
JEScala: Modular Coordination with
Declarative Events and Joins

Jurgen M. Van Ham1,2 Guido Salvaneschi1 Mira Mezini1 Jacques Noyé2
1 Software Technology Group, Technische Universität Darmstadt, Germany

2 ASCOLA Team, Mines Nantes & Inria & LINA, Nantes, France
{vanham,salvaneschi,mezini}@informatik.tu-darmstadt.de, Jacques.Noye@mines-nantes.fr

Abstract
Advanced concurrency abstractions overcome the drawbacks of
low-level techniques such as locks and monitors, freeing pro-
grammers that implement concurrent applications from the burden
of concentrating on low-level details. However, with current ap-
proaches the coordination logic involved in complex coordination
schemas is fragmented into several pieces including join patterns,
data emissions triggered in different places of the application, and
the application logic that implicitly creates dependencies among
communication channels, hence indirectly among join patterns. We
present JEScala, a language that captures coordination schemas in
a more expressive and modular way by leveraging a seamless in-
tegration of an advanced event system with join abstractions. We
validate our approach with case studies and provide a first perfor-
mance assessment.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming; D.1.5 [Software]:
Programming Techniques—Object-oriented Programming; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms Languages

Keywords Scala; Event-driven Programming; Concurrency; Join
Patterns

1. Introduction
Concurrency is required in a wide class of applications. However,
writing correct concurrent software is hard. Conceptually, program-
mers are interested in the coordination schemas that an applica-
tion must implement. For example, they want a producer-consumer
model to correctly order data processing or finite state machines to
regulate the progress of the program. Unfortunately, many synchro-
nization primitives – like semaphores or monitors – are low-level
and force programmers to focus on details – leading to error-prone
code and reducing maintainability. For this reason, researchers have
proposed language constructs that rise the level of abstraction and
support high-level reasoning about concurrency. This includes Ac-
tors [18], Futures [1] and Join Patterns (Joins for short) [13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODULARITY ’14, April 22–26, 2014, Lugano, Switzerland.
Copyright c© 2014 ACM 978-1-4503-2772-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2577080.2577082

The Join Calculus [13] introduced join patterns and disjunctions
thereof as key concepts for expressing the interaction among a set
of processes that communicate by emitting data over communica-
tion channels. Since then these concepts have gained special at-
tention because they combine abstraction and practicality – they
are abstract enough to overcome the limitations of low-level con-
structs but still applicable in a wide variety of scenarios. As a re-
sult, several languages have been proposed to directly support joins
(referred in the rest as join languages), including JoCaml [9], Join-
Java [19], Polyphonic C# [2], the Join concurrency Library [33],
Scala Joins [17] and JErlang [29].

In this paper, we argue that current join languages fall short with
respect to capturing the whole logic of a coordination schema in a
modular way due to the way they model channels and emissions.
The latter are modeled either by method/function calls [2, 9, 19,
23, 26] or by explicitly triggered events [17]. In either case, the
emission points need to be explicitly hardwired in the application
code; in the case of method/function channels, the destination is
hardwired too. As a result, the coordination logic gets fragmented
into several pieces including the join patterns, different places in
the application where data emission is triggered, and the applica-
tion logic that implicitly creates dependencies among emissions,
thus indirectly among joins. To infer the logic of a coordination
schema, programmers have to connect the dots following the flow
of the application and harvest how data emissions are related and
interact. This hampers program understanding and makes programs
harder to maintain and extend; since the coordination logic is not
modularized, changes to the coordination schemas cannot benefit
from local reasoning.

The design of the JEScala language proposed in this paper ap-
proaches this problem by exploring the synergy of Join Calculus
concepts with the advanced event system of EScala [16]. The latter
supports three kinds of events. In addition to explicitly triggered
events, there are implicitly triggered events, referable points in the
execution of the program similar to join points in aspect-oriented
programming, as well as composite events that are declaratively
defined by expressions correlating other events. The use of implicit
events and composite events enables the modular definition of data
emission sources together with the synchronization logic, capturing
complex coordination schemas that would be otherwise scattered in
the code base. In summary, the paper makes the following contri-
butions:

• We motivate the need for abstractions to overcome deficiencies
of current join languages regarding scattering of coordination
logic.
• We present the design of JEScala, a language that exploits a

seamless integration of an advanced event system with joins

processes
P ::= 0 empty process

c(d̃) emission of d̃ on c
P1&P2 parallel composition
def D in P definition

definitions
D ::= J . P reaction

D1|D2 disjunction

join patterns
J ::= c(d̃) reception of d̃ on c

J1&J2 synchronization

Figure 1. The basic constituents of the Join Calculus.

to capture coordination schemas in an expressive and modular
way.
• We validate our approach with case studies that show the valid-

ity of our design and we provide a first performance assessment.
The implementation of the language, the examples, and valida-
tion code are available in [20].

The paper is organized as follows. Section 2 motivates the
work. Section 3 presents the design of JEScala and Section 4 key
elements of its implementation. Section 5 validates the approach.
Section 6 discusses related work. Section 7 summarizes the paper
and outlines areas of future work.

2. Motivation
2.1 Basic Concepts of Join Languages
The Join Calculus The foundation for join languages is laid
down by the Join Calculus [13, 21]. In its basic form [21] (see Fig-
ure 1), the calculus includes three kinds of constructs: processes,
definitions and join patterns. Processes are the primary structuring
entities. They communicate through asynchronous emissions of tu-
ples of data across channels. In addition to emissions, processes are
built from definitions and parallel compositions of other processes.
An elementary definition, called reaction, associates a new process
to a join pattern. A join pattern can be elementary or composite.
An elementary pattern is simply a reception of a tuple, whereas a
composite pattern synchronizes several receptions from different
channels. A join pattern is active if there is data present on all ref-
erenced channels. In its general form, a definition is a disjunction
of reactions, where a reaction associates a new process to a join
pattern. A disjunction defines competing reactions. Here, the same
channel may appear in different reactions. When several reactions
are active, one of the reactions is chosen and the corresponding
process spawned.

This basic calculus can be extended with, in particular, sequen-
tial composition of instructions and synchronous communications,
using an implicit continuation channel to wait for a reply, getting
back to the initial calculus of [13]. A fundamental property of the
calculus, which makes it a practical foundation for concurrent and
distributed programming languages, is that interprocess commu-
nication does not require global, distributed synchronization. Also,
the join operator & turns out to be very expressive, combining atom-
ically interprocess communication and synchronization.

Join Languages Channels can be implemented in various ways.
In a functional setting, e.g., in JoCaml [9, 23] or Funnel [26], an
elementary channel definition looks like a function definition and

an emission like a function call. In an object-oriented setting, e.g.,
in Polyphonic C# [2] or Join Java [19], functions are replaced by
methods. Reactions can then be seen as defining several functions
or methods at once with a single shared body (a process in the
calculus). In Scala Joins [17], method headers are replaced by
events, objects of type Event that can then be used to build join
patterns, associated to a body via a case clause. A case clause plays
the same role as a multi-header method in Polyphonic C#. As in
Polyphonic C#, an emission looks like a method invocation.

Disjunctions can take various forms. For instance, in JoCaml,
Funnel and Scala Joins disjunctions are explicitly defined. In Poly-
phonic C#, disjunctions are implicit: If several reactions are defined
in a class, they form a disjunction.

Concurrency In the following, we will focus on object-oriented
languages and consider threads as the underlying support of con-
currency, a choice shared by most object-oriented join languages.
The concepts of the join calculus have also been combined with ac-
tors in JErlang [29], not an OO language, and Scala Joins (in Scala,
threads and actors coexist).

In such join languages, writing concurrent programs does not
require direct manipulation of threads any longer. Threads are im-
plicitly created through asynchronous data emission or the use of
parallel composition.

