Debugging Reactive Programming with Reactive Inspector

Guido Salvaneschi, Mira Mezini
Technical University of Darmstadt, Germany

{salvaneschi,mezini}@cs.tu-darmstadt.de

ABSTRACT

Reactive programming provides dedicated language abstractions
for reactive software, relieving developers from manually updating
outputs when the inputs of a computation change. Unfortunately,
complementing the new paradigm with proper tools that support
coding activities is a vastly unexplored area.

We investigate a primary issue in the field: debugging programs
in the reactive style. We propose RP Debugging, a methodology
for effectively debugging reactive programs. These ideas are imple-
mented in Reactive Inspector, a debugger for reactive programs
integrated with the Eclipse Scala development environment.

Categories and Subject Descriptors

D.2.6 [Programming Environments]: Interactive environments

Keywords

Functional-reactive Programming, Debugging

Introduction.

Reactive programming (RP) has been proposed as a viable alter-
native to the Observer design pattern in developing reactive appli-
cations such as graphic user interfaces, animations and event-based
systems. The idea behind RP is to support language-level abstrac-
tions for signals — time-changing values that are automatically up-
dated by the language runtime. In RP, programmers specify the
functional dependency of a signal on other values in the application
and changes are automatically propagated when it is required. This
way, developers do not risk forgetting to update dependent values
and benefit from a programming style that is easier to read — thanks
to the declarative approach of RP — and supports composition — as
signals can be composed to define other signals. It has been shown
that software based on RP is more composable [10]. Our earlier
studies also suggest that RP is easier to understand [12] than their
counterpart based on the Observer design pattern.

RP witnessed a long incubation in experimental research projects,
which clarified the semantics foundations [4] and investigated the
issue of providing a sound [6] and efficient [S] implementation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 14-22, 2016, Austin, TX, USA

(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05.

DOI: http://dx.doi.org/10.1145/2889160.2893174

Since then, researchers proposed several RP implementations such
as FrTime [1] (Scheme), Flapjax [10] (Javascript) Scala.react [8]
and REScala [13, 3] (Scala), DREAM [9] (Java) — just to mention a
few. Recently, concepts from RP have been adopted by a number of
front-end Javascript libraries like Angular]S.js, Razor.js, React, by
Web frameworks like Scala Lift, and by Microsoft’s Rx.

RP abstractions are now well understood and properly supported
in a variety of languages. Yet, programmers that want to embrace
RP have to face a number of challenges due to the immaturity of the
field. A primary issue concerns supporting RP in the entirety of the
development process through a proper tool ecosystem. In particular,
novice RP developers struggle for the lack of proper debuggers —
essential instruments to fix errors and understand programs since
the early age of computing.

Of course, modern IDEs provide support for debugging high-level
languages, but, unfortunately, existing debuggers are hardly useful
for RP applications. The issue is a conceptual one. Existing de-
buggers have been designed for the imperative programming model
and they are unsuitable for the declarative and data flow-oriented
model of RP. Concepts like stepping-over statements, breakpointing
or inspecting memory changes assume an imperative model where
statements execute one after the other and modify memory state.
Designing a debugger for RP requires a paradigm shift.

We propose a novel debugging technique, RP Debugging, which
addresses the urgent needs of developers when debugging applica-
tions in the RP style. The key contribution is to adopt the dependency
graph among signals — the same model developers adopt to reason
about reactive applications — as a primary runtime representation of
the program during the debugging process. We provide Reactive
Inspector, a reference implementation for RP Debugging, in the
form of an Eclipse plugin.' A preliminary evaluation based on a
controlled experiment with 18 subjects shows that RP Debugging
outperforms traditional debugging.

This poster provides an overview of the content available in a full
paper to appear in the ICSE 2016 conference [14].

Background.

For illustration, consider the code snippet in Figure 1. It defines
two vars a and b (Lines 1-2), i.e., reactive values that, in contrast
to signals, can be imperatively updated. Line 3 defines a signal
s which depends on a and b according to the signal expression
a()+b(). The () notation inside signal expressions establishes a
dependency among reactive variables. Signals can depend on vars
and on other signals, like in Line 4. When a var is updated (Line 8),
the signals that depend on the var are automatically updated without
programmer intervention (Lines 9-10). It is easy to see that the

"http://guidosalva.github.io/reactive-inspector/

e Y I S

val a = Var(1)

val b = Var(2)

val s = Signal{ a() + b() } ©) '*
val t = Signal{ s() + 1 } @ @ @ @ 6

println(s.get()) // 3 @ @ €) @ (5)

println(t.get()) // 4
® @

(6) (7) (8) (9) (10

a()=4
println(s.get()) // 6
println(t.get()) // 7

Figure 1: Signals and vars in RP and evolution of the depen-
dency graph in the execution.

