
CPL: A Core Language for Cloud Computing

Oliver Bračevac1 Sebastian Erdweg1 Guido Salvaneschi1 Mira Mezini1,2
1TU Darmstadt, Germany 2Lancaster University, UK

Abstract
Running distributed applications in the cloud involves deploy-
ment. That is, distribution and configuration of application
services and middleware infrastructure. The considerable
complexity of these tasks resulted in the emergence of declar-
ative JSON-based domain-specific deployment languages to
develop deployment programs. However, existing deployment
programs unsafely compose artifacts written in different lan-
guages, leading to bugs that are hard to detect before run time.
Furthermore, deployment languages do not provide extension
points for custom implementations of existing cloud services
such as application-specific load balancing policies.

To address these shortcomings, we propose CPL (Cloud
Platform Language), a statically-typed core language for
programming both distributed applications as well as their
deployment on a cloud platform. In CPL, application services
and deployment programs interact through statically typed,
extensible interfaces, and an application can trigger further
deployment at run time. We provide a formal semantics of
CPL and demonstrate that it enables type-safe, composable
and extensible libraries of service combinators, such as load
balancing and fault tolerance.

Categories and Subject Descriptors C.2.4 [Computer-
Communication Networks]: Distributed Systems; D.1.3
[Programming Techniques]: Concurrent Programming; D.3.3
[Programming Languages]: Language Constructs and Fea-
tures

General Terms Design, Languages, Theory

Keywords Cloud deployment; cloud computing; computa-
tion patterns; join calculus

1. Introduction
Cloud computing [30] has emerged as the reference infras-
tructure for concurrent distributed services with high avail-
ability, resilience and quick response times, providing access
to on-demand and location-transparent computing resources.
Companies develop and run distributed applications on spe-
cific cloud platforms, e.g., Amazon AWS1 or Google Cloud
Platform.2 Services are bought as needed from the cloud
provider in order to adapt to customer demand,

An important and challenging task in the development pro-
cess of cloud applications is deployment. Especially, deploy-
ment involves the distribution, configuration and composition
of (1) virtual machines that implement the application and its
services, and of (2) virtual machines that provide middleware
infrastructure such as load balancing, key-value stores, and
MapReduce. Deploying a cloud application can go wrong
and cause the application to malfunction. Possible causes
are software bugs in the application itself, but also wrong
configurations, such as missing library dependencies or in-
appropriate permissions for a shell script. Fixing mistakes
after deployment causes high costs and loss of reputation.
For example, in 2012, Knight Capital lost over $440 Million
over the course of 30 minutes due to a bug in its deployed
trading software,3 causing the disappearance of the company
from the market.

Considering that cloud applications can have deployment
sizes in the hundreds or thousands of virtual machines, man-
ual configuration is error-prone and does not scale. Cloud
platforms address this issue with domain-specific languages
(DSLs) such as Amazon CloudFormation or Google Cloud
Deployment Manager. The purpose of these DSLs is to write
reusable deployment programs, which instruct the cloud plat-
form to perform deployment steps automatically. A typical
deployment program specifies the required virtual machines
for the application infrastructure, how these virtual machines
are connected with each other, and how the application in-
frastructure connects to the pre-existing or newly created
middleware infrastructure of the cloud platform.

1 https://aws.amazon.com
2 https://cloud.google.com
3 http://www.bloomberg.com/bw/articles/2012-08-02/
knight-shows-how-to-lose-440-million-in-30-minutes.

https://aws.amazon.com
https://cloud.google.com
http://www.bloomberg.com/bw/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
http://www.bloomberg.com/bw/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes

However, the modularity of current cloud deployment
DSLs is insufficient (detailed discussion in Section 2):

Unsafe Composition: Application services and deploy-
ment programs are written in different languages. Deploy-
ment DSLs configure application services by lexically ex-
panding configuration parameters into application source
code before its execution. This approach is similar to a lex-
ical macro system and makes deployment programs unsafe
because of unintentional code injection and lexical incompat-
ibilities.

No Extensibility: Middleware cloud services (e.g., elastic
load balancing, which may dynamically allocate new virtual
machines) are pre-defined in the cloud platform and only
referenced by the deployment program through external
interfaces. As such, there is no way to customize those
services during deployment or extend them with additional
features.

Stage Separation: Current deployment DSLs finish their
execution before the application services are started. There-
fore, it is impossible to change the deployment once the ap-
plication stage is active. Thus, applications cannot self-adjust
their own deployment, e.g., to react to time-varying customer
demand.

We propose CPL (Cloud Platform Language), a statically-
typed core language for programming cloud applications and
deployments. CPL employs techniques from programming
language design and type systems to overcome the issues out-
lined above. Most importantly, CPL unifies the programming
of deployments and applications into a single language. This
avoids unsafe composition because deployments and appli-
cations can exchange values directly via statically typed in-
terfaces. For extensibility, CPL supports higher-order service
combinators with statically typed interfaces using bounded
polymorphism. Finally, CPL programs run at a single stage
where an application service can trigger further deployment.

To demonstrate how CPL solves the problems of deploy-
ment languages, we implemented a number of case studies.
First, we demonstrate type-safe composition through generi-
cally typed worker and thunk abstractions. Second, on top of
the worker abstraction, we define composable and reusable
service combinators in CPL, which add new features, such as
elastic load balancing and fault tolerance. Finally, we demon-
strate how to model MapReduce as a deployment program in
CPL and apply our combinators, obtaining different MapRe-
duce variants, which safely deploy at run time.

In summary, we make the following contributions:
• We analyze the problems with current cloud deployment

DSLs.
• We define the formal syntax and semantics of CPL to

model cloud platforms as distributed, asynchronous mes-
sage passing systems. Our design is inspired by the Join
Calculus [12].
• We define the type system of CPL as a variant of System

F with bounded quantification [24].

1 { //...
2 "Parameters": {
3 "InstanceType": {
4 "Description": "WebServer EC2 instance type",
5 "Type": "String",
6 "Default": "t2.small",
7 "AllowedValues": ["t2.micro", "t2.small]",
8 "ConstraintDescription": "a valid EC2 instance type."
9 } //...

10 },
11 "Resources": {
12 "WebServer": {
13 "Type": "AWS::EC2::Instance",
14 "Properties": {
15 "InstanceType": { "Ref" : "InstanceType" } ,
16 "UserData": { "Fn::Base64" : { "Fn::Join" : ["", [
17 "#!/bin/bash -xe\n",
18 "yum update -y aws-cfn-bootstrap\n",
19

20 "/opt/aws/bin/cfn-init -v ",
21 " --stack ", { "Ref" : "AWS::StackName" },
22 " --resource WebServer ",
23 " --configsets wordpress_install ",
24 " --region ", { "Ref" : "AWS::Region" }, "\n"
25]]}}, //...
26 },
27 }
28 },
29 "Outputs": {
30 "WebsiteURL": {
31 "Value":
32 { "Fn::Join" :
33 ["", ["http://", { "Fn::GetAtt" :
34 ["WebServer", "PublicDnsName"]}, "/wordpress"]]},
35 "Description" : "WordPress Website"
36 }
37 }
38 }

Figure 1. A deployment program in CloudFormation
(details omitted, full version: https://s3.eu-central-1.amazonaws.
com/cloudformation-templates-eu-central-1/WordPress_Multi_AZ.
template.