Depending on the language, all data emissions not returning
any result are handled asynchronously, or the emissions have to
be explicitly declared as asynchronous. This is in general done on
the receiver’s side. For instance, in Polyphonic C#, method headers
can be qualified with the keyword async. In Scala Joins, this is a
matter of defining an event as an instance of AsyncEvent (a subclass
of Event) rather than SyncEvent. Whereas asynchronicity is useful
for creating concurrency, synchronicity is useful when a result has
to be returned. It is also useful for synchronization purposes: a
thread can be blocked on data emission, waiting for a join pattern
to be selected or, in other words, waiting for the complementary
data receptions. As a result, join patterns can then be used both to
synchronize threads and communicate between threads.

2.2 Limitation of Join Languages by Example
In this section, we discuss deficiencies in the design of applications
that use existing join languages by means of a case study. In order to
ease comparisons, we use a hypothetical language as a typical join
language. We call it Polyphonic Scala as it relies on the syntax and
semantics of Scala while implementing joins à la Polyphonic C#.

Case Study Our case study is a Web server that hosts two applica-
tions, an online booking application for flight tickets OB and a mar-
ketplace application MP

1 (Figure 2a). In both applications, client re-
quests are managed by handle methods (Lines 3 and 10). Since the
Web server shares the host with other services, we want to ensure
that all services are responsive in the presence of a high number
of requests. To do so, when the load is high, we limit the number
of concurrently handled requests by controlling the execution fre-
quency of handle methods2. This requires a coordination schema
among the threads executing the components of Figure 2a.

Specifically, under high load, clients need to consume a token
to be admitted into the server. When the load is high, client threads
should block at the boundary of the handle method of each appli-
cation, waiting for a token to be produced by the Token Generator
(Line 16 in Figure 2a).

1 In Scala, the keyword object introduces singleton classes.
2 As in real Web servers, we assume that client connections not timely
routed to applications are dropped after a timeout by the Web container.

1 object CL { // Coordination Logic
2 def OB beforeHandle() { mayBlock() }
3 def MP beforeHandle() { mayBlock() }
4 def mayBlock() {
5 if (systemLoadHigh())
6 RL.block()
7 }
8 def unblock() { RL.unblock() }
9 }

10

11 object RL { // Rate Limiter as 2−state Free−Busy FSM
12 def block():Unit & free():async {
13 // Stat.toBusy() // future extension
14 busy()
15 }
16 def unblock():async & busy():async {
17 // Stat.toFree() // future extension
18 free() // busy to free
19 }
20 def unblock():async & free():async {
21 // Stat.toFree() //future extension
22 free() // absorbed unblock
23 }
24 free() // initial state in constructor
25 }

(a)

1 object CL { // Coordination Logic
2 evt block = (OB.beforeSync(handle) | | MP.beforeSync(handle)) &&
3 systemLoadHigh()
4 evt unblock = TG.beforeAsync(createToken)
5 }
6

7 object RL { // Rate Limiter as 2−state Free−Busy FSM
8 imperative async evt free[Unit], busy[Unit]
9 evt (toBusy, freed, absorbed) =

10 (CL.block & free
11 | CL.unblock & busy
12 | CL.unblock & free)
13 evt toFree = freed | | absorbed
14 toBusy += ((arg:Any)=>busy())
15 toFree += ((arg:Any)=>free())
16 free() // initial state
17 }

(b)

Figure 4. Coordination logic with Polyphonic Scala (a) and JEScala (b).

1 // OnlineBooking App
2 object OB { //
3 def handle(...) = {
4 ...
5 }
6 }
7

8 // MarketPlace App
9 object MP {

10 def handle(...) = {
11 ...
12 }
13 }
14

15 // Token Generator
16 object TG extends Thread {
17 def createToken() = {
18 ...
19 }
20 override def run = {
21 while(true) {
22 sleep(1000)
23 createToken()
24 }
25 }
26 }

(a)

1 // OnlineBooking App
2 object OB {
3 def handle(...) = {
4 CL.OB beforeHandle()
5 ...
6 }
7 }
8 // MarketPlace App
9 object MP {

10 def handle(...) = {
11 CL.MP beforeHandle()
12 ...
13 }
14 }
15 // Token Generator
16 object TG extends Thread{
17 def createToken() = {
18 CL.unblock()
19 ...
20 }
21 ...
22 }

(b)

Figure 2. Web server: basic components (a) and instrumented
components (b).

unblock

block
Free Busy

unblock

Figure 3. Rate limitation as a state machine

Instrumentation In order to be controlled by the coordination
logic (implemented by the object CL in Figure 4a), the basic com-
ponents of Figure 2a are instrumented as shown in Figure 2b.

The beforeHandle methods are called (Lines 4, 11) in the bod-
ies of the handle methods to notify the coordination logic of the
arrival of a new request to one of the applications. By calling a ded-
icated method of the coordination logic for each application, the co-
ordination logic can be changed without requiring further changes
to the web applications.

Similarly, the availability of new tokens is notified to the coordi-
nation logic by calling the unblock method each time a new token
is about to be generated (Line 18).

Coordination Logic The top level of the coordination logic is
implemented by the object CL (Lines 1–9 of Figure 4a), which
turns the notifications from the basic components into calls to the
object RL implementing rate limitation (Lines 11–25). Essentially,
the calls from the web applications return immediately when the
load is low, allowing the requests to be handled. They are turned
into calls to the block method of the rate limiter otherwise. The
calls to unblock are just forwarded to the rate limiter.

The role of the rate limiter is to delay returning from invocations
to block until a token is available, that is, until an invocation to
unblock occurs. We can represent the interaction between block

and unblock calls as a state machine (Figure 3). When the rate
limiter is in state Free (there is no application waiting for handling
a request), calls to unblock are simply ignored, while calls to block

switch the state to Busy (there is an application waiting). Then, a
call to unblock brings back the rate limiter to state Free.

A common technique in join languages (see, for instance, [2,
17, 23]) represents states as pending data receptions. We apply it,
with synchronous and asynchronous method calls, to the aforemen-
tioned state machine (see Figure 4a). A simple invariant underlies
the technique: in the object implementing the state machine, there
is always one single pending asynchronous method call. This pend-
ing call represents the current state. We refer to the corresponding
methods (free and busy in our example) as state methods. The ac-
tions responsible for state transitions can be implemented by either
synchronous or asynchronous method calls. We refer to these meth-

ods (block and unblock) as action methods. Each transition is im-
plemented as a binary pattern between a state method and an action
method (Lines 12, 16 and 20). The body executed when matching
this pattern calls a state method. This maintains the invariant. The
invariant is established when initializing the object by calling the
state method for the initial state (free, Line 24). Note that a single
pending call of a state method implies that the machine can handle
only a single action at a time, the next action can only take place
after the body has called a new state method.

Whereas the unblock method headers (Lines 16 and 20) are also
declared as asynchronous in order not to block the token generator,
calls to block are synchronous. The join pattern on Line 12 blocks
the underlying thread until the state is free.

Discussion Even if the coordination schema is simple, its realiza-
tion in Figure 4a has limitations.

First, the components to be coordinated are intrusively modified
to add the notifications (Lines 4, 11, and 18 of Figure 2b) neces-
sary to make observable the points in the execution that are rele-
vant to the coordination schema. Further modifications may have
to be considered, both in the application components and the coor-
dination logic for further extensions. For instance, we will consider
in Section 3.4 adding a component Stat, which will require the
modifications commented out on Lines 13, 17 and 21.

Second, several indirections are needed: one to deal with re-
quests to any of the applications (Lines 2 and 3 of Figure 4a) and
another to take the load condition into account (Line 5). In the
first case, the indirection implements a “union” semantics, which
is not explicit in the code. Alternatively, the indirection can be sup-
pressed by directly calling mayBlock within the applications. Yet,
the cure is worse than the disease. In Figure 2b, the applications
call distinct beforeHandle methods and the union of these calls
is properly modularized within the coordination schema. Calling
mayBlock directly from the applications would move part of the
coordination logic (a call from either OB or MP) away from the coor-
dination schema, and hardcode it into the coordinated components.
As a result, it would be, for instance, impossible to implement a
balancing strategy between OB and MP just by modifying the coor-
dination code.

