymEncrypt to encrypt a value with the
given encryption scheme. asymEncrypt only requires public
keys because it supports only asymmetric schemes.

With these functions, Encrypt can be interpreted by call-
ing asymEncrypt and passing the result into the continuation
k of the current suspension. Interpreting Plus is straightfor-
ward if both operands are encrypted under Paillier, using
the “+” in PaillierEnc — exploiting the homomorphic prop-
erty. For operands not encrypted with the correct scheme, the
convertToPaillier helper function performs the conversion,
requiring access to the private keys.

1 def convertToPaillier(keyRing: KeyRing) (
enc: EncInt): PaillierEnc = ...
def asymEncrypt(scheme: Scheme, keyRing: PubKeys) (
plain: BigInt): EncInt = ...

program.resume match {
case \/-(x) => x

2
3
4
5
6 def interpret[A] (keyRing: KeyRing) (program: Crypto[A]): A =
4
8
9 case -\/(Encrypt(s,plain,k)) =>

10 interpret (keyRing) (k (asymEncrypt (s,keyRing.pub) (plain)))
1 case -\/(Plus(l,r,k)) => (1,r) match {

12 case (lhs@PaillierEnc(_),rhs@PaillierEnc(_)) =>

13 interpret (keyRing) (k(1hs + rhs))

14 case _ =>

15 val lhs = convertToPaillier(keyRing) (1)

16 val rhs = convertToPaillier (keyRing) (r)

17 interpret (keyRing) (k(1hs + rhs))

18 }

19 case _ => sys.error("Unhandled case")

Listing 4: Interpreting encryption and addition.

3.4 Remote Program Execution

We show an interpretation suitable to run on an untrusted
party. In the remote interpreter in Listing 5, remote returns
a Future[A] for a program with result A — we use Futures
to model network communication to the CryptoService. The
interpretation of Encrypt is analogous to local interpreta-
tion: Encryption with asymmetric schemes uses the public
keys. In contrast, re-encrypting to the required scheme is
not possible without accessing the private keys and the con-
version is delegated to the srv: CryptoService argument of
remote. CryptoService handles network communication with
a trusted service requesting re-encryption of values. Apart of
the cryptoService, the interpretation of the Plus case in the
remote interpreter is similar to the local case. The difference

| def remote[A] (pub: PubKeys, srv: CryptoService)

2 (program: Crypto[A]) (implicit ec: ExecutionContext): Future[A] =
3 program.resume match {

4 case \/-(x) => Future.successful(x)

5 case -\/(Encrypt(s,plain,k)) =>

6 remote (pub, srv) (k(asymEncrypt (s,pub) (plain)))

7 case -\/(Plus(1l,r,k)) => for {

8 lhs <— srv.toPaillier(1l)

9 rhs <— srv.toPaillier(r)

10 res <— remote(pub,srv) (k(lhs+ rhs))
1 } yield res
12 case _ => sys.error("Unhandled case.")

13}
Listing 5: A remote interpreter.

is in for-comprehensions, because each call to toPaillier
results in a Future[PaillierEnc]. The CryptoService’s task
models a trusted access point for the program running on the
untrusted party to perform conversions between schemes:

| trait CryptoService {

2 def toPaillier(enc: EncInt): Future[PaillierEnc] = ...
3 def toElGamal(enc: EncInt): Future[ElGamalEnc] = ...

o S/

5}

Its interface defines methods to convert from EncInt to each
of the concrete cases with known encryption scheme, e.g.,
PaillierEnc for Paillier and ElGamalEnc for ElGamal. If the
interpreter requests a conversion between two encryption
schemes, a concrete implementation of CryptoService has to
talk to the trusted server that re-encrypts values.

3.5 Using Monadic Combinators

Free monads allow us to use monadic combinators. We have
already used Scala’s for-comprehensions to get syntactic
sugar in Listing 5. For-comprehensions translate to functions
such as flatMap, map and filter. In addition, functions de-
rived from them are also available in the DSL. For example,
Scalaz has a Foldable type class that provides, besides others,
monadic folds, for instance. Scala’s List type is an instance
of Foldable, which allows use of monadic folds to sum a list
of encrypted numbers (Listing 0).