• We formalize CPL in PLT Redex [9] and we provide a
concurrent implementation in Scala.
• We evaluated CPL with case studies, including a library of

typed service combinators that model elastic load balanc-
ing and fault tolerance mechanisms. Also, we apply the
combinators to a MapReduce deployment specification.

The source code of the PLT Redex and Scala implementations
and of all case studies is available online:
https://github.com/seba--/djc-lang.

2. Motivation
In this section, we analyze the issues that programmers en-
counter with current configuration and deployment languages
on cloud platforms by a concrete example.

2.1 State of the Art
Figure 1 shows an excerpt of a deployment program in
CloudFormation, a JSON-based DSL for Amazon AWS.
The example is from the CloudFormation documentation.
We summarize the main characteristics of the deployment
language below.

• Input parameters capture varying details of a configuration
(Lines 2-10). For example, the program receives the

https://s3.eu-central-1.amazonaws.com/cloudformation-templates-eu-central-1/WordPress_Multi_AZ.template
https://s3.eu-central-1.amazonaws.com/cloudformation-templates-eu-central-1/WordPress_Multi_AZ.template
https://s3.eu-central-1.amazonaws.com/cloudformation-templates-eu-central-1/WordPress_Multi_AZ.template
https://github.com/seba--/djc-lang

virtual machine instance type that should host the web
server for a user blog (Line 3). This enables reuse of the
program with different parameters.
• CloudFormation programs specify named resources to be

created in the deployment (Lines 11-28), e.g., deployed
virtual machines, database instances, load balancers and
even other programs as modules. The program in Figure 1
allocates a "WebServer" resource (Line 12), which is a
virtual machine instance. The type of the virtual machine
references a parameter (Line 15), that the program de-
clared earlier on (Line 3). Resources can refer to each
other, for example, configuration parameters of a web
server may refer to tables in a database resource.
• Certain configuration phases require to execute applica-

tion code inside virtual machine instances after the deploy-
ment stage. Application code is often directly specified
in resource bodies (Lines 17-24). In the example, a bash
script defines the list of software packages to install on
the new machine instance (in our case a WordPress4 blog).
In principle, arbitrary programs in any language can be
specified.
• Deployment programs specify output parameters (Lines

29-37), which may depend on input parameters and re-
sources. Output parameters are returned to the caller after
executing the deployment program. In this example, it is
a URL pointing to the new WordPress blog.
• The deployment program is interpreted at run time by

the cloud platform which performs the deployment steps
according to the specification.

2.2 Problems with Deployment Programs
In the following we discuss the issues with the CloudForma-
tion example described above.

Internal Safety Type safety for deployment programs is
limited. Developers define “types” for resources of the
cloud platform, e.g., AWS::EC2::Instance (Line 13)
represents an Amazon EC2 instance. However, the typing
system of current cloud deployment languages is primitive
and only relies on the JSON types.

Cross-language Safety Even more problematic are issues
caused by cross-language interaction between the deploy-
ment language and the language(s) of the deployed appli-
cation services. For example, the AWS::Region variable
is passed from the JSON specification to the bash script
(Line 24). However, the sharing mechanism is just syn-
tactic replacement of the current value of AWS::Region
inside the script. Neither are there type-safety checks nor
syntactic checks before the script is executed. More gen-
erally, there is no guarantee that the data types of the
deployment language are compatible with the types of
the application language nor that the resulting script is

4 http://wordpress.org

syntactically correct. This problem makes cloud applica-
tions susceptible to hygiene-related bugs and injection
attacks [4].

Low Abstraction Level Deployment languages typically
are Turing-complete but the abstractions are low-level and
not deployment-specific. For example, (1) deployment
programs receive parameters and return values similar
to procedures and (2) deployment programs can be in-
stantiated from inside other deployment programs, which
resembles modules. Since deployment is a complex en-
gineering task, advanced language features are desirable
to facilitate programming in the large, e.g., higher-order
combinators, rich data types and strong interfaces.

Two-phase Staging Deployment programs in current DSLs
execute before the actual application services, that is, in-
formation flows from the deployment language to the de-
ployed application services, but not the other way around.
As a result, an application service cannot reconfigure a
deployment based on the run time state. Recent scenarios
in reactive and big data computations demonstrate that
this is a desirable feature [10].

Lack of Extensibility Resources and service references in
deployment programs refer to pre-defined abstractions of
the cloud platform, which have rigid interfaces. Cloud
platforms determine the semantics of the services. Pro-
grammers cannot implement their own variants of services
that plug into the deployment language with the same in-
terfaces as the native services.

Informal Specification The behavior of JSON deployment
scripts is only informally defined. The issue is exacerbated
by the mix of different languages. As a result, it is hard
to reason about properties of systems implemented using
deployment programs.

The issues above demand for a radical change in the
way programmers deploy cloud applications and in the way
application and deployment configuration code relate to each
other.

3. The Cloud Platform Language
A solution to the problems identified in the previous section
requires an holistic approach where cloud abstractions are
explicitly represented in the language. Programmers should
be able to modularly specify application behavior as well
as reconfiguration procedures. Run time failures should be
prevented at compilation time through type checking.

These requirements motivated the design of CPL. In this
section, we present its syntax and the operational semantics.

3.1 Language Features in a Nutshell
Simple Meta-Theory: CPL should serve as the basis for in-

vestigating high-level language features and type systems
designed for cloud computations. To this end, it is de-
signed as a core language with a simple meta-theory. Es-

http://wordpress.org

tablished language features and modeling techniques, such
as lexical scoping and a small-step operational semantics,
form the basis of CPL.

Concurrency: CPL targets distributed concurrent computa-
tions. To this end, it allows the definition of independent
computation units, which we call servers.

Asynchronous Communication: Servers can receive pa-
rameterized service requests from other servers. To real-
istically model low-level communication within a cloud,
the language only provides asynchronous end-to-end com-
munication, where the success of a service request is
not guaranteed. Other forms of communication, such as
synchronous, multicast, or error-checking communication,
can be defined on top of the asynchronous communica-
tion.

Local Synchronization: Many useful concurrent and asyn-
chronous applications require synchronization. We adopt
join patterns from the Join Calculus [12]. Join patterns are
declarative synchronization primitives for machine-local
synchronization.

First-Class Server Images: Cloud platforms employ virtu-
alization to spawn, suspend and duplicate virtual machines.
That is, virtual machines are data that can be stored and
send as payload in messages. This is the core idea be-
hind CPL’s design and enables programs to change their
deployment at run time. Thus, CPL features servers as
values, called first-class servers. Active server instances
consist of an address, which points to a server image (or
snapshot). The server image embodies the current run
time state of a server and a description of the server’s
functionality, which we call server template. At run time,
a server instance may be overwritten by a new server im-
age, thus changing the behavior for subsequent service
requests to that instance.