In summary, with only the abstractions from the join calculus,
the logic of the coordination schema is hardly captured by the ab-
stractions of the language. Instead, it must be harvested from the
calls inserted within the coordinated components in order to cap-
ture the events of interest and the logic of corresponding (possibly
multi-header) bodies in the coordination code. In addition, the ap-
plication is not extensible and requires invasive changes to intro-
duce new components.

3. A Rich Event System to the Rescue
3.1 On Events, Implicit Invocation and Joins
The requirements for both being able to capture and combine pro-
gram execution points is, of course, highly reminiscent of the join
points and pointcuts of Aspect-Oriented Programming (AOP). AOP
would indeed make it possible to capture in a pointcut, in a non-
intrusive way, the fact that a request is about to take place. It also
makes it possible to combine such pointcuts in order to deal with
several kinds of requests under a specific condition, namely the fact
that the load is high. Unsurprisingly, assuming the availability of
AOP facilities within Polyphonic Scala would improve the imple-
mentation of our case study.

Still, some discrepancy would remain between the composition
of join points via pointcuts using logical operators and the com-
position of channel endpoints via the join operator. Our previous
work on ECaesarJ [25] and EScala [16], which did not provide
any support for concurrency, suggests a way to eliminate this dis-

crepancy. The main idea behind this previous work is that the join
points of AOP and the explicit triggering of events encountered in
event-driven programming are of the same nature. A join point can
be seen as an occurrence of an implicit event whereas an explicit
event is explicitly triggered. Composite events can then be created
by composing events through logical operators. The basic idea to
solve our discrepancy issue is therefore twofold:

• Let us consider a data emission as triggering an explicit event.
• Let us consider the join operator as an additional composition

operator.

Of course, this is not enough to get (implicit) concurrency: we
also need a way to choose between synchronous and asynchronous
event triggering, i.e. between sequentially proceeding with event
handling or forking a new thread to deal with it.

All these ideas have been injected into EScala, leading to
JEScala, described in detail in the next section. Using JEScala,
our case study can be rewritten as shown in Figure 4b without the
limitations previously discussed.

But, before presenting JEScala, let us first clarify what we
mean by event. Indeed, this term can be confusing as, beyond the
general idea that an event refers to a noteworthy state change, the
semantics of event constructs varies a lot. In particular, the events
of Scala Joins and the explicit events of (J)EScala share some
common characteristics: they are instance members and triggered
using method-call syntax. In both cases, events make it possible
to split the traditional way methods are defined: the event itself
corresponds to a method header and its event handler to a method
body. In Scala Joins, these two parts have to be defined in the
same class in order to be bound. This is quite different in (J)EScala
where they can be defined in different classes and bound to each
other in yet another class. There may also be different bindings,
hence different handlers attached to the same event, resulting in
some form of implicit invocation [15]. Hence, unlike languages
that model channels with functions/methods, data is not sent to a
single destination but to multiple destinations, i.e., triggering an
event corresponds to an emission on multiple channels.

Implicit invocation is central to our event model. It exchanges
the rigid connection between a sender and its single receiver for
a flexible broadcast mechanism. Without modifying the sender,
the group of receivers can be changed. Implicit invocation makes
no assumption on the number of receivers. Therefore, it does not
require to create dependencies that are not actually needed (e.g. a
tracer can be detached). Receivers can be added and removed at
runtime.

3.2 Basic Concepts of JEScala
JEScala combines asynchronous channels of join languages with
implicit invocation of event systems. In addition to explicitly trig-
gered events, JEScala supports EScala’s implicit and composite
events. However, unlike EScala’s events, which are triggered only
synchronously, in JEScala events are subject to both synchronous
or asynchronous execution.

3.2.1 Asynchronous Events with Implicit Invocation
In the following, we present the event system of JEScala. For
reference, the syntax of JEScala that is relevant for the discussion
is given in Figure 5. JEScala inherits the event system of EScala,
while extending it with asynchronous execution semantics. Yet,
the extension is designed to ensure backward compatibility with
EScala.

Imperative events In JEScala, the declaration of each explicitly
triggered event begins with the keyword imperative, followed by
an optional sync or async modifier. Hence, the programmer speci-

fies whether an imperative event is handled synchronously or asyn-
chronously at the declaration point of the event. Synchronicity is
part of the interface of the entity declaring the event, documenting
the fact that handlers may block or not the execution of the code
that triggers the event. This does not, however, prevent a handler at-
tached to a synchronous event to spawn a new computation via, for
instance, the use of a Scala future or by triggering an asynchronous
event.

For compatibility with EScala, if the synchronicity of events is
not explicitly specified, they are assumed to be synchronous. As a
result, each EScala program is a valid JEScala program with the
same semantics.

Implicit events Implicit events make method executions ob-
servable a.k.a. join points in AOP parlance. EScala provides the
implicit events before(method-name) and after(method-name)
that are executed when a method enters – respectively, finishes
– its execution3. We extended EScala’s implicit events to ac-
count for synchronicity. In JEScala four implicit events are avail-
able: beforeSync, beforeAsync, afterSync and afterAsync. They
all take a method name as argument. In the spirit of remaining
compatible with EScala, the events before(method-name) and
after(method-name) are still valid and mapped to the correspond-
ing synchronous events.

Declarative events Like EScala, JEScala also supports declara-
tive events defined in terms of event expressions. They are defined
by composing other events through operators, like in e1||e2 (oc-
currence of one among e1 or e2), e1&&p (e1 occurs and the predi-
cate p is satisfied4), e1.map(f) (the event obtained by applying f
to e1). Declarative events have no synchronicity by themselves. In-
stead, they inherit the synchronicity of the event that triggers them.
For example, the event e1&&p is executed synchronously – respec-
tively asynchronously – if e1 is synchronous – respectively asyn-
chronous. Note that there is no ambiguity, since the || composite
event is triggered by one event only and inherits the synchronicity
of that event.

This design choice requires more explanation. Providing a
sync/async modifier for declarative events would make it possi-
ble to express event combinations like:

1 imperative async evt e1
2 sync evt e2 = e1 && (predicate)

whose semantics is unclear. The imperative event e1 is asyn-
chronous, so one expects that all the handlers bound (even in-
directly) to the event are executed asynchronously. However e2,
which depends on e1, is declared synchronous. This should im-
ply that handlers attached to e2 are executed immediately, which
contradicts the modifier of e1. For this reason we decided to avoid
explicit synchronicity for declarative events and let them inherit the
synchronicity of the event that triggers them.

It still makes sense to force a declarative event to be asyn-
chronous. To this aim, the prefix !! operator converts a possibly
synchronous event expression into an asynchronous one.

Abstract events In EScala, it is possible to declare abstract events
that are defined in concrete subclasses. In JEScala, the synchronic-
ity of abstract events is not specified.

This design decision is motivated by the fact that an abstract
event can be overridden by either a primitive or a composite event.
Allowing synchronicity modifiers in abstract events would, for
instance, allow one to define an abstract sync event and override

3 Unlike most AOP languages, only methods declared in the interface of a
class as such are observable outside the class.
4 This filter operator is overloaded with the logical and operator. This is
questionable and may change in future versions.

event-decl ::= prim-event | decl-event
prim-event ::= imperative [sync-modifier] evt event-name
decl-event ::= evt event-name = event-express

| evt (event-name { , event-name}+) =
(join-express { | join-express}+)

event-express ::= [obj-ref .] event-name
| event-prefix-operator event-express
| event-express event-infix-operator event-express
| event-express fun-operator fun
| implicit-event

implicit-event ::= [obj-ref .] implicit-selector (method-name)
implicit-selector ::= beforeSync | afterSync

| beforeAsync | afterAsync
| before | after

sync-modifier ::= sync | async

event-prefix-operator ::= !!
event-infix-operator ::= || | & | . . .
fun-operator ::= map | && | . . .
join-express ::= (event-name { & event-name }+)

Figure 5. The syntax of JEScala.

it in a subclass with a declarative event – running into the trouble
previously described.