1 def randomEnc: EncInt = ...

2 def sumList(zero: EncInt)(xs: List[EncInt]): Crypto[EncInt] =
3 xs.foldLeftM(zero) (add(_,_))

4 lazy val result = sumList(zero) (List.fil11(100) (randomEnc))

Listing 6: The Sum program using a monadic fold.

Similar to monadic folding, the DSL can be used with
other methods such as findM to find elements based on a
monadic predicate, filterM (the monadic version of the
filter function), takeWhileM, partitionM and others, as de-
fined in Scalaz for instances of corresponding type classes.

3.6 Limitations of the Monadic Approach

There are two main limitations of the monadic approach.
First, the execution of a program such as Listing 6 is se-
quential, i.e., starting from the head of the list, if the un-
derlying scheme is not Faillier, convert the head, add it to
the accumulator of the fold, repeat for the tail. The pro-
gram has poor performance, especially for a computation



that is embarrassingly parallel. The issue is inherent to the
monadic approach: Use of the bind operator depends on pre-
vious monadic values, forcing the computation to progress
sequentially. Second, programs in monadic style limit static
inspection. With monadic binds the analysis is stuck after
the first argument, because the second argument is a contin-
uation expecting an argument before it can continue — the
analysis cannot progress into the function value.

4. DSL Based on Free Applicative Functors

In this section, we present a different version of the DSL
based on free applicative functors [7] that supports static
analysis and implicitly parallel program execution.

4.1 Moving to Free Applicative Functors

Applicative functors support lifting pure functions such that
they accept effectful arguments. Contrarily to monads, they
forbid dependencies on previous effectful computations, but
provide the ability to evaluate effects in parallel. We follow
the approach of Capriotti and Kaposi [7], defining a DSL
that can be analyzed statically based on a free applicative
functor. We use Scalaz’s free applicative functor FreeAp as
well as our previously defined functor cryptoF. Instead of
providing smart constructors that lift into the free monad
arising from cryptoF, we change those to lift into the free
applicative functor. An example of such change is shown in
Listing 7 where Free is replaced with FreeAp and Free.1liftF
with Freefp.1lift. This approach is applied to each smart
constructor. We change the crypto type alias to use the free
applicative FreeAp instead of the free monad Free and rename
the crypto type alias to CryptoM.

type Crypto[K] = Free[CryptoF,K] // free monad

def add(lhs: EncInt, rhs: EncInt): Crypto[EncInt] =
Free.liftF(Plus(lhs,rhs,identity))

type Crypto[K] = FreeAp[CryptoF,K] // free applicative functor
def add(lhs: EncInt, rhs: EncInt): Crypto[EncInt] =

1
2
3
4
5
6
7 FreeAp.lift(Plus(lhs,rhs,identity))

Listing 7: Lifting free monads and free applicative functors.

4.2 Interpreting Free Applicative Functors

Switching from free monads to free applicative functors, re-
quires new interpretation functions. As changes are indepen-
dent of the interpretation being local or remote, we only dis-
cuss the local case, showing the Encrypt and Plus operations
(Listing 8). We pass to foldMap a natural transformation [5]
from cryptoF to the result A, written infix as CryptoF > Id
and match on the cases of the cryptoF type. This version is
identical to Section 3.3 except that, here, foldMap handles re-
cursion and the usage of 1d’s Applicative instance is explicit.
Using, for example, Future as target Applicative operands in
the P1us case is converted in parallel.