Transparent Placement: Cloud platforms can reify new
machines physically (on a new network node) or virtually
(on an existing network node). Since this difference does
not influence the semantics of a program but only its non-
functional properties (such as performance), our semantics
is transparent with respect to placement of servers. Thus,
actual languages based on our core language can freely
employ user-defined placement definitions and automatic
placement strategies. Also, we do not require that CPL-
based languages map servers to virtual machines, which
may be inefficient for short-lived servers. Servers may as
well represent local computations executing on a virtual
machine.

3.2 Core Syntax
Figure 2 displays the core syntax of CPL. An expression e is
either a value or one of the following syntactic forms:5

• A variable x is from the countable set N . Variables
identify services and parameters of their requests.
• A server template (srv r) is a first-class value that de-

scribes the behavior of a server as a sequence of reaction
rules r. A reaction rule takes the form p . e, where p is a
sequence of joined service patterns and e is the body. A
service pattern x0〈x〉 in p declares a service named x0
with parameters x and a rule can only fire if all service
patterns are matched simultaneously. The same service
pattern can occur in multiple rules of a server.
• A server spawn (spwn e) creates a new running server

instance at a freshly allocated server address i from
a given server image (srv r,m) represented by e. A
server image is a description of a server behavior plus
a server state – a buffer of pending messages. A real-
world equivalent of server images are e.g., virtual machine
snapshots. A special case of a server image is the value 0,
which describes an inactive or shut down server.
• A fully qualified service reference e]x, where e denotes

a server address and x is the name of a service provided
by the server instance at e. Service references to server
instances are themselves values.
• A self-reference this refers to the address of the lexically

enclosing server template, which, e.g., allows one service
to call upon other services of the same server instance.
• An asynchronous service request e0〈e〉, where e0 rep-

resents a service reference and e the arguments of the
requested service.
• A parallel expression (par e) of service requests e to be

executed independently. The empty parallel expression
(par ε) acts as a noop expression, unit value, or null
process and is a value.
• A snapshot snap e yields an image of the server instance

which resides at the address denoted by e.
• A replacement repl e1 e2 of the server instance at address
e1 with the server image e2.

Notation: In examples, p & p denotes pairs of join patterns
and e ‖ e denotes pairs of parallel expressions. We sometimes
omit empty buffers when spawning servers, i.e., we write
spwn (srv r) for spwn (srv r, ε). To improve readability
in larger examples, we use curly braces to indicate the
lexical scope of syntactic forms. We write service names and
meta-level definitions in typewriter font, e.g., this]foo and
MyServer = srv { }. We write bound variables in italic
font, e.g., srv { left〈x〉 & right〈y〉 . pair〈x, y〉 }.

5 We write a to denote the finite sequence a1. . . an and we write ε to denote
the empty sequence.

e ::= v | x | this | srv r | spwn e | e]x | e〈e〉 | par e (Expressions)
| snap e | repl e e

v ::= srv r | i | i]x | par ε | (srv r,m) | 0 (Values)

E ::= [·] | spwn E | E]x | E〈e〉 | e〈e E e〉 (Evaluation Contexts)
| par e E e | snap E | repl E e | repl e E

x, y, z ∈ N (Variable Names)

i ∈ N (Server Addresses)

r ::= p . e (Reaction Rules)

p ::= x〈x〉 (Join Patterns)

m ::= x〈v〉 (Message Values)

µ ::= ∅ | µ; i 7→ (srv r,m) (Routing Tables)
| µ; i 7→ 0

Figure 2. Expression Syntax of CPL.

e |µ −→ e′ |µ′

E[e] |µ −→ E[e′] |µ′
(CONG)

par e1 (par e2) e3 |µ −→ par e1 e2 e3 |µ
(PAR)

µ(i) = (s,m)

i]x〈v〉 |µ −→ par ε |µ; i 7→ (s,m · x〈v〉)
(RCV)

µ(i) = (s,m) s = srv r1 (p . eb) r2
match(p,m) ⇓ (m′, σ) σb = σ ∪ {this := i}

par e |µ −→ par e σb(eb) |µ; i 7→ (s,m′)
(REACT)

i /∈ dom(µ) (s = 0 ∨ s = (srv r,m))

spwn s |µ −→ i |µ; i 7→ s
(SPWN)

µ(i) = s (s = 0 ∨ s = (srv r,m))

snap i |µ −→ s |µ
(SNAP)

i ∈ dom(µ) (s = 0 ∨ s = (srv r,m))

repl i s |µ −→ par ε |µ; i 7→ s
(REPL)

Matching Rules:

match(ε,m) ⇓ (m, ∅)
(MATCH0)

m = m1 (x〈v1 . . . vk〉) m2 σ = {xi := vi | 1 ≤ i ≤ k}
match(p,m1 m2) ⇓ (mr, σr) dom(σ) ∩ dom(σr) = ∅

match(x〈x1 . . . xk〉 p,m) ⇓ (mr, σ ∪ σr)
(MATCH1)

Figure 3. Small-step Operational Semantics of CPL.

Example. For illustration, consider the following server
template Fact for computing factorials, which defines three
rules with 5 services.6

1 Fact = srv {
2 main〈n, k〉 . //initialization
3 this]fac〈n〉 ‖ this]acc〈1〉 ‖ this]out〈k〉
4

5 fac〈n〉 & acc〈a〉 . //recursive fac computation
6 if (n ≤ 1)
7 then this]res〈a〉
8 else (this]fac〈n - 1〉 ‖ this]acc〈a * n〉)
9

10 res〈n〉 & out〈k〉 . k〈n〉 //send result to k
11 }

The first rule defines a service main with two arguments, an
integer n and a continuation k. The continuation is necessary
because service requests are asynchronous and thus, the
factorial server must notify the caller when the computation
finishes. Upon receiving a main request, the server sends
itself three requests: fac represents the outstanding factorial
computation, acc is used as an accumulator for the ongoing
computation, and out stores the continuation provided by the
caller.

The second rule of Fact implements the factorial function
and synchronously matches and consumes requests fac and
acc using join patterns. Upon termination, the second rule

6 For the sake of presentation, we use ordinary notation for numbers,
arithmetics and conditionals, all of which is church-encodable on top of
CPL (cf. Section 3.5).

sends a request res to the running server instance, otherwise
it decreases the argument of fac and updates the accumulator.
Finally, the third rule of Fact retrieves the user-provided
continuation k from the request out and the result res. The
rule expects the continuation to be a service reference and
sends a request to it with the final result as argument.

To compute a factorial, we create a server instance from
the template Fact and request service main:

(spwn Fact)]main〈5, k〉.

3.3 Operational Semantics
We define the semantics of CPL as a small-step structural
operational semantics using reduction contexts E (Figure 2)
in the style of Felleisen and Hieb [8].