Actually, the synchronicity of an abstract event cannot be known
until it has been defined. Defined as a primitive event, its syn-
chronicity is known statically. Defined as a composite event, its
synchronicity may not be known until runtime, depending on its
definition and its evaluation.

3.2.2 Joins on Implicit and Declarative Events
As already mentioned, the key feature of JEScala is the combina-
tion of the rich event system described above with join concepts.
This combination enables a succinct and well-localized definition
of synchronization logic. For illustration, Figure 4b shows the im-
plementation of the Web server example by using joins with im-
plicit and declarative events.

The execution of handle in OB and MP is captured by the implicit
events OB.beforeSync(handle) and MP.beforeSync(handle),
which are composed so that the declarative event block

(Line 2) only fires when the load is high. The implicit event
TG.beforeAsync(createToken) that captures the creation of a to-
ken is aliased to unblock (Line 4).

Finally, the state machine from Figure 3 is implemented as
described in Section 2.2, except that state and action methods
are replaced by state and action events: free and busy (declared
Line 8), and block and unblock (defined in CL Lines 2 and 4).
The implicit disjunction of Figure 4a is replaced by an explicit
one (Line 9). Each alternative combines a state and an action event
and triggers one of the events toBusy, freed or absorbed when
it matches. These new events are necessary to attach a handler to
each alternative and have the advantage that sharing can be made
explicit, here by defining the event toFree that signals a transition
to the Free state. Triggering the free event (Line 16) sets the initial
state of the machine.

The implementation in Figure 4b has several design advantages
compared to that in Figure 4a. The coordination logic is captured
in one place (lines 2 – 17). There is no footprint of the coordina-
tion logic in the components to coordinate; all the execution points
relevant to coordination are captured by implicit events. As a re-
sult, the coordination logic is properly modularized. and expressed
declaratively, improving clarity and extensibility, e.g., the balanc-
ing strategy is clearly captured at Line 2 thanks to event expres-
sions. Moreover, introducing an additional application in the co-
ordination schema is e.g., as straightforward as adding a new im-

1 object CL {
2 evt blockOB = OB.beforeSync(handle)
3 evt blockMP = MP.beforeSync(handle)
4 evt unblock = TG.beforeAsync(createToken) map (()=>currentTime)
5 }
6 object RL {
7 imperative sync evt requestUnblockOB[Unit], requestUnblockMP[Unit]
8 imperative sync evt innerBlockOB[Unit], innerBlockMP[Unit]
9

10 CL.blockOB += ()=>{ requestUnblockOB(); innerBlockOB() }
11 CL.blockMP += ()=>{ requestUnblockMP(); innerBlockMP() }
12

13 evt = innerBlockOB & grantUnblockOB
14 evt = innerBlockMP & grantUnblockMP
15

16 evt (mayUnblockOB, mayUnblockMP) =
17 (requestUnblockOB & CL.unblock) |
18 (requestUnblockMP & CL.unblock)
19

20 evt grantUnblockOB = mayUnblockOB && ((ts)=> !isExpired(ts))
21 evt expiredUnblockOB = mayUnblockOB && ((ts)=> isExpired(ts))
22 expiredUnblockOB += ()=>requestUnblockOB()
23

24 evt grantUnblockMP = mayUnblockMP && ((ts)=> !isExpired(ts))
25 evt expiredUnblockMP = mayUnblockMP && ((ts)=> isExpired(ts))
26 expiredUnblockMP += ()=>requestUnblockMP()
27 }

Figure 6. Distributing load among Web applications in JEScala.

plicit event in Line 2. Given that events are values, the coordination
schema can be a separate reusable component parameterized by
events to coordinate. For the sake of simplicity, we have used sin-
gleton classes in our example. A more realistic implementation of
the rate limiter would use a class with a primary constructor taking
a block and an unblock event as parameters.

3.3 Advanced Use of Disjunctions
To introduce more abstractions of JEScala we extend the Web
server example. So far, OB and MP clients have been served indis-
tinctly. As a result, a high request rate in one application can sig-
nificantly slow down the other. To address this issue, we shall in-
troduce load distribution between OB and MP. Furthermore, we shall
improve token generation to avoid that tokens accumulate when
they are generated at a higher frequency than client arrivals – in
the new version of the Web server, tokens simply expire after some
time. The implementation of the extended Web server is shown in
Figure 6. Instead of immediately discarding surplus unblock events
by a state machine (Figure 3), this extension accumulates unblock

events, which are consumed without effect after they expire. Since
the example is not trivial, we start with a high-level description of
the coordination schema. On arrival (exposed by events in Lines 2–
3), each client is blocked until unblocking is granted (Lines 13–14).
If two requests from different applications are performed, only one
is chosen non-deterministically (Lines 16–18). The authorization
to proceed is given only by not expired tokens. Token expiration is
managed in Lines 20–26.

For a detailed description of the coordination schema of Fig-
ure 6, consider the flow of the events associated to OB (the event
flow for MP is similar). When a client request for OB arrives, blockOB
is synchronously triggered (Line 2). Its handler (Line 10) triggers
requestUnblockOB and is blocked in the disjunction Line 17, wait-
ing for an unblock event. The unblock events are generated by
attaching a timestamp to events produced by the token genera-
tor (Line 4). When the disjunction pattern is selected, triggering
a mayUnblockOB event, the handler proceeds but blocks at once
on triggering the innerBlockOB event, involved in the disjunction
Line 16. Concurrently, depending on whether the token is expired
or not, either a grantUnblockOB event is triggered (Line 20) re-

leasing the blockOB handler waiting at the disjunction Line 13 or a
requestUnblockOB event is regenerated (Line 22) and the handler
remains blocked at the disjunction Line 17. In the first case, the
blockOB handler returns at once and the application can proceed.

The example in Figure 6 demonstrates several aspects of the
design of JEScala.

Disjunctions consume and fire events Like in other join lan-
guages, disjunctions can be used to compose multiple conceptu-
ally-related join patterns; multiple join patterns in a disjunction can
share an event (see e.g., Lines 13–14), consumed by the first match-
ing pattern. If multiple patterns match, the one that fires is chosen
non-deterministically. In JEScala, disjunctions fire events; it is pos-
sible to distinguish the join that fires by associating a specific event
to each join in the disjunction (see e.g., Line 16). In other join lan-
guages when a join matches, a handler is executed. The model of
JEScala is homogeneous: events generated by a disjunction can be
freely composed with other events. For example, a union operator
|| can be used to merge the events from the same disjunction, if
we do not need to distinguish among them. The same effect can be
achieved in other join languages only by triggering the same emis-
sion from each handler registered to a join, which unnecessarily
resorts to imperative code and bloats the coordination logic.

Multiple disjunctions inside the same class The example in Fig-
ure 6 shows another feature of JEScala. Many join languages group
all join patterns defined in an object into a single implicit disjunc-
tion associated to the object. In JEScala, each disjunction explicitly
defines a set of joins that are checked for a possible match. There-
fore, JEScala allows one to define multiple disjunctions inside the
same class. This fosters modularity. In case of complex coordina-
tion schemas, like in Figure 6, several disjunctions are required,
with some of them (Lines 13-14) reduced to a single alternative.

In languages with implicit disjunctions, we would need both
to create an artificial disjunction with two alternatives composing
the two disjunctions with a single alternative (if we want to keep
them in the same class) and split the coordination patterns into at
least two separate classes in order to also implement the second
disjunction (Line 16). In JEScala, disjunctions that logically belong
to the same schema can be properly modularized inside the same
class.