4.3 Using the Applicative DSL

Since we rely on a free applicative functor over CryptoF,
Scala’s for-comprehensions cannot be used because a monadic

| def interpret[A] (kr: KeyRing) (p: Crypto[Al): A = {

2 p.foldMap(new (CryptoF ~> Id) {

3 def apply[B] (fa: CryptoF[B]): B = fa match {

4 case Encrypt(s,plain,k) =>

5 k(asymEncrypt (s,kr.pub) (plain)) .point (Id.id)
6 case Plus(l,r,k) => (1,r) match {

7 case (1QPaillierEnc(_),r@PaillierEnc(_)) => k(1l+r)
8 case _ =

9 val 1 = convertToPaillier (kr) (1)

10 val r = convertToPaillier (kr) (r)

1 k(1+r) .point (Id.id)

12 }

13 case _ => sys.error("Unhandled case.")

14 D}

Listing 8: Interpretation with free applicative functors.

bind f1atMap cannot be defined. Without the ability to de-
pend on effectful previous values, programs like isAnswer
(Listing 3), cannot be expressed. We remedy this limitation
later and investigate which programs we can express.

Scalaz’s type class Traversable allows traversing and per-
forming an action on each element. Using traverse and ex-
tending the DSL with explicit conversions:

1 case class ToPaillier[K] (v: EncInt, k: PaillierEnc => K)

2 extends CryptoF [K]

3 def toPaillier(v: EncInt): Crypto[PaillierEnc] =

4 FreeAp.lift(ToPaillier(v,identity))

5 // same for ElGamal, Aes and UOpe

We can write sumList as shown in Listing 9. We traverse the
list with the effectful conversion and use map to sum the con-
verted list of numbers inside Crypto of type List [PaillierEnc],
exploiting the homomorphic property of the Paillier scheme.

| def sumList(zero: PaillierEnc)(

2 xs: List[EncInt]): Crypto[PaillierEnc] =
3 xs.traverse(toPaillier) .map(_.foldLeft(zero) (_+_))

Listing 9: Summing the elements of a list with traverse.

4.4 Static Analysis

Free applicative functors enable static analysis because an
applicative program can always be modeled as a pure func-
tion that receives arguments, represented by independent ef-
fectful computations, thereby allowing inspection of each ar-
gument without running the program. FreeAp provides two
functions to express the analysis, foldMap, which gives the
program the semantics of a provided applicative functor and
analyze, which performs a monoidal analysis. As an exam-
ple, we show how to count the required number of conver-
sions in a program without interpreting it (Listing 10) but
using the additive monoid for integers. The following exam-
ple demonstrates the usage:

1 lazy val (x,y,z): (EncInt,EncInt,EncInt) = ...

2 val conversions: Int = requiredConversions {

3 (toPaillier(x) |@| toPaillier(y) |@| toPaillier(z)){_+_+_}
4}

The program converts the encrypted integers to the Pail-
lier scheme and exploits the homomorphic property to per-
form the sum. In addition to analysis, this approach allows
program transformation as well as partial evaluation. For ex-
ample, preconvert in Listing 11 performs all required con-
versions before running the program: Given a key ring it



| def requiredConversions[A]l(p: Crypto[A]l): Int =
2 p.analyze(new (CryptoF "> [ => Int]) {

3 def apply([B] (fa: CryptoF[B]): Int = fa match {

4 case ToPaillier(PaillierEnc(_),_) => 0

5 case ToPaillier(_,_) => 1

6 // for each encryption scheme ...

7 case Plus(PaillierEnc(_),PaillierEnc(_),_) => 0
8 case Plus(_,PaillierEnc(_),_) => 1

9

case Plus(PaillierEnc(_),_,_) => 1
10 case Plus(_,_,_) => 2
11 // for every operation in the DSL ...
12 }}
13 )

Listing 10: Counting conversions via static analysis.

matches all conversion instructions and performs the con-
versions — possibly in parallel.

1 def convert(keyRing: KeyRing) (s:EncScheme,v:EncInt): EncInt
2 def preconvert[A] (keyRing: KeyRing): Crypto[A] => Cryptol[A]
3 _.foldMap(new (CryptoF ~> Crypto) {

4 def apply[B](fa: CryptoF[B]): Crypto[B] = fa match {

5 case ToPaillier(v,k) =>
6
7
8

val r@PaillierEnc(_) = convert(keyRing) (Additive, v)
FreeAp.point (k(r))
// same for ElGamal, Aes and Ope

9 case x => FreeAp.lift(x)

10 31

Listing 11: Static analysis for scheme conversions.