Figure 3 shows the reduction rules for CPL expressions.
Reduction steps are atomic and take the form e |µ −→ e′ |µ′.
A pair e |µ represents a distributed cloud application, where
expression e describes its current behavior and µ describes
its current distributed state. We intend e as a description
of the software components and resources that execute and
reside at the cloud provider and do not model client devices.
We call the component µ a routing table, which is a finite
map. Intuitively, µ records which addresses a cloud provider
assigns to the server instances that the cloud application
creates during its execution.7 We abstract over technical
details, such as the underlying network.

7 This bears similarity to lambda calculi enriched with references and a
store [31].

The first reduction rule (CONG) defines the congruence
rules of the language and is standard. The second rule (PAR)
is technical. It flattens nested parallel expressions in order
to have a simpler representation of parallel computations.
The third rule (RCV) lets a server instance receive an asyn-
chronous service request, where the request is added to the
instance’s buffer for later processing. Our semantics abstracts
over the technicalities of network communication. That is, we
consider requests i]x〈v〉 that occur in a CPL expression to be
in transit, until a corresponding (RCV) step consumes them.
The fourth rule (REACT) fires reaction rules of a server. It se-
lects a running server instance (s,m), selects a reaction rule
(p . eb) from it, and tries to match its join patterns p against
the pending service requests in the buffer m. A successful
match consumes the service requests, instantiates the body
eb of the selected reaction rule and executes it independently
in parallel.

Finally, let us consider the rules for spwn, snap and repl,
which manage server instances and images. Reduction rule
(SPWN) creates a new server instance from a server image,
where a fresh unique address is assigned to the server instance.
This is the only rule that allocates new addresses in µ. One can
think of this rule as a request to the cloud provider to create
a new virtual machine and return its IP address. Importantly,
the address that spwn yields is only visible to the caller.
The address can only be accessed by another expression if it
shares a common lexical scope with the caller. Thus, lexical
scope restricts the visibility of addresses. This also means
that the map µ is not a shared memory, but a combined, flat
view of disjoint distributed information.8

Reduction rule (SNAP) yields a copy of the server image
at address i, provided the address is in use. Intuitively, it
represents the invocation of a cloud management API to
create a virtual machine snapshot. Reduction rule (REPL)
replaces the server image at address i with another server
image.

We define spwn, snap and repl as atomic operations.
At the implementation level, each operation may involve
multiple communication steps with the cloud provider, taking
noticeable time to complete and thus block execution for too
long, especially when the operation translates to booting
a new OS-level virtual machine. On the other hand, as
we motivated at the beginning of this section, servers may
not necessarily map to virtual machines, but in-memory
computations. In this case, we expect our three atomic
operations to be reasonably fast. Also, we do not impose
any synchronization mechanism on a server addresses, which
may result in data races if multiple management operations
access it in parallel. Instead, programmers have to write their
own synchronization mechanisms on top of CPL if required.

Our semantics is nondeterminstic along 3 dimensions:

8 This approach is comparable to sets of definitions in the chemical soup of
the Join Calculus [12].

• If multiple server instances can fire a rule, (REACT)
selects one of them nondeterminstically. This models
concurrent execution of servers that can react to incoming
service requests independently.
• If multiple rules of a server instance can fire, (REACT)

selects one of them nondeterminstically. This is of lesser
importance and languages building on ours may fix a spe-
cific order for firing rules (e.g., in the order of definition).
• If multiple service request values can satisfy a join pat-

tern, (MATCH1) selects one of them nondeterminstically.
This models asynchronous communication in distributed
systems, i.e., the order in which a server serves requests is
independent of the order in which services are requested.
More concrete languages based on CPL may employ
stricter ordering (e.g., to preserve the order of requests
that originate from a single server).

3.4 Placement of Servers
We intentionally designed the semantics of CPL with trans-
parency of server placement in mind. That is, a single abstrac-
tion in the language, the server instance, models all compu-
tations, irrespective of whether the instance runs on its own
physical machine or as a virtual machine hosted remotely –
indeed, placement transparency is a distinguishing feature of
cloud applications.

However, despite the behavior of servers being invariant to
placement, placement has a significant impact in real-world
scenarios and influences communication and computation
performance [2, 19]. The need to account for placement in
an implementation is critical considering that – servers be-
ing the only supported abstraction – every single let binding
and lambda abstraction desugars to a server spawn (cf. Sec-
tion 3.5). In our concurrent Scala implementation, we support
an extended syntax for server spawns that allows program-
mers to declare whether a server instance runs in a new thread
or in the thread that executes the spawn. This provides a
simple mechanism for manually implementing placement
strategies.

A viable alternative to manual specification of placement
are automatic placement strategies. Together with server
migration, automatic placement strategies can adapt the
server layout to changing conditions. Based on our language,
a management system for a cloud infrastructure can formally
reason about optimal placement strategies. In future work,
we plan to implement these ideas in a distributed run-time
system for CPL (cf. Section 4.4).

3.5 Derived Syntax and Base Operations
For notational convenience in examples, we will assume a
fully-fledged, practical programming language, knowing that
in principle we can encode all required features in core CPL.
Our core language is sufficiently expressive to encode typical
language constructs on top of message passing, such as let
bindings, λ abstractions, numbers, base operations, thunks

(first-class value that represents a packaged, delayed compu-
tation) and algebraic data types. As the basis we adopted the
CPS function encoding from the Join Calculus [12], which is
defined in our technical report [3]. For example, we desugar
() standard call-by-value let expressions to server spawns
and service requests:
let x = e1 in e2 (spwn (srv let〈x〉.e2))]let〈e1〉.
The desugared let spawns a new server instance with a let
service that triggers the body e2. This service is requested
with the bound expression e1 as an argument. If e1 reduces to
a value v, then the whole expression evaluates to e2 {x := v}
eventually. Otherwise, the expression is stuck.

Another variant of let is letk, which is convenience syn-
tax to specify anonymous continuations for service requests:
letk x = e1〈e〉 in e2 e1〈e, (spwn (srv k〈x〉 . e2))]k〉.
Intuitively, a letk expression triggers an asynchronous ser-
vice e1, passing the arguments e. The body e2 is the continu-
ation after the e1 request yields a value, which is bound to x
in e2.

Sometimes it is useful to delay the evaluation of an ex-
pression, e.g., to store and transfer expressions between
servers or to implement lazy evaluation. We use the con-
venience syntax thunk e to denote delayed expressions:
thunk e srv force〈k〉 . k〈e〉. The encoding wraps
the expression e in a server template, which is a value. In
order to evaluate e, one spawns thunk e and requests the
force service.

3.6 Type System
We designed and formalized a type system for CPL in the
style of System F with subtyping and bounded quantifica-
tion [24]. The type system ensures that all service requests
in a well-typed program refer to valid service declarations
with the correct number of arguments and the right argument
types. As such, the type system statically ensures well-typed
compositions of servers and services, of which the JSON-
based deployment languages we analyzed in Section 2 are
incapable.