Supporting multiple disjunctions also affects the interaction be-
tween join abstractions and object-oriented inheritance. Consider
the case in which the superclass defines a join pattern among events
a, b, c, and d. If a developer adds a join on events a and b in a sub-
class, and the patterns of a class are implicitly correlated by a dis-
junction the join in the superclass may never trigger. The interaction
between inheritance and join operators is subtle and can easily lead
to deadlocks, e.g., in case c and d are synchronous events (the in-
terested reader is referred to [2] for a detailed discussion). To tackle
these issues, object-oriented join languages impose limitations on
inheritance to prevent adding new joins in subclasses. In JoinJava,
only final classes can define a join; in Polyphonic C# it is possible
to override an inherited disjunction by replacing the associated han-
dler, but it is not possible to add a join. Since in JEScala joins de-
fined within a class are not implicitly correlated into a disjunction,
classes can be freely extended regardless of the presence of dis-
junctions. Yet, advised by the lesson of existing join languages, we
forbid breaking existing disjunctions by extending them with new
joins. In our design, subclasses can only entirely override them.

3.4 Dynamic Registration of Handlers
While, in existing join languages, handlers are statically bound
to join patterns, handlers in JEScala can be dynamically
(un)registered. Figure 7 shows an extension of the Web server from
Figure 4b that computes statistics about the queuing time of the

1 object Stat { // Statistics
2 var sTime:timeStamp=null
3 def hdlToBusy:Unit={ // handler
4 sTime=currentTime }
5 def hdlToFree:Unit=if (sTime!=null) {
6 log busy(currentTime−sTime)
7 sTime=null }
8

9 var isEnabled: Boolean = false
10 imperative sync evt enable[Unit] // trigger to enable
11 imperative sync evt disable[Unit] // trigger to disable
12 evt doEnable = enable && ()=>!isEnabled // enable only once
13 evt doDisable = disable && ()=>isEnabled
14 // register an anonymous handler with doEnable event
15 doEnable += ()=>{
16 isEnable=true
17 RL.toBusy += hdlToBusy // register with RL.toBusy event
18 RL.toFree += hdlToFree }
19 doDisable += ()=>{
20 RL.toBusy −= hdlToBusy // unregister
21 RL.toFree −= hdlToFree
22 isEnabled = false }
23 }

Figure 7. Dynamic handler registration in JEScala.

applications inside the server. Logging the time spent by the rate
limiter (RL) in the busy state requires the observation of entering
the states Free and Busy in the rate limiter. We prepared the code in
Figure 4a by inserting explicit method calls into the RL component
(Lines 13, 17 and 21). In JEScala, we just need to register additional
handlers (Line 17) with the exposed events toFree and toBusy of
RL without modifying the code of RL (Figure 4b). By using the
declarative event toFree we can register each of our handlers with
a single event with a descriptive name.

Triggering the enable event registers the handlers toBusy and
toFree. Since we are not all the time interested in these statis-
tics, triggering the disable event removes the handlers. The in-
ternal declarative events doEnable and doDisable prevent incor-
rect double registrations. The anonymous handler of doEnable

registers the handlers from Stat with the exposed events from
RL. Its counterpart for doDisable unregisters them. It also sets
the isEnabled flag that is used by the filters defining doEnable

and doDisable. An implementation in Polyphonic Scala, without
declarative events, would need additional conditions in the methods
toBusy and toFree to enable and disable statistics at runtime.

In other join languages, dynamic binding between join patterns
and handlers can be obtained only by adding a layer of indirec-
tion with an intermediate handler that is responsible for notifying
the right handler in case a certain condition is met. This approach
has the drawback of moving the event logic from high-level op-
erations among events to handlers. Further, it introduces a perfor-
mance penalty, because the intermediate handler is always notified
regardless of whether a reaction is needed. More importantly, this
solution does not account for situations where the binding depends
on the execution. JEScala solves these issues thanks to the uniform
representation of join pattern outputs as events and dynamic event
handler registration.

4. Implementation
The implementation of JEScala5 required us to modify the EScala
event system to support joins and asynchronous events. Before
describing how these were implemented, we briefly summarize the
mechanism behind the EScala event system [16].

5 In its current version, this implementation is provided as a library, to be
completed with compiler support, as was done for EScala, when a stable
version of the new Scala compiler (2.11) is available.

EScala Event Propagation System in a Nutshell Internally, ES-
cala events are organized in a graph. The graph is incrementally
updated every time an event definition is executed by introducing
a node for the newly defined event. Handlers are directly attached
to each event node. Edges in the graph model dependencies be-
tween events. For example, the event e3 = e1 || e2 creates a new
node for e3 that depends on the nodes previously created for e1
and e2. Imperative events and implicit events (i.e. primitive events)
are leaves in the graph since they are triggered directly. When a
leaf event is triggered, the handlers to execute are collected. This
process consists of a depth-first tree traversal of all nodes that are
transitively reachable from the firing node, collecting the handlers
associated to each visited node. Also, the process takes into account
dynamic conditions introduced by event expressions. For example,
a filter node can stop the evaluation along a branch if the con-
dition is not satisfied. Finally, the collected handlers are executed
in sequence. As an optimization, nodes are only deployed (i.e. take
part to event triggering) if they have outgoing edges or handlers.
Once deployed, they can be undeployed if the condition becomes
false. This applies, for instance, to the Stat component of Figure 7.

Adding Asynchronous Event Handling In JEScala, collecting
handlers applies to both synchronous and asynchronous primitive
events. Differently from EScala, when the triggered event is asyn-
chronous, a new thread is used to execute the collected set of han-
dlers. As a result, the continuation of the code that triggers the
event, and the handlers, can run concurrently. This also means that
several collections may be active concurrently on the same graph,
which requires us to make the process thread-safe. In particular,
each new thread has access to its own buffer to collect handlers.
Dynamic handler registration also requires that the handlers asso-
ciated to an event are protected against concurrent accesses.

Handling disjunctions Disjunctions are implemented as sets of
queues q1...qn, a queue qi for each event ei that appears in a pat-
tern of the disjunction. When an event ei is fired, it is stored with
its arguments in the queue qi and we check if a pattern can be com-
pleted with the new event. If none of the patterns can be completed,
ei remains in qi. If a single pattern matches, the associated events
are removed from the queue and the resulting event is fired. If mul-
tiple patterns match, one is chosen non deterministically and the
associated events are removed.

Synchronous events that appear in a disjunction require a few
additional steps. If the event is fired and none of the patterns
applies, not only do we store the arguments, but we also block
the thread and store it in the queue. Afterwards, when the pattern
matches, one of the stored threads is chosen to execute the handlers
of the resulting event (to be deterministic we select the thread of
the first synchronous event in the pattern). To achieve a form of
fairness, we randomly select among the patterns that can match
when an event arrives.

The queues are new nodes in the event graph. By default, when
a queue node is encountered during the collection step, queuing is
not handled at once but postponed to handler execution by creating
a new handler responsible for this queuing task. This is necessary
so that synchronous events do not block the collection step.

Optimizations We applied a number of optimizations to increase
the efficiency of asynchronous events. Thread pool (1) Asyn-
chronous events need a thread to execute the handlers concurrently
with the thread that triggers the event. Instead of creating a new
thread every time, we recycle the thread from a thread pool. In
case a number of handlers of asynchronous events are executed in
parallel, no more threads are available, and some handlers may be
delayed. Note, however, that this does not violate the semantics
of asynchronous events, since the handler is still executed con-
currently to the continuation of the caller. Disj Only (2) When an

asynchronous event is fired and only propagated to disjunctions,
enqueuing does not require a dedicated handler and can be part of
the collection step. This optimization avoids the use of a separate
thread for enqueuing. Counters (3) Event arguments are stored in
the associated queue of a disjunction. However, if the event has no
arguments, keeping a counter of the event occurrences is sufficient.
Since synchronous events need to store the blocked threads any-
way, a queue is still required, so the optimization is only applicable
to asynchronous events. Note that in JEScala the synchronicity of
an event cannot be determined statically. We apply the optimiza-
tion when the event is trivially known to be asynchronous (it is
a synchronous primitive event or the result of an event expres-
sion prefixed by the !! operator). Static analysis could be used to
broaden the applicability of the optimization.