In summary, the DSL based on free applicative functors
is restricted to computations that do not depend on previous
effectful values, but resulting programs support implicit par-
allelism, as well as static analysis.

4.5 Recovering Monadic Expressivity

We combine the DSLs developed so far such that programs
can depend on previous effects, while being amenable of
static analysis for the parts that only use the applicative in-
terface. We introduce a new instruction Embed, which embeds
programs based on the free applicative functor into a new
DSL based on free monads. We use the technique from [24]
to combine our previous CryptoF and the new Embed functor
into Scalaz’s Coproduct. We update the type alias CryptoM to
it’s final definition:

1 type Crypto[A] = FreeAp[CryptoF, A]
2 type CryptoM[A] = Free[Coproduct [CryptoF,Embed,?], Al

In the applicative version of sumList (Listing 9) the argu-
ment has to be of type PaillierEnc, requiring an input with
a known encryption scheme because conversion is an effect
and a dependency on previous effects is not allowed in the
applicative version. We remedy this issue with the embed-
ding, allowing arbitrary encrypted numbers:

| def sumList2(zero: EncInt) (xs: List[EncInt]): CryptoM[EncInt] =
2 for { z <— toPaillierM(zero)

3 result <— embed(sumList(z) (xs))

4} yield result

The program performs an explicit conversion into the Pail-
lier scheme and embeds the previously defined applicative
sumList program. Arguments to embed have to be written us-
ing the applicative interface, enforced by Scala’s type sys-
tem. In summary, the interpretation of the sumList2 program

(1) converts the first argument to the Paillier scheme (2) runs
the embedded applicative program converting all numbers,
in parallel and finally performs the additions. The result of
sumList2 is of type CryptoM[PaillierEnc], a monadic pro-
gram, which can no longer be embedded using Embed and
cannot be statically analyzed. We achieve a strict separation
of the monadic and applicative DSL with the ability to use
an applicative program inside a monadic program — but not
vice versa — guaranteeing that programs of type Cryptol[Al
can use implicit parallelism during interpretation and can be
statically analyzed.

5. SecureScala

Previous sections show simplified versions of SecureScala.
In this section, we combine the monadic and applicative
DSL, and extend the operation set.

| sealed trait CryptoF [+K]

2 sealed trait CryptoRatio[+K] extends CryptoF [K]

3 case class CeilRatio[K] (r: EncRatio, k: EncInt => K)

4 extends CryptoRatio [K]

5 ... // also: floor

6 sealed trait CryptoString[+K] extends CryptoF [K]

7 case class EqualsStr[K] (1hs: EncStr, rhs: EncStr, k: Boolean
8 => K )

9 . // also: compare, split, concat, conversions

10 sealed trait CryptoNumber[+K] extends CryptoF [K]

11 case class Mult[K](lhs: EncInt, rhs: EncInt, k: ElGamalEnc => K)

12 ... // also: +,-,/,==,compare, even,odd, encryption, conversions
13 abstract case class Embed[K] () {
14 type I

15 val v: Crypto[I]
16 val k: CryptoM[I] => CryptoMI[K]
17 }

Listing 12: The complete DSL.
5.1 Operations

We start with the full version of cryptoF as shown in List-
ing 12. The cryptoF functor can be divided into three parts.
(1) the cryptoRatio trait, defining rounding operations on ra-
tios of encrypted integers (2) CryptoString, defining oper-
ations for Strings and CryptoNumber supporting the already
introduced operations on encrypted integers as well as addi-
tional operations not used before like subtraction, division,
etc., and (3) the Embed class to embed applicative programs
into the monadic DSL. As before, we do not expose the
constructors directly, instead we define corresponding smart
constructors for both the monadic and applicative DSL, as
well as infix operators where applicable. As an example, for
Mmult, we define the following:

1 def multiply(lhs: EncInt, rhs: EncInt): Crypto[EncInt]

2 def multiplyM(lhs: EncInt, rhs: EncInt): CryptoM[EncInt]

3 implicit class InfixOps(self: EncInt) {

4 def *(that: EncInt) = multiply(self,that)

5}

We discuss operations that are not supported by any encryp-
tion scheme, like isEven, later in this section.