Structural subtyping enables us to define public server
interfaces, where the actual server implementation defines
private services, for example, to manage internal state and
swap implementations at run time.

A detailed description of the type system rules and sound-
ness proofs are in the accompanying technical report [3].
We sketch a few examples to prepare the reader for the sub-
sequent discussions. Typed CPL adds annotations to each
service at the beginning of server templates:

S := srv a:〈Int〉, b:〈〈Bool〉〉
(a〈x〉 . foo〈〉) (a〈x〉 & b〈y〉 . bar〈〉),

where service S]a is of the service type 〈Int〉, accepting
an integer value and S]b is of service type 〈〈Bool〉〉 ac-
cepting a boolean-typed continuation. The entire type of the
server template S is the structural type srv a:〈Int〉 b:〈Bool〉.
A spawn spwn (S,m) yields a server address of type

inst srv a:〈Int〉 b:〈Bool〉. Our subtyping relation permits
S in contexts that require the less informative interfaces
srv a:〈Int〉, srv b:〈Bool〉 or srv ε.

For notational convenience, we define function types as
T1, . . . Tn → T := 〈T1, . . . , Tn, 〈T 〉〉

following the function encoding in Section 3.5.

4. CPL at Work
We present two case studies to demonstrate the adequacy of
CPL for solving the deployment issues identified in Section 2.
The case studies will also be subsequently used to answer
research questions about CPL’s features.

Firstly, we developed a number of reusable server combi-
nators, expressing deployment patterns found in cloud com-
puting. Our examples focus on load balancing and fault toler-
ance, demonstrating that programmers can define their own
cloud services as strongly-typed, composable modules and
address nonfunctional requirements with CPL. Secondly, we
use our language to model MapReduce [18] deployments for
distributed batch computations. Finally, we apply our server
combinators to MapReduce, effortlessly obtaining a type-safe
composition of services.

4.1 Server Combinators
In Section 2, we identified extensibility issues with deploy-
ment languages, which prevents programmers from integrat-
ing their own service implementations. We show how to
implement custom service functionality with server combi-
nators in a type-safe and composable way. Our combinators
are similar in spirit to higher-order functions in functional
programming.

As the basis for our combinators, we introduce workers,
i.e., servers providing computational resources. A worker
accepts work packages as thunks. Concretely, a worker
models a managed virtual machine in a cloud and thunks
model application services.

Following our derived syntax for thunks (Section 3.5),
given an expression e of type α, the type of thunk e is:

TThunk[α] := srv force:〈α〉.

Service force accepts a continuation and calls it with the
result of evaluating e. A worker accepts a thunk and executes
it. At the type level, workers are values of a polymorphic type

TWorker[α] := srv init:〈〉, work:TThunk[α]→ α.

That is, to execute a thunk on a worker, clients request the
work service which maps the thunk to a result value. In
addition, we allow workers to provide initialization logic
via a service init. Clients of a worker should request init
before they issue work requests. Figure 4 defines a factory for
creating basic workers, which have no initialization logic and
execute thunks in their own instance scope. In the following,
we define server combinators that enrich workers with more
advanced features.

1 MkWorker[α] = srv {
2 make: () → TWorker[α]
3 make〈k〉 .
4 let worker = spwn srv {
5 init: 〈〉, work: TThunk[α] → α
6 init〈〉 . par ε //stub, do nothing
7 work〈thnk, k〉 . (spwn thnk)]force〈k〉
8 } in k〈worker〉
9 }

Figure 4. Basic worker factory.

To model locality – a worker uses its own computational
resources to execute thunks – the spawn of a thunk should
in fact not yield a new remote server instance. As discussed
in Section 3.4, to keep the core language minimal the op-
erational semantics does not distinguish whether a server
is local or remote to another server. However, in our con-
current implementation of CPL, we allow users to annotate
spawns as being remote or local, which enables us to model
worker-local execution of thunks.

The combinators follow a common design principle. (i)
The combinator is a factory for server templates, which is
a server instance with a single make service. The service
accepts one or more server templates which implement the
TWorker interface, among possibly other arguments. (ii) Our
combinators produce proxy workers. That is, the resulting
workers implement the worker interface but forward requests
of the work service to an internal instance of the argument
worker.

4.1.1 Load Balancing
A common feature of cloud computing is on-demand scalabil-
ity of services by dynamically acquiring server instances and
distributing load among them. CPL supports the encoding of
on-demand scalability in form of a server combinator, that
distributes load over multiple workers dynamically, given a
user-defined decision algorithm.

Dynamically distributing load requires a means to approxi-
mate worker utilization. Our first combinator
MkLoadAware enriches workers with the ability to answer
getLoad requests, which sends the current number of pend-
ing requests of the work service, our measure for utilization.
Therefore, the corresponding type9 for load aware workers is

TLAWorker[α] := TWorker[α] ∪ srv getLoad:〈〈Int〉〉.

The make service of the combinator accepts a server
template worker implementing the TWorker interface and
returns its enhanced version (bound to lWorker) back on the
given continuation k. Lines 10-13 implement the core idea of
forwarding and counting the pending requests. Continuation
passing style enables us to intercept and hook on to the

9 The union ∪ on server types is for notational convenience at the meta level
and not part of the type language.

1 MkLoadAware[α, ω <: TWorker[α]] = srv {
2 make: ω → TLAWorker[α]
3 make〈worker, k〉 .
4 let lWorker = srv {
5 instnc: 〈inst ω〉, getLoad: () → Int, load: 〈Int〉
6 work: TThunk[α] → α, init: 〈〉
7 //... initialization logic omitted
8

9 //forwarding logic for work
10 work〈thnk, k〉 & instnc〈w〉 & load〈n〉 .
11 this]load〈n+1〉 ‖ this]instnc〈w〉
12 ‖ letk res = w]work〈thnk〉
13 in (k〈res〉 ‖ this]done〈〉)
14

15 //callback logic for fullfilled requests
16 done〈〉 & load〈n〉 . this]load〈n-1〉
17

18 getLoad〈k〉 & load〈n〉 . k〈n〉 ‖ this]load〈n〉
19 } in k〈lWorker〉
20 }

Figure 5. Combinator for producing load-aware workers.

responses of worker after finishing work requests, which
we express in Line 13 by the letk construct.

By building upon load-aware workers, we can define a
polymorphic combinator MkBalanced that transparently in-
troduces load balancing over a list of load-aware workers. The
combinator is flexible in that it abstracts over the scheduling
algorithm, which is an impure polymorphic function of type

Choose[ω] := List[inst ω] → Pair[inst ω, List[inst ω]].

Given a (church-encoded) list of possible worker instances,
such a function returns a (church-encoded) pair consisting of
the chosen worker and an updated list of workers, allowing
for dynamic adjustment of the available worker pool (elastic
load balancing).