5. Evaluation
This section demonstrates the design advantages of JEScala in
several small case studies and provides a preliminary perfor-
mance evaluation. The code used for the evaluation is available
online [20].

5.1 Qualitative Evaluation
We use several small case studies instead of a single larger one for
two reasons. First, with several synthetic examples we can chal-
lenge JEScala with intentionally complex coordination schemas,
while a real application would be probably less compelling from
a coordination standpoint. Second, a larger example would dilute
the coordination schema with the application logic. On the con-
trary, our studies distillate the essence of a coordination schema
and sharpen the effects that we want to observe.

The case studies (Figure 8 Col. 1) include classic concurrency
patterns (e.g., critical section, producer-consumer, actors), simu-
lations that require coordination across several components (e.g.,
cellular automaton, binary adder, virus spreading over a complex
network), and the Web server running example. Case studies also
include client code that stresses the implemented features, e.g.,
threads accessing a critical section. The 2nd and 3rd columns in the
figure report the number of threads and the number of components
(classes and Scala objects) for each case study. We implemented
each case study in JEScala and a subset JL (for Join Language) of
JEScala excluding its specific features. JL programs are direct en-
codings of Polyphonic Scala programs (see Section 2) in JEScala.

For each implementation we measured the following metrics:
lines of code ignoring comments and white spaces measured by
CLOC6, number of events, number of handlers and number of
imperatively triggered events. To test the effect of different con-
currency solutions, some case studies are implemented in both a
single-threaded and a multithreaded version – marked with ST, re-
spectively MT in the table. The need for coordination in a single-
threaded context is not a contradiction, since a single thread must
be “scheduled” to accomplish several tasks in a coordinated way.
The variability between the ST and the MT versions does not affect
our results significantly.

Based on the numbers reported in Figure 8, we make the fol-
lowing observations. Petri Nets and Parallel Graph Exploration
use handlers to represent transitions, therefore we do not expect
many differences between both implementations. JEScala captures
coordination schemas in a more compact way; JEScala implemen-
tations have fewer lines of code (Columns LOC). The proportion
of event declarations required by JEScala and by JL depends on
the case study (Columns Events). JEScala implementations define
fewer handlers (Columns Handlers). Furthermore, the number of
statements in the code, where events are imperatively triggered are

6 httpc://cloc.sourceforge.net

104

105

106

107

Scala Joins JEScala Esper JoCaml Cω

(L
og

ar
ith

m
ic

) J
oi

ns
 /

s

Figure 9. Performance of join languages.

considerably reduced in the JEScala versions (Columns Imp. Evts).
The reduction of handlers and imperative events indicate that the
coordination logic is moved from handlers and imperatively trig-
gered events to declarative event expressions. As a consequence,
developers do not risk forgetting firing events and coordination
patterns are more composable, easier to extend, and express the
intention of the programmer in a more declarative way.

5.2 Quantitative Evaluation
Our focus so far has been on the design of JEScala. To gain an idea
about its performance, we implemented a number of benchmarks7.

Comparison with other languages We initially compare JEScala
with other languages that support joins. The benchmark consists
of an automaton with n states. A transition fires when the join of
the event associated to the current state and the event associated
to the transition to another state fires. We measured the throughput
(i.e., joined events per second) for Scala Joins, JEScala, the Esper
complex event processing engine [11], JoCaml and Cω (Figure 9).
Varying n from 1 to 5 (not shown) does not change the results sig-
nificantly. Languages based on a dedicated compiler like JoCaml
and Cω have the best performance. The results also show that per-
formance degrades by increasing expressivity. This result is not sur-
prising: for example Cω intentionally limits the constructs available
to the programmer to achieve better performance [2]. At the op-
posite, Esper supports an extremely expressive language for event
combination. JEScala exhibits a performance that minimally out-
performs Scala Joins. However, JEScala is more expressive since
it supports implicit invocation, event combination and real asyn-
chronous events.

Effect of pattern complexity The complexity of the matching
patterns has an impact on performance, which we measured with
a dedicated benchmark. The size of the matching patterns in the
benchmark increases; the cases n = 3 and n = 4 are shown in
Figure 11a and Figure 11b. We measured the performance of each
language for n ∈ [2..6]. The results for each language, normalized
to the case n = 2, are in Figure 10. The benchmark shows perfor-
mance degradation when the size of the pattern increases. Cω and
JoCaml outperform JEScala, which however does better than Scala
Joins.

Effect of optimizations To measure the effect of the optimizations
for asynchronous events described in Section 4, we implemented
a simple version of the rock-paper-scissors game. Two players
running in different threads trigger an event that correspond to

7 All measurements were performed on a MacBookPro6.2 with CPU I7 (2
cores, 2.66Ghz) with 8Gb ram, running OSX 10.6.8, Java 6 and Scala 2.10.

LOC Events Handlers Imp. Evts
Case Study Th. Comp. JL JE JL JE JL JE JL JE

Critical Section (CS) 3 5 67 60 3 5 1 0 3 1

Alternating CS 3 4 49 42 7 8 5 1 8 3

Condition Variable 3 3 56 56 6 8 3 3 5 2

Monitor 6 7 86 80 9 10 3 1 7 2

Concurrent Barrier 2 3 46 37 4 4 1 0 3 0

Readers-Writer Lock 6 7 81 71 12 8 8 3 12 3

Threadsafe Counter 5 5 47 44 6 6 3 1 6 4

Hoare Cond. Crit. Region 4 7 90 71 7 9 4 1 7 2

Rendezvous 2 3 68 64 3 3 1 1 2 0

Concurrent Futures 2 3 58 48 7 7 3 3 5 2

Producer-Consumer (PC) 2 3 79 72 8 8 0 0 4 0

PC (Bounded Buffer) 4 4 72 68 7 7 2 2 5 3

Finite State Machine ST 1 2 76 66 14 11 11 5 12 6

Finite State Machine MT 4 4 74 64 14 11 11 5 12 6

Petri Net ST 1 2 46 44 9 12 13 14 9 8

Petri Net MT 3 2 56 54 11 14 12 11 9 8

Semaphore Petri Net 2 4 56 51 5 6 2 1 4 1

Tennis Players Petri Net 3 2 80 74 13 16 18 9 15 6

Agents (3 Ping-pong) ST 1 4 67 64 7 7 4 4 7 6

Agents (3 Ping-pong) MT 4 3 60 57 3 5 1 1 5 2

Agents (Token Ring) ST 1 4 54 54 7 6 4 4 5 4

Agents (Token Ring) MT 4 3 53 54 3 3 1 1 3 2

Elem. Cellular Automaton 1 3 87 84 8 11 4 1 9 2

Game Of Life 1 1 95 74 25 17 27 2 27 2

Shift Register 1 2 36 30 6 6 3 1 9 8

4 Bit Binary Adder 1 4 82 69 20 19 8 3 12 3

Logic Ports Circuit 3 4 70 64 10 7 7 1 7 1

Random Walks 7 8 185 179 16 16 12 3 17 4

Parall. Graph Explor. 21 20 184 181 9 10 5 6 10 7

Epidemic Model ST 1 11 184 172 18 16 16 4 18 6

Epidemic Model MT 11 11 190 178 18 16 16 4 18 6

Web Server 2 4 44 41 4 4 2 1 4 0

Web Server (Extended) 3 5 75 68 7 6 4 0 7 0

Web Server (Section 2.3) 4 5 111 97 18 18 8 4 16 8

Figure 8. Main metrics for the case studies.

rock, paper or scissors. A game component matches those events
in a disjunction. Each pattern in the disjunction captures a possible
combination. Depending on the matching pattern, the first or the
second player wins. We measure the time required to run 5·104
games.