5.2 Interpretation

Interpreters extend the CryptoInterpreter trait which de-
fines two different interpretation functions interpret and



interpretA Which are responsible for the interpretation of
monadic and applicative programs:

| trait CryptoInterpreter[F[_1] {

2 def interpret[A](p: CryptoM[A]): F[A]

z }def interpretA[A] (p: Crypto[Al): F[A]

It is possible to use the implementation of interpret just
as well for interpreta, but the distinction allows to ex-
ploit the fact that we can interpret applicative programs
in a more flexible way, as shown in previous sections.
CryptoInterpreter is parameterized over a higher kinded
type constructor F, which appears in the result type of the
interpretation functions. This higher kinded type parame-
ter allows different result types for different interpretation
styles, e.g., 1d for pure evaluation or Future for parallelism.

| trait CryptoService {

def publicKeys: Future[PubKeys]

def toPaillier(in: EncInt): Future[PaillierEnc]
// ... explicit conversions for each scheme

def convert(s: Scheme) (in: EncInt): Future[EncInt]
def encrypt(s: Scheme) (in: Int): Future[EncInt]
def batchConvert(xs: List[(Scheme,EncInt)]):
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Future[List [EncInt]]
9  def batchEncrypt(xs: List[(Scheme,Int)]):
10 Future[List[EncInt]]

11 def decryptAndPrint(v: EncInt): Unit
12 def println[A]l(a: A): Unit
13}

Listing 13: The full cryptoService interface.
5.3 Conversions and Unsupported Operations

CryptoService is responsible for handling conversion re-
quests and can be asked to perform computations that are not
supported by any scheme. In Listing 13 we show the inter-
face that provides the necessary functions to convert between
encryption schemes. We provide the functions batchConvert
and batchEncrypt to be able to divide a large number of con-
version requests efficiently into batches of requests. The two
functions decryptAndPrint and println are used to commu-
nicate between the remote and local hosts for testing.

For some operations in the DSL (Listing 12), e.g., SplitStr,
we fall back on respective methods from the CryptoService,
which should be run by a trusted party, because the operation
is performed locally on unencrypted data. While undesirable
from a design point of view, we gain a lot of expressivity,
allowing many programs to be written which are impossible
in other systems [13, 21].

5.4 Importance of Separation

Our system fosters a clear distinction between the monadic
and the applicative DSL. Since every monad is also an
applicative functor, we could combine the two and pro-
vide only the monadic interface. As an example, we con-
sider Haxl, Facebook’s Haskell library for remote data ac-
cess [17]. Haxl’s Fetch datatype is an instance of Monad and
therefore it is also an instance of Applicative. To exploit
implicit parallelism, the Applicative instance deviates from
one of Haskell’s rules for Control.Applicative: If f is also
a Monad, it should satisfy pure = return and (<*>) = ap.

The rule forbids concurrency in the Applicative instance,
because ap uses (»=), which is inherently sequential. By
breaking this rule and having only one interface that allows
both monadic and applicative styles, programmers have to be
well behaved and make use of the applicative style as much
as possible to benefit from parallelism and optimization.

Our implementation explicitly distinguishes between
applicative and monadic programs. A program of type
Cryptol[A] is guaranteed to be statically analyzable and ex-
hibits concurrent behavior during runtime. CryptoM[A] in-
stead does not give those guarantees, but provides more ex-
pressive power in the sense that it is possible to depend on
previous effectful results.