Traditional Debugging
Stepping over statements
Breakpoint on line X
Inspect memory
Navigate object references
Per-function absolute performance

RP Debugging
Stepping over the dep. graph
Breakpoint on node X
Inspect values in the dep. graph
Navigate signals in the graph
Per-node relative performance

Figure 2: Traditional debugging vs. RP Debugging.

relation between signals and vars can be described by a directed
graph where edges model dataflow dependencies. Operationally, a
change in a node of the graph triggers a reevaluation of the signal
expressions in the dependent nodes. This is actually the implemen-
tation technique adopted by most RP frameworks. Figure 1 (right)
shows the evolution of the dependency graph for the code presented
before. Lines 1-4 in Figure 1 correspond to node creations (steps
1-2-3-6) and dependency construction (steps 4-5-7). A var update
(Line 8) triggers a reevaluation in the graph (steps 8-10).

Simple as it is, this programming paradigm proved effective
in managing the complexity of reactive applications in a number
of fields, including Web applications [7], interactive GUIs [10],
animations [2], wireless sensor networks [11] and robotics [6].

Designing RP Debugging.

When an application is debugged with RP Debugging, the user
can visualize the dependency graph and use it as the basic model for
reasoning about the application execution.

o At the definition site of the signals, the user can step through the
construction of the graph, visualizing the creation of new nodes
and of new dependencies among reactive values as soon as they
are established.

e When the execution reaches the assignment of a var, the content
in the nodes of the dependency graph starts changing. Similar
to what developers would do with lines of code in imperative
programming, they can step through the update of values in the
dependency graph, and control the potentially changing shape of
the graph to make sure it reflects their intentions.

e Programmers can set (conditional) breakpoints on the update
of a node. The execution continues to traverse imperative and
reactive code in the application until the node update is hit. At
this point the reactive debugger stops and returns the control to
the developer.

e Programmers can inspect the performance of an application on a
per node basis (absolute performance). Also, in RP Debugging
developers can observe the number of times a node outputs a
different value as a percentage of reevaluation times (relative
performance). This information is particularly useful to detect
performance bugs related to erroneous graph configurations.

Figure 2 shows how the main concepts of traditional debugging

|
=
A
e - ;i age e
-> Value: 0
- Type:

energy

- e -

Type: Var(integer]

o Debug - REClipse_Examples/src/de/tu_darmstadt/stg/reclipse/examples/FibonaccLscala - Eclipse Platform
TR EREEREEEEEEEE #-0-QU-®dB S~
4 Debug 13 v = B o variables % tEe v =g
v 15 Fibonaccis (1) [scala Application[-| Name
* @ scala Debug Target —
+© Daemon svstem Thread Isian: -

5 Fibonacciscala % = B :"ReactiveTree 2 ®tsh =0

println(f10.get) - 9
var(:) "
10 + 2 - Y

‘ p[Fold

12 Highiight Change Propagation
e I Enable Breakpoint [\
ourcé

3 Show Variable in Sourc Code

submit Query| [« [»

© console L] & (& o=

Fibonaceis (1) [Scala Application] /usr/lib/jvmy/java-7-oracle/bin/java (Mar 15, 2015, 8:25:15 PM)

Figure 3: The Reactive Inspector Eclipse plugin.

find a counterpart (= in the rest) in RP Debugging.

Stepping Users step over code to execute a statement at a time.
As the execution is slowed down, the user can check the actual
control flow of the application and stop the execution at interest-
ing points. = Stepping over statements makes little sense for
declarative languages. The user can step through the node update
propagation in the dependency graph.

Breakpoints Stepping until a certain point in the execution may
be tedious. Users can ask the debugger to stop the execution when
an instruction in the flow is hit. => Users can stop the execution
when a node in the dependency graph is evaluated and the result of
its expression is updated.