The results are in Figure 12a. Column No Opt. shows the non
optimized version of JEScala. Subsequent columns show the effect
of the Counters optimization, of the Disj. Only optimization, and
of both optimizations in action. To give an intuition of what the
values mean in absolute terms, the last two columns show the
performance of Scala Joins in the same benchmark for events with
and without parameters. The former is obtained by adding a dummy
parameter to the event, which forces Scala Joins to switch off

the Counters optimization, the latter shows the case in which the
counters optimization is applied.

The dark bars in Figure 12a show the performance of JEScala
when adding the Thread Pool optimization. Figure 12b focuses on
this case. The Thread Pool optimization is by far the most impor-
tant to improve the performance of JEScala, and it is sufficient to
make JEScala faster than Scala Joins in the case of an event with a
parameter (Figure 12a). However, other optimizations are also sig-
nificant and further double the performance of JEScala.

6. Related work
Join languages Key design aspects of join languages are sum-
marized in Figure 13. Most join languages are based on existing id-
ioms (Language column). The Channels column shows how chan-

 0

 5000

 10000

 15000

 20000

 25000

 30000

No Opt Counter Disj Only Counter +
Disj Only

No Opt Counter

T
im

e
 m

s

JEScala
JEScala thread pool

Scala Joins

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

No Opt Counter Disj Only Counter +
Disj Only

No Opt Counter

T
im

e
m

s

JEScala
Scala Joins

(b)

Figure 12. Optimization of asynchronous events in JEScala (a) zoom on the Thread Pool optimization (b).

 0%

 25%

 50%

 75%

 100%

 2 3 4 5 6

(R
el

at
iv

e)
 J

oi
ns

 /
s

Disjunction and Pattern Size

Cω
JoCaml
JEScala

Esper
Scala Joins

Figure 10. Effect of pattern complexity on performance.

1 var cnt:Long=0
2 //...evt decl
3 evt (toD,toC,toB,toA)=
4 (a & b)
5 | (c & a)
6 | (b & c)
7

8 toA += ()=>{ a(); cnt+=1 }
9 toB += ()=>{ b(); cnt+=1 }

10 toC += ()=>{ c(); cnt+=1 }

(a)

1 var cnt:Long=0
2 // ...evt decl
3 evt (toD,toC,toB,toA)=
4 (a & b & c)
5 | (d & a & b)
6 | (c & d & a)
7 | (b & c & d)
8 toA += ()=>{ a(); cnt+=1 }
9 ...

10 toD += ()=>{ d(); cnt+=1 }

(b)

Figure 11. Benchmark: increasing complexity of matching pat-
terns with n=3 (a) and n=4 (b).

nels are implemented. The Sync column indicates whether chan-
nels are synchronous or asynchronous. The Disj column shows how
disjunctions are defined: through a specific explicit construct (Ex-
plicit) or, implicitly, via existing language abstractions. The Match-
ing column shows how to select a reaction among active ones.

What sets JEScala truly apart from other join languages is its ad-
vanced event system that supports event composition and implicit
events, in addition to imperatively triggered events. To the best of
our knowledge, JEScala is the only language that explores the syn-
ergy between such an event system and join operators. The effect
of using imperative events rather than method or function calls to
implement channels was discussed in Section 2; the advantages of
the synergy of implicit and declarative events with joins were dis-
cussed in Section 3.

The closest cousin of JEScala is the Scala library Scala
Joins [17], since it also implements channels as events. Scala Joins
demonstrate the use of extensible pattern matching to express joins
and provides guards for join matching. Similarly to JEScala, dis-
junctions are explicit. Subclasses can redefine the disjunction in
the superclass, but cannot modify it. However, unlike JEScala, the
event model is simple: events must be declared together with the
patterns they are involved in, including their synchronicity, and
cannot be composed. When considering Scala Joins as a building
block for implementing JEScala, the necessity of predefining the
synchronicity of the events provided by the library turned out to be
problematic for implementing JEScala declarative events, whose
synchronicity may vary from one occurrence to the other.

Polyphonic C# [2] extends C# with advanced concurrency
abstractions for asynchronous programming that are compiler-
checked and optimized. Unlike JEScala it supports only one syn-
chronous method per pattern and subclasses can change the body
of a reaction but cannot extend disjunctions with new reactions. For
our experiments we used the research language Cω [8], which of-
fers the same extensions to C#. The Join Concurrency Library [33]
provides a type-safe implementation of Polyphonic C# features by
using C# 2.0 generics. The advantages are portability across the
.NET platform and easier extensibility at the cost of fewer opti-
mization opportunities. Further work [36] shows that impressive
performance improvements can be achieved by fine-grained lock-
ing. Concurrent Basic [34] integrates the Join Concurrency Library
into Visual Basic by including explicit channels and methods with
multiple headers to define join patterns. Unlike JEScala, Concur-
rent Basic allows subclasses to add new reactions to existing dis-
junctions, as proposed in the Objective Join Calculus [14]. This
however incurs the issues discussed in [2]. The latter is also true of
JoinJava [19].

Funnel [26] is, as JoCaml, a language explicitly using the Join
Calculus as its foundations (with the variation that only one syn-
chronous channel is allowed in a join pattern). Unlike JoCaml, the
language supports object-oriented programming with classes and
inheritance on top of its functional basis.

In JErlang [29], channels are messages exchanged by actors.
Erlang patterns are extended to express matching of multiple sub-
sequent messages. Patterns are matched in their declaration order.
JCThorn [27] extends the scripting language Thorn [3]. Compo-
nents are actor-like containers for objects that share the same mail-
box. JEScala implements a finer-grained event system and, unlike
in JCThorn, concurrency abstractions and events are at the object
granularity level. MogeMoge [24] is a prototype-based scripting
language for game programming. Interactions are defined by asyn-

Language Channels Sync Disj. Matching

JoCaml Caml Function Async Explicit Non deterministic

Funnel Funnel Function/Method Both Explicit Non deterministic

Polyphonic C# C# Method Both Object Non deterministic

JoinJava Java Method Both Object Both

Scala Joins Scala Imperative Event Both Explicit Non deterministic

JErlang Erlang Message Async Actor Deterministic

JCThorn Thorn Message Async Component Deterministic

MogeMoge MogeMoge Join token Async Global Deterministic

Join Conc. Lib. .NET Channel Both Explicit Non deterministic

Concurrent Basic Visual Basic Channel Both Implicit Non deterministic

JEScala EScala Advanced Events Both Explicit Non deterministic

Figure 13. Languages implementing join abstractions.

chronous events called join tokens sharing a single global disjunc-
tion, the token pool.

Calculi JEScala has been designed in a pragmatic way. Proper
theoretical foundations may bring a better understanding of its
properties, in particular with respect to concurrency, with useful
inspiration to be drawn from existing join-based calculi. We have
already mentioned the objective join calculus [14], which deals
with objects and inheritance. The aspect join calculus [35] may
also be an interesting source of inspiration with respect to implicit
invocation.

Other languages Pān̄ini [22] is a programming language that
aims to coordinate concurrent components in a program by using
explicit typed events, à la Ptolemy [32], except that these events
are asynchronous, with a different meaning than the one we have
used so far: events are fired synchronously with respect to their
source but theirs handlers are executed asynchronously. However,
no declarative ways of combining events are provided. Current ver-
sions of Pān̄ini aim at implicit concurrency [30, 31] with a program-
ming style close to sequential programming. Using capsules to
group objects into single threaded entities, which are combined into
concurrent systems, results in coarse-grained concurrency com-
pararable to actors [18]. Communication between capsules looks
like method calls in a sequential program instead of asynchronous
messages between actors.