1 lazy val one: EncInt
2 lazy val two: EncInt e
3 def genFib(x1: EncInt, x2: EncInt)(n: EncInt):
4 CryptoM[EncInt] = for {
5 r <— if (n <= one) {

6 x1.lifted
7
8

} else for {
(n1,n2) <— (n-one).tuple(n-two)

9 (f1,£2) <— genFib(x1,x2) (nl).tuple(genFib(x1,x2) (n2))
10 s <— f1 + £2

11} yield s

12 } yield r

Listing 14: Secure Generalized Fibonacci series.
5.5 An Example SecureScala Program

We present a larger program which calculates the n-th num-
ber in a Generalized Fibonacci series shown in Listing 14.
The necessary call to embed is added automatically by an im-
plicit conversion. In Line 14 the program performs the two
operations, “n-one” and “n-two” in parallel. In contrast, the
use of tuple in Line 14 does not allow parallel execution,
because genFib’s result type is CryptoM, the monadic DSL in-
hibiting parallelism. This demonstrates the need for devel-
opers to write programs that minimize the monadic parts to
get better performance. The value of n can be potentially in-
ferred by observing the number of invocations of the genFib
function but, importantly, the final output remains secure.

6. Evaluation

In this section, we evaluate our contributions along two di-
mensions: we compare the performance of different interpre-
tation styles based on micro-benchmarks and present several
case studies. The goals of the evaluation are:

* Evaluate the performance of SecureScala and of the com-
bination of the monadic and applicative styles.

* Provide evidence for our claim that PHE support should
be integrated into general-purpose languages, showing the
effects of the combination of styles in more realistic sce-
narios than the micro-benchmarks.

Experiments are executed on a Dell Latitude E6540,
Intel(R) Core(TM) i7-4800MQ CPU quad core, with fre-
quency scaling disabled, using 16GB of RAM, which sim-
ulates both the client and the untrusted cloud. We use Scala
2.11.7, OpenJDK JRE (IcedTea 2.5.6), OpenJDK 64-Bit



Style Description

local local interpretation
remote use CryptoService
remoteOpt use CryptoService and parallelism

remoteOptAnalysis | like remoteOpt, batch requests into chunks of up

to 15, if total number exceeds (15)

Table 2: Comparison of interpretation styles.

Server VM (build 24.79-b02) with 2 GB of min/max heap
and ScalaMeter [3] v0.6 with PerformanceTest.0fflineReport
configuration, reporting the average over 10 runs.

6.1 Micro Benchmarks

We compare performance of a program that sums an in-
creasing number of encrypted integers using the monadic
style Listing 6 versus applicative style Listing 9 (Figure 2a).
Numbers are encrypted under a randomly chosen encryption
scheme with equal probability among schemes. For both the
applicative and monadic case, we consider the interpretation
styles in Table 2.

The results show that for the “local” and “remote” styles
there is virtually no performance difference between the
applicative and the monadic version. For the “remoteOpt”
case there is a difference of about a factor of two due to the
applicative version using implicit parallelism to perform the
encryption scheme conversions for all numbers in parallel.

Function remoteOptAnalysis performs similarly despite
using static analysis in addition to exploiting implicit paral-
lelism. Since in this setting there is no network delay in-
volved in encryption scheme conversions, the interpreter
does not gain any benefit from grouping conversion re-
quests. Note that some variance is due to the fact that the
encryption scheme for each randomly generated number
is also randomly selected and each has significantly dif-
ferent costs for decyption/encryption, hence times neces-
sarily differ between benchmark runs. In the benchnmark,
we introduce a conversion request delay of 75ms (taken
from literature on estimating run times for secure computa-
tion [22]), which simulates network latency when perform-
ing conversion requests over the network, i.e., talking to a
remote CryptoService (Figure 2b). Results show that the two
optimizing interpreters “remoteOpt” and “remoteOptAnal-
ysis” perform significantly better than the naive “remote”
interpreter. With the delay for conversion requests, the in-
terpreter using static analysis outperforms the interpreter
that exploits only implicit parallelism for input size >= 15
which is the threshold. As input size grows, static analysis
further increases performance, because the “remoteOpt” in-
terpreter performs all conversion requests in parallel — with a
per-request network overhead — while “remoteOptAnalysis”
batches requests into groups of up to 15.