Figure 6 shows the full definition of the MkBalanced
combinator. Similarly to Figure 5, the combinator is a fac-
tory which produces a decorated worker. The only difference
being that now there is a list of possible workers to forward
requests to. Choosing a worker is just a matter of querying
the scheduling algorithm choose (Lines 15-16). Note that
this combinator is only applicable to server templates imple-
menting the TLAWorker[α] interface (Line 1), since choose
should be able to base its decision on the current load of the
workers.

In summary, mapping a list of workers with MkLoadAware
and passing the result to MkBalanced yields a composite,
load-balancing worker. It is thus easy to define hierarchies of
load balancers programmatically by repeated use of the two
combinators. Continuation passing style and the type system
enable flexible, type-safe compositions of workers.

4.1.2 Failure Recovery
Cloud platforms monitor virtual machine instances to ensure
their continual availability. We model failure recovery for

1 MkBalanced[α, ω <: TLAWorker[α]] = srv {
2 make: (List[ω], Choose[ω]) → TWorker[α]
3 make〈workers, choose, k〉 .
4 let lbWorker = srv {
5 insts: 〈List[inst ω]〉,
6 work: TThunk[α] → α, init: 〈〉
7

8 init〈〉 . //spawn and init all child workers
9 letk spawned = mapk〈workers, λw:ω. spwn w〉

10 in (this]insts〈spawned〉
11 ‖foreach〈spawned, λinst:inst ω. inst]init〈〉〉)
12

13 //forward to the next child worker
14 work〈thnk, k〉 & insts〈l〉 .
15 letk (w, l′) = choose〈l〉
16 in (w]work〈thnk, k〉 ‖ this]insts〈l′〉)
17 } in k〈lbWorker〉
18 }

Figure 6. Combinator for producing load-balanced workers.

crash/omission, permanent, fail-silent failures [27], where a
failure makes a virtual machine unresponsive and is recovered
by a restart.

Following the same design principles of the previous sec-
tion, we can define a failure recovery combinator
MkRecover, that produces fault-tolerant workers. We omit
its definition and refer to our technical report [3].

Self-recovering workers follow a basic protocol. Each time
a work request is processed, we store the given thunk and
continuation in a list until the underlying worker confirms
the request’s completion. If the wait time exceeds a timeout,
we replace the worker with a fresh new instance and replay
all pending requests. Crucial to this combinator is the repl
syntactic form, which swaps the running server instance
at the worker’s address: repl w (worker, ε). Resetting the
worker’s state amounts to setting the empty buffer ε in the
server image value we pass to repl.

4.2 MapReduce
In this section, we illustrate how to implement the MapRe-
duce [7] programming model with typed combinators in
CPL, taking fault tolerance and load balancing into account.
MapReduce facilitates parallel data processing – cloud plat-
forms are a desirable deployment target. The main point we
want to make with this example is that CPL programs do not
exhibit the unsafe composition, non-extensibility and staging
problems we found in Section 2. Our design is inspired by
Lämmel’s formal presentation in Haskell [18].

Figure 7 shows the main combinator for creating a MapRe-
duce deployment, which is a first-class server. Following
Lämmel’s presentation, the combinator is generic in the key
and value types. κi denotes type parameters for keys and νi
denotes type parameters for values.

1 MapReduce[κ1,ν1,κ2,ν2,ν3] = spwn srv {
2 make: (TMap[κ1,ν1,κ2,ν2],
3 TReduce[κ2,ν2,ν3],
4 TPartition[κ2],
5 ∀α.() → TWorker[α],
6 Int) → TMR[κ1,ν1,κ2,ν3]
7

8 make〈Map, Reduce, Partition, R, mkWorker, k〉 .
9 let sv = srv {

10 app〈data, k0〉 . let
11 mworker =
12 mapValues(data, λv. mkWorker[List[Pair[κ1, ν2]]])
13 rworker =
14 mkMap(map(range(1, R), λi. (i, mkWorker[ν3])))
15 grouper =
16 MkGrouper〈Partition, R, Reduce
17 size(mworker), rworker, k0〉
18 in foreach〈data, λkey, val. {
19 let thnk = thunk Map〈key, val〉
20 in get(mworker, key)]work〈thnk, grouper]group〉}〉
21 } in k〈sv〉
22 }

Figure 7. MapReduce factory.

The combinator takes as parameters (1) the Map func-
tion for decomposing input key-value pairs into a list of
intermediate pairs, (2) the Reduce function for transforming
grouped intermediate values into a final result value, (3) the
Partition function which controls grouping and distribution
among reducers, and (4) the number R of reducers to allocate
(Line 8). Parameter mkWorker is a polymorphic factory of
type ∀α.() → TWorker[α]. It produces worker instances for
both the map and reduce stage.

Invoking make creates a new server template that on invo-
cation of its app service deploys and executes a distributed
MapReduce computation. That is, it processes the given set of
(church-encoded) key-value pairs data and returns the result
on continuation k0 (Lines 9-10).

Firstly, workers for mapping and reducing are allocated
and stored in the local map data structures mworker and
rworker , where we assume appropriate cps-encoded func-
tions that create and transform maps and sequences (Lines
11-14). Each key in the input data is assigned a new mapping
worker and each partition from 1 to R is assigned a reducing
worker. Additionally, a component for grouping and distribu-
tion among reducers (grouper) is allocated. We refer to our
technical report [3] for the definition of the grouper.

Secondly, the foreach invocation (Lines 18-20) dis-
tributes key-value pairs in parallel among mapping workers.
For each pair, the corresponding worker should invoke the
Map function, which we express as a thunk (Line 19, cf.
section 3.5). All resulting intermediate values are forwarded
to the grouper’s group service.

Thanks to our service combinators, we can easily address
non-functional requirements and non-intrusively add new fea-

tures. The choice of the mkWorker parameter determines
which variants of MapReduce deployments we obtain: The
default variant just employs workers without advanced fea-
tures, i.e.,

let make = Λα.(spwn MkWorker[α])]make
in MapReduce[κ1,ν1,κ2,ν2,ν3]]make〈f, r, p, R, make, k〉

for appropriate choices of the other MapReduce parameters.
In order to obtain a variant, where worker nodes are

elastically load-balanced, one replaces make with makeLB
below, which composes the combinators from the previous
section:

let choose = ...//load balancing algorithm
makeLB = Λα.λk. {
letk w = (spwn MkWorker[α])]make〈〉

lw = (spwn MkLoadAware[α, TWorker[α]])]make〈w〉
in (spwn MkBalanced[α, TLAWorker[α]])

]make〈mkList(lw), choose, k〉
}

in makeLB
A similar composition with the fault tolerance combinator
yields fault tolerant MapReduce, where crashed mapper and
reducer workers are automatically recovered.

4.3 Discussion
We discuss how CPL performed in the case studies answering
the following research questions:

Q1 (Safety): Does CPL improve safety of cloud deployments?

Q2 (Extensibility): Does CPL enable custom and extensible
service implementations?

Q3 (Dynamic self-adjustment): Does CPL improve flexibility
in dynamic reconfiguration of deployments ?