Inspect memory During stepping, programmers can inspect the
content of the memory, i.e., the active variables in the stack frame
and the visible objects on the heap. = Programmers can inspect
the current value of the reactive variables in the graph and inspect
the dependency relations among them.

Navigate objects structure In OO debuggers, programmers can
navigate object fields to inspect the objects structure. =—> Program-
mers can access vars and signals declared in the code to inspect the
dependency graph they originate.

Performance In traditional debuggers, performance is analyzed
on per function bases and it is absolute (time spent in each function).
= Programmers analyze per node absolute performance and can
inspect relative performance as fraction of node reevaluations that
issued a new value.

Implementation.

Reactive Inspector, our reference implementation of RP De-
bugging, is an Eclipse plugin integrated with the debugger of
the Scala Eclipse IDE [15]. Reactive Inspector supports the
REScala [13] reactive language and is made of about 8000 LOC.
In Reactive Inspector (Figure 3), when the user is debugging a
reactive application (1), the dependency graph is displayed in the
GUI (2). Users can set a breakpoint on a node (3). A sliding bar
provides access to the previous states in the history of the graph (4)
and an input field allows one to specify a query on previous state or
as a conditional breakpoint (5). For illustration, we also show the
case of multiple active dependency graphs (6) where colors indicate
the performance of each node. In the enlarged detail (7) each node
provides information about the signal name, type and current value.

1.
(1]

(2]

(3]

(4]

(3]

(6]

(7]
(8]

REFERENCES
G. H. Cooper and S. Krishnamurthi. Embedding dynamic

dataflow in a call-by-value language. In Proceedings of the
15th European Conference on Programming Languages and
Systems, ESOP’06, pages 294-308, Berlin, Heidelberg, 2006.
Springer-Verlag.

E. Czaplicki and S. Chong. Asynchronous functional reactive
programming for GUIs. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI *13, pages 411-422, New York, NY,
USA, 2013. ACM.

J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini.
Distributed REScala: An update algorithm for distributed
reactive programming. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, pages
361-376, New York, NY, USA, 2014. ACM.

C. Elliott and P. Hudak. Functional reactive animation. In
Proceedings of the second ACM SIGPLAN international
conference on Functional programming, ICFP *97, pages
263-273, New York, NY, USA, 1997. ACM.

C. M. Elliott. Push-pull functional reactive programming. In
Proceedings of the 2nd ACM SIGPLAN symposium on Haskell,
Haskell "09, pages 25-36, New York, NY, USA, 2009. ACM.
P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows,
robots, and functional reactive programming. In Summer
School on Advanced Functional Programming 2002, Oxford
University, volume 2638 of Lecture Notes in Computer
Science, pages 159—187. Springer-Verlag, 2003.

Lift reactive web site. http://scalareactive.org/.

I. Maier, T. Rompf, and M. Odersky. Deprecating the
Observer Pattern. Technical report, 2010.

(9]

[10]

(11]

[12]

[13]

[14]

[15]

A. Margara and G. Salvaneschi. We have a DREAM:
Distributed reactive programming with consistency
guarantees. In Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, DEBS ’14,
pages 142-153, New York, NY, USA, 2014. ACM.

L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,

M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax: a
programming language for Ajax applications. In Proceeding
of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, OOPSLA
’09, pages 1-20, New York, NY, USA, 2009. ACM.

R. Newton, G. Morrisett, and M. Welsh. The Regiment
Macroprogramming System. In Information Processing in
Sensor Networks, 2007. IPSN 2007. 6th International
Symposium on, pages 489-498, 2007.

G. Salvaneschi, S. Amann, S. Proksch, and M. Mezini. An
empirical study on program comprehension with reactive
programming. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2014, pages 564-575, New York, NY, USA,
2014. ACM.

G. Salvaneschi, G. Hintz, and M. Mezini. REScala: Bridging
between object-oriented and functional style in reactive
applications. In Proceedings of the 13th International
Conference on Modularity, MODULARITY 14, pages 25-36,
New York, NY, USA, 2014. ACM.

G. Salvaneschi and M. Mezini. Debugging for reactive
programming. In Proceedings of the 38th International
Conference on Software Engineering, ICSE °16, New York,
NY, USA, 2016. ACM.

Scala Eclipse IDE. http://scala-ide.org/.