6.2 Case Studies

Word count. The first case study is a program to count the
words in a document encrypted under the OPE scheme. The

output associates each encrypted word with its (plain) occur-
rence. The main functionality can be expressed as follows:

1 def wordCountText(e: EncStr): CryptoM[List[(OpeStr,Int)]] =
e.split("""\s+""") >>= wordCount_

es.traverse (toOpeStr) .map (

2
3
4 def wordCount_(es: IList[EncStr]): Crypto[List[(OpeStr,Int)]] =
5
6 _.groupBy(x => x).map(_.length).toList)

The program (1) reads the file with encrypted text, (2)
splits the text into words, (3) groups by word, (4) asso-
ciates each word with its occurrences, (5) writes the result
into a file or prints it. Figure 2c shows the performance of
wordCountText as text size increases. We include measure-
ments for two interpretation styles, (1) local without any op-
timization and (2) remote using implicit parallelism. For ref-
erence, we show (3) an implementation in plain Scala. Re-
sults show that the remote interpretation style with implicit
parallelism performs more than 2x faster than the local in-
terpreter. The plain Scala version without any encryption is
faster and is included to show the impact of the encryption
on performance.

Complex event processing. The CEP case study com-
bines the CEP engine Esper [1] with SecureScala to perform
queries over events holding encrypted fields. Esper supports
calling Scala methods from within queries — enabling the
use of SecureScala for encrypted data. The scenario of the
case study considers a track on a road where the speed of
cars is measured at three checkpoints that check if the speed
is higher than a threshold. Events consist of one plain and
two encrypted attributes:

| sealed trait LicensePlateEventEnc {
2 @BeanProperty def car: EncStr

3 @BeanProperty def time: Long

4 @BeanProperty def speed: EncInt
5}

an encrypted string for the license plate, an encrypted integer
as the car speed and a plain integer as a timestamp. Case
classes model events:

| case class CarStartEventEnc(...) extends LicensePlateEventEnc

2 case class CheckPointEventEnc(...) extends LicensePlateEventEnc
3 case class CarEndEventEnc(...) extends LicensePlateEventEnc

We show an Esper query that for each license plate, tracks
the start time, the three checkpoint times and the end time. At
each checkpoint, the car speed is compared to the threshold.
I SELECT car AS license, number, speed

2 FROM CheckPointEventEnc

3 WHERE Interp.isTooFast (speed)

In the WHERE Interp.isTooFast(speed) clause, the Interp ob-
ject defines the isTooFast method which runs the interpreter
to check the result of the DSL program, indicating if the
speed is higher than the allowed speedLimit.

| object Interp {

2 val keyRing: KeyRing = ...

3 val interpret: Locallnterpreter = ...

4 val speedLimit: EncInt = ...

5 def isTooFast(s: EncInt): Boolean = interpret(s > speedLimit)
6 }
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Figure 2: Performace results for microbenchmarks and case studies.

Figure 2d compares the performance of a version using
plain events and one with encrypted speed and encrypted li-
cense plates. The encrypted version runs with the local in-
terpreter, without implicit parallelism, as well as the remote
interpreter, talking to a remote service on the same machine.
High variance is caused by calling the interpreter once per
event to evaluate the query. The case study shows that when
SecureScala is applied in the context of a more complex
computation — like event correlation — the overhead is signif-
icant but not prohibitive. Thanks to embedding, SecureScala
can easily interoperate with systems interfacing with Scala.