Safety CPL is a strongly-typed language. As such, it pro-
vides internal safety (Section 2). The issue of cross-language
safety (Section 2) does not occur in CPL programs, because
configuration and deployment code are part of the same ap-
plication. In addition, the interconnection of components is
well-typed. For example, in the MapReduce case study, it is
guaranteed that worker invocations cannot go wrong due to
wrongly typed arguments. It is also guaranteed that workers
yield values of the required types. As a result, all mapper
and reducer workers are guaranteed to be compatible with
the grouper component. In a traditional deployment program,
interconnecting components amounts to referring to each oth-
ers attributes, but due to the plain syntactic expansion, there
is no guarantee of compatibility.

Extensibility The possibility to define combinators in CPL
supports extensible, custom service implementations. At the
type system level, bounded polymorphism and subtyping en-
sure that service implementations implement the required
interfaces. The load balancing example enables nested load
balancing trees, since the combinator implements the well-
known Composite design pattern from object-oriented pro-
gramming. At the operational level, continuation passing

style enables flexible composition of components, e.g., for
stacking multiple features.

Dynamic Self-Adjustment In the case studies, we encoun-
tered the need of dynamically adapting the deployment config-
uration of an application, which is also known as “elasticity”.
For example, the load balancer combinator can easily support
dynamic growth or shrinkage of the list of available workers:
New workers need to be dynamically deployed in new VMs
(growth) and certain VMs must be halted and removed from
the cloud configuration when the respective workers are not
needed (shrinkage). Dynamic reconfiguration is not directly
expressible in configuration languages, due to the two-phase
staging. For example, configurations can refer to external
elastic load balancer services provided by the cloud platform,
but such services only provide a fixed set of balancing strate-
gies, which may not suit the application. The load balancer
service can be regarded as a black box, which happens to
implement elasticity features. Also, a configuration language
can request load balancing services only to the fixed set of
machines which is specified in a configuration, but it is not
possible if the number of machines is unknown before execu-
tion, as in the MapReduce case study. In contrast, CPL users
can specify their own load balancing strategies and apply
them programmatically.

4.4 Interfacing with Cloud Platforms
A practical implementation of CPL requires (1) a mapping of
its concepts to real-world cloud platforms and (2) integrate
existing cloud APIs and middleware services written in other
languages. In the following, we sketch a viable solution; we
leave a detailed implementation for future work.

For (1), CPL programs can be compiled to bytecode and
be interpreted by a distributed run time hosted on multiple
virtual machines.

Concerning (2), we envision our structural server types
as the interface of CPL’s run time with the external world,
i.e., pre-existing cloud services and artifacts written in other
languages. CPL developers must write wrapper libraries to
implement typed language bindings. Indeed, CPL’s first-class
servers resemble (remote) objects, where services are their
methods and requests are asynchronous method invocations
(returning results on continuations). CPL implementations
hence can learn from work on language bindings in existing
object-oriented language run times, e.g., the Java ecosystem.
To ensure type safety, dynamic type checking is necessary at
the boundary between our run time and components written
in dynamically or weakly typed languages.

Note that the representation of external services and
artifacts as servers requires immutable addresses. That is,
the run time should forbid snap and repl on such objects,
because it is in general impossible to reify a state snapshot of
the external world.

For the primitives spwn, snap, and repl, the run time
must be able to orchestrate the virtualization facilities of the

cloud provider via APIs. Following our annotation-based ap-
proach to placement (Section 3.4), these primitives either
map to local objects or to fresh virtual machines. Thus, in-
voking spwn v may create a new virtual machine hosting the
CPL run time, which allocates and runs v. For local servers,
v is executed by the run time that invoked spwn. One could
extend the primitives to allow greater control of infrastructure-
level concerns, such as machine configuration and geographic
distribution. From these requirements and CPL’s design tar-
geting extensible services and distributed applications, it fol-
lows that CPL is cross-cutting the three abstraction layers
in contemporary cloud platforms: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS) [30].

5. Related Work
Programming Models for Cloud Computing. The popu-
larity of cloud computing infrastructures [30] has encouraged
the investigation of programming models that can benefit
from on-demand, scalable computational power and feature
location transparency. Examples of these languages, often
employed in the context of big data analysis, are Dryad [16],
PigLatin [23] and FlumeJava [6]. These languages are mo-
tivated by refinements and generalizations of the original
MapReduce [7] model.

Unlike CPL, these models specifically target only certain
kinds of cloud computations, i.e., massive parallel computa-
tions and derivations thereof. They deliberately restrict the
programming model to enable automated deployment, and
do not address deployment programmability in the same lan-
guage setting as CPL does. In this paper, we showed that the
server abstraction of CPL can perfectly well model MapRe-
duce computations in a highly parametric way, but it covers
at the same time a more generic application programming
model as well as deployment programmability. Especially,
due to its join-based synchronization, CPL is well suited to
serve as a core language for modeling cloud-managed stream
processing.

Some researchers have investigated by means of formal
methods specific computational models or specific aspects of
cloud computing. The foundations in functional programming
of MapReduce have been studied by Lämmel [18]. In CPL
it is possible to encode higher-order functions and hence we
can model MapReduce’s functionality running on a cloud
computing platform. Jarraya et al. [17] extend the Ambient
calculus to account for firewall rules and permissions to verify
security properties of cloud platforms. To the best of our
knowledge, no attempts have been done in formalizing cloud
infrastructures in their generality.

Formal Calculi for Concurrent and Distributed Services.
Milner’s CCS [20], the π calculus [21] and Hoare’s CSP [15]
have been studied as the foundation of parallel execution and
process synchronization.

Fournet’s and Gonthier’s Join Calculus [12] introduced
join patterns for expressing the interaction among a set of pro-
cesses that communicate by asynchronous message passing
over communication channels. The model of communication
channels in this calculus more adequately reflects commu-
nication primitives in real world computing systems which
allows for a simpler implementation. In contrast, the notion
of channel in the previously mentioned process calculi would
require expensive global consensus protocols in implementa-
tions.

The design of CPL borrows join patterns from the Join
Calculus. Channels in the Join Calculus are similar to services
in CPL, but the Join Calculus does not have first-class and
higher-order servers with qualified names. Also, there is no
support for deployment abstractions.

The Ambient calculus [5] has been developed by Cardelli
and Gordon to model concurrent systems that include both
mobile devices and mobile computation. Ambients are a
notion of named, bounded places where computations occur
and can be moved as a whole to other places. Nested ambients
model administrative domains and capabilities control access
to ambients. CPL, in contrast, is location-transparent, which
is faithful to the abstraction of a singular entity offered by
cloud applications.

Languages for Parallel Execution and Process Synchro-
nization. Several languages have been successfully devel-
oped/extended to support features studied in formal calculi.