Reactive programming. The RxBank case study combines
RxScala [2] with SecureScala to implement a GUI visualiz-
ing transactions among bank accounts. The GUI exists in
two versions, one displays the balance of bank accounts and
the transferred amount in plain text, in the second one the
balance and the transactions are encrypted — the only vis-
ible information is the color of the account from dark red
(negative) over orange (neutral) to light green (positive). For
example, to calculate the color for the account based on a
mapping from balances to colors, we filter the ascending list
of balance thresholds and set the color in the GUI:

1 def redrawFor(account: String, amt: EncInt): Unit = {

2 val cs = interp { colorMap.filterM { amt > _._1 } }

3 if (cs.nonEmpty) fieldFor(account).background = cs.last._2
4}

We evaluate the performance of RxBank measuring the time
required to process an increasing number of transactions,
which update the GUI after each account change. We mea-
sure three versions. plain: Plain Scala, process as fast as
possible, delay: Plain Scala, 75ms delay per transaction, en-
crypted: Encrypted version with a local interpreter, no limit
on transaction processing. The plain version without any de-
lay is about 17x faster than the encrypted version. While this

performance difference is large, it is important to consider
that transactions are processed as fast as possible. Throttling
the rate of transactions using a delay of 75ms (Figure 2e)
shows that the encrypted version is able to process trans-
actions with a rate of 4.15 transactions/s — fast enough to
display the changes in the GUI. Additionally, the case study
shows that programs in SecureScala can be seamlessly inte-
grated with RxScala and Scala Swing.

7. Related Work

Homomorphic encryption. Several systems have been
proposed that make use of homomorphic encryption to de-
fine confidentiality preserving computations. CryptDB [21]
can automatically transform SQL queries to queries that
use cryptographic user defined functions to operate over
encrypted data but it cannot execute queries that require
conversions between schemes. Monomi [27] improves on
the design of CryptDB by introducing a split client/server
execution. Queries are split into sub-queries some of which
are executed on the untrusted server over encrypted data
and the rest are executed on the trusted client after decryp-
tion of intermediate results. Both CryptDB and Monomi
focus on SQL queries and require a set-up phase to iden-
tify what encryption schemes are required. MrCrypt [26]
uses static analysis on Java programs to find suitable PHE
schemes for the operations applied on each input field. Af-
ter selection of the scheme, a source-to-source transforma-
tion generates a program working on encrypted data. Un-
like our approach, MrCrypt cannot handle programs with
input that requires multiple operations not supported by a
scheme. JCrypt[8] pushes further on static analysis. Type-
based information flow analysis isolates program parts to be
encrypted, inter-procedural data-flow analysis deduces the



appropriate scheme. SPR [13, 23] has been proposed as a
Pig Latin [19] runtime. SPR can utilize a trusted client to
perform subcomputations or re-encrypt between schemes,
similarly to our approach, but limited to Pig Latin scripts.
Mitchell et al. [18] propose a core language — implemented
as an EDSL in Haskell — to write secure applications with-
out cryptographic knowledge. The language also offers pro-
tection against control flow observations of the server that
is running the program operating on encrypted data. This
approach is flexible with regard to the underlying crypto-
graphic system, but at the cost of interoperability — it does
not support interfacing with the rest of the language.

Functional programming. Swierstra et al. [25] demon-
strate the use of Free Monads to embed a DSL using
monadic combinators to separate program construction from
interpretation. Contrarily to monads in general [14-16], free
monads compose, because functors compose. This technique
can be used to achieve modularity and to compose languages
defined by free monads over individual functors into a free
monad combining multiple languages into one [24]. Haxl
[17] unifies the monadic and applicative DSL into one. This
approach violates a rule of the Applicative type class — which
forbids the exploitation of concurrency in the Applicative in-
stance. We consciously do not follow the same approach as
discussed in Section 5. Free Applicative Functors — on which
the analysis and transformation abilities of SecureScala are
based — have first been studied by Capriotti et al [7], then
implemented in open source libraries as Scalaz [4].

8. Conclusion

We define an embedded DSL in Scala, allowing developers
to write programs that work on encrypted data without re-
quiring cryptographic knowledge. Our approach combines
the advantage of free monads — expressivity — with the ad-
vantage of free applicative functors — static analysis and par-
allelism. The evaluation shows the advantage of implicit par-
allelism as well as the performance improvements from the
possibility to perform static analysis and program transfor-
mation of programs written in the applicative DSL.
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