JoCaml is an ML-like implementation of Join Calculus
which adopts state machines to efficiently support join pat-
terns [11]. Polyphonic C# [1] extends C# with join-like con-
currency abstractions for asynchronous programming that
are compiler-checked and optimized. Scala Joins [14] uses
Scala’s extensible pattern matching to express joins. The Join
Concurrency Library [26] is a more portable implementa-
tion of Polyphonic C# features by using C# 2.0 generics.
JEScala [29] combines concurrency abstraction in the style
of the Join Calculus with implicit invocation.

Funnel [22] uses the Join Calculus as its foundations and
supports object-oriented programming with classes and inher-
itance. Finally, JErlang [25] extends the Erlang actor-based
concurrency model. Channels are messages exchanged by
actors, and received patterns are extended to express match-
ing of multiple subsequent messages. Turon and Russo [28]
propose an efficient, lock-free implementation of the join
matching algorithm demonstrating that declarative specifica-
tions with joins can scale to complex coordination problems
with good performance – even outperforming specialized al-
gorithms. Fournet et al. [13] provide an implementation of the
Ambient calculus. The implementation is obtained through a
formally-proved translation to JoCaml.

CPL shares some features with these languages, basically
those built on the Join Calculus. In principle, the discussion
about the relation of CPL to Join Calculus applies to these
languages as well, since the Join Calculus is their shared

foundation. Implementations of CPL can benefit from the
techniques developed in this class of works, especially [26].

6. Conclusions and Future Work
We presented CPL, a statically typed core language for
defining asynchronous cloud services and their deployment
on cloud platforms. CPL improves over the state of the art for
cloud deployment DSLs: It enables (1) statically safe service
composition, (2) custom implementations of cloud services
that are composable and extensible and (3) dynamic changes
to a deployed application. In future work, we will implement
and expand core CPL to a practical programming language
for cloud applications and deployment.

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. This work has been supported by the European Re-
search Council, grant No. 321217.

References
[1] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency

abstractions for C#. ACM TOPLAS, 26(5):769–804, Sept. 2004.

[2] N. Bobroff, A. Kochut, and K. A. Beaty. Dynamic Placement of
Virtual Machines for Managing SLA Violations. In Integrated
Network Management, pages 119–128. IEEE, 2007.

[3] O. Bračevac, S. Erdweg, G. Salvaneschi, and M. Mezini.
CPL: A Core Language for Cloud Computing. Technical
report, Software Technology Group, Technische Universität
Darmstadt, http://arxiv.org/abs/1602.00981, 2016.

[4] M. Bravenboer, E. Dolstra, and E. Visser. Preventing Injection
Attacks with Syntax Embeddings. GPCE ’07, pages 3–12.
ACM, 2007.

[5] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical
Computer Science, 240(1):177 – 213, 2000.

[6] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. FlumeJava: Easy, efficient
data-parallel pipelines. PLDI ’10, pages 363–375, 2010.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM, 51(1):107–113,
Jan. 2008.

[8] M. Felleisen and R. Hieb. The Revised Report on the Syn-
tactic Theories of Sequential Control and State. Theoretical
Computer Science, 103(2):235–271, 1992.

[9] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineer-
ing with PLT Redex. MIT Press, 2009.

[10] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Piet-
zuch. Integrating Scale Out and Fault Tolerance in Stream
Processing using Operator State Management. In SIGMOD

’13, pages 725–736. ACM, June 2013.

[11] F. L. Fessant and L. Maranget. Compiling Join-Patterns.
Electronic Notes in Theoretical Computer Science, 16(3):205 –
224, 1998. HLCL’98.

[12] C. Fournet and G. Gonthier. The reflexive CHAM and the
join-calculus. In POPL ’96, pages 372–385. ACM, 1996.

[13] C. Fournet, J.-J. Lévy, and A. Schmitt. An Asynchronous,
Distributed Implementation of Mobile Ambients. TCS ’00,
pages 348–364. Springer-Verlag, 2000.

[14] P. Haller and T. Van Cutsem. Implementing Joins Using
Extensible Pattern Matching. In COORDINATION ’08, volume
5052 of LNCS, pages 135–152. Springer, 2008.

[15] C. A. R. Hoare. Communicating Sequential Processes. Com-
mun. ACM, 21(8):666–677, Aug. 1978.

[16] M. Isard and Y. Yu. Distributed Data-parallel Computing Using
a High-level Programming Language. SIGMOD ’09, pages
987–994. ACM, 2009.

[17] Y. Jarraya, A. Eghtesadi, M. Debbabi, Y. Zhang, and
M. Pourzandi. Cloud calculus: Security verification in elastic
cloud computing platform. In CTS’12, pages 447–454, May
2012.

[18] R. Lämmel. Google’s MapReduce programming model —
Revisited. Science of Computer Programming, 70(1):1 – 30,
2008.

[19] X. Meng, V. Pappas, and L. Zhang. Improving the Scalability
of Data Center Networks with Traffic-aware Virtual Machine
Placement. In INFOCOM, pages 1154–1162. IEEE, 2010.

[20] R. Milner. A Calculus of Communicating Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1982.

[21] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile
Processes, I. Information and Computation, 100(1):1 – 40,
1992.

[22] M. Odersky. An Introduction to Functional Nets. In Applied
Semantics, volume 2395 of LNCS, pages 333–377. Springer,
2002.

[23] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: A Not-so-foreign Language for Data Processing.
SIGMOD ’08, pages 1099–1110. ACM, 2008.

[24] B. C. Pierce. Types and Programming Languages. MIT press,
2002.

[25] H. Plociniczak and S. Eisenbach. JErlang: Erlang with joins.
In COORDINATION ’10, volume 6116 of LNCS, pages 61–75.
Springer, 2010.

[26] C. Russo. The joins concurrency library. In PADL ’07, volume
4354 of LNCS, pages 260–274. Springer, 2007.

[27] A. S. Tanenbaum and M. v. Steen. Distributed Systems:
Principles and Paradigms (2nd Edition). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 2006.

[28] A. J. Turon and C. V. Russo. Scalable Join Patterns. In
OOPSLA ’11, pages 575–594. ACM, 2011.

[29] J. M. Van Ham, G. Salvaneschi, M. Mezini, and J. Noyé.
JEScala: Modular Coordination with Declarative Events and
Joins. MODULARITY ’14, pages 205–216. ACM, 2014.

[30] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner.
A Break in the Clouds: Towards a Cloud Definition. SIG-
COMM Comput. Commun. Rev., 39(1):50–55, Dec. 2008.

[31] A. Wright and M. Felleisen. A Syntactic Approach to Type
Soundness. Information and Computation, 115(1):38 – 94,
1994. ISSN 0890-5401.

http://arxiv.org/abs/1602.00981

	Introduction
	Motivation
	State of the Art
	Problems with Deployment Programs

	The Cloud Platform Language
	Language Features in a Nutshell
	Core Syntax
	Operational Semantics
	Placement of Servers
	Derived Syntax and Base Operations
	Type System

	CPL at Work
	Server Combinators
	Load Balancing
	Failure Recovery

	MapReduce
	Discussion
	Interfacing with Cloud Platforms

	Related Work
	Conclusions and Future Work