Implicit invocation with traits [28] is another proposal based on
explicit event types. There are no means of composition. The syn-
chronicity of an event simply depends on whether it is associated
to a block of code or not. In the first case, two synchronous, before
and after, events are defined, otherwise a single asynchronous event
is defined.

Join point interfaces [5] provide an interesting alternative to
the event model of JEScala by using event types and still provid-
ing both explicit and implicit events, including declarative events.
Also, this proposal is closer to Aspect-Oriented Programming than
JEScala: its events (join points) can return a value and its handlers
(advices) can be composed with proceed. However, it does not in-
clude any specific support for concurrency.

Other approaches Complex event processing (CEP) is about cor-
relating time-changing streams of data. The available operators in-
clude joins with rich (and often subtle) semantic alternatives, typ-
ically applied to time windows. The interested reader is referred
to [10] for an overview. Esper [11] is a CEP system implemented in

Java. It is an enterprise-level product used in real applications with
an expressive language and great emphasis on performance. As
such, it is often used for comparison in CEP research, and was our
choice as an indicator of the performance of CEP engines. Unlike
join languages, most CEP solutions are not integrated into a pro-
gramming language and applications interface with the CEP engine
via SQL-like queries. A noticeable exception is EventJava [12].

Sequential and Parallel Object Monitors (SOM and POM) [6, 7]
aim to to separate fine-grained synchronization concerns from the
application logic. An object monitor is a programmable threadless
scheduler that applies to reified calls to methods belonging to the
object (or set of objects) the monitor is attached to. The frame-
work is very expressive and makes it possible to implement, in Java,
monitors able to deal with, among others, join patterns and disjunc-
tions, with the possibility of providing different semantics, for in-
stance in terms of determinacy. JEScala also deals with separation
of concerns and concurrency but not at the same level and with a
different purpose. Our concurrency abstractions are fixed and our
interest is in seamlessly integrating them, at the language level, in
order to improve modularity. Sometimes, but not always, both ap-
proaches almost completely overlap. For instance, in Java, it would
make sense to write the rate limiter of Figure 4 as an object moni-
tor (it would still require more programming). The mapping is less
clear as soon as the rate limiter becomes more complex. On the one
hand, the issue is not to systematically extract concurrency and, on
the other hand, an issue is also to modularize the synchronization
concern itself.

Finally, [4] introduces a rich programming model combining a
form of implicit event types and aspects. Two salient features of
the proposal are the possibility to define, within event declarations,
side-effect-free code collecting data to be carried by the event as
well as fine-grained means to control composition. Concurrency
issues are not addressed.

7. Summary and Future Work
In this paper we have presented the design of JEScala, a language
that combines the advanced event system of EScala with concur-
rency abstractions from the Join Calculus. We have shown that
this solution captures coordination patterns in a way that is more
compact and more declarative than existing join languages while
preserving the OO style of modular reasoning (events are object
members). Still, we have found that concurrency issues related to
non-determinism and the mixing of synchronous and asynchronous

events (a source of deadlocks) is challenging. We feel that JEScala
provides an interesting practical language to study these issues.

Future work includes improving performance, providing com-
piler support as well as exploring the theroretical underpinning of
JEScala. Finally, as already discussed in Section 6, CEP engines
offer a richer semantics for event correlation than event-based lan-
guages – most noticeably, by including time in the form of various
types of windows over the event streams. We plan to explore the
semantic alternatives that joins offer in the context of event corre-
lation over time windows. This field has been partially explored in
CEP, but language integration of a flexible semantics for correlating
events is still a research challenge.

Acknowledgments
This work has been partially supported by the German Federal
Ministry of Education and Research (BMBF) under grant No.
16BY1206E ACCEPT and by the European Research Council,
grant No. 321217.

References
[1] H. C. Baker, Jr. and C. Hewitt. The incremental garbage collection of

processes. In Symposium on Artificial intelligence and programming
languages, pages 55–59. ACM, 1977.

[2] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstrac-
tions for C#. ACM TOPLAS, 26(5):769–804, Sept. 2004.

[3] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strniša,
J. Vitek, and T. Wrigstad. Thorn: robust, concurrent, extensible script-
ing on the JVM. In OOPSLA ’09, pages 117–136. ACM, 2009.

[4] C. Bockisch, S. Malakuti, M. Akşit, and S. Katz. Making aspects
natural: events and composition. In AOSD ’11, pages 285–300. ACM,
2011.

[5] E. Bodden, E. Tanter, and M. Inostroza. Joint point interfaces for safe
and flexible decoupling of aspects. ACM TOSEM, 2014. To appear.

[6] D. Caromel, L. Mateu, G. Pothier, and É. Tanter. Parallel object
monitors. Concurrency and Computation: Practice and Experience,
20(12):1387–1417, July 2008.

[7] D. Caromel, L. Mateu, and É. Tanter. Sequential object monitors. In
ECOOP ’04, volume 3086 of LNCS, pages 316–340. Springer, 2004.

[8] Cω. Language Website. http://research.microsoft.com/en-
us/um/cambridge/projects/comega/.

[9] S. Conchon and F. Le Fessant. JoCaml: mobile agents for Objective-
Caml. In ASAMA ’99, pages 22–29. IEEE Computer Society, 1999.

[10] G. Cugola and A. Margara. Processing flows of information: From
data stream to complex event processing. ACM Comput. Surv.,
44(3):15:1–15:62, June 2012.

[11] EsperTech. Company Website. http://www.espertech.com.
[12] P. Eugster and K. R. Jayaram. EventJava: An extension of Java for

event correlation. In ECOOP ’09, volume 5653 of LNCS, pages 570–
594. Springer, 2009.

[13] C. Fournet and G. Gonthier. The reflexive CHAM and the join-
calculus. In POPL ’96, pages 372–385. ACM, 1996.

[14] C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the
join calculus. In Proceedings of the 20th Conference on Foundations
of Software Technology and Theoretical Computer Science, volume
1974 of LNCS, pages 397–408. Springer, 2000.

[15] D. Garlan and D. Notkin. Formalizing design spaces: Implicit invo-
cation mechanisms. In VDM ’91, volume 551 of LNCS, pages 31–44.
Springer, 1991.

[16] V. Gasiūnas, L. Satabin, M. Mezini, A. Núñez, and J. Noyé. EScala:
modular event-driven object interactions in Scala. In AOSD ’11, pages
227–240. ACM, 2011.

[17] P. Haller and T. Van Cutsem. Implementing joins using extensible
pattern matching. In COORDINATION ’08, volume 5052 of LNCS,
pages 135–152. Springer, 2008.

[18] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR
formalism for artificial intelligence. In IJCAI ’73, pages 235–245.
Morgan Kaufmann, 1973.

[19] G. S. Itzstein and M. Jasiunas. On implementing high level concur-
rency in Java. In Advances in Computer Systems Architecture, volume
2823 of LNCS, pages 151–165. Springer, 2003.

[20] The JEScala site. http://www.stg.tu-darmstadt.de/research, 2014.
[21] J.-J. Lévy. Some results in the join-calculus. In TACS ’97, volume

1281 of LNCS, pages 233–249. Springer, 1997.
[22] Y. Long, S. L. Mooney, T. Sondag, and H. Rajan. Implicit invocation

meets safe, implicit concurrency. In GPCE ’10, pages 63–72. ACM,
2010.

[23] L. Mandel and L. Maranget. The JoCaml language - Documentation
and user’s manual. Inria, Aug. 2012. Release 4.00.

[24] T. Nishimori and Y. Kuno. Join token-based event handling: A com-
prehensive framework for game programming. In SLE ’11, volume
6940 of LNCS, pages 119–138. Springer, 2011.

[25] A. Núñez, J. Noyé, V. Gasiūnas, and M. Mezini. Aspect-Oriented,
Model-Driven Software Product Lines - The AMPLE Way, chapter
Product Line Implementation with ECaesarJ. Cambridge University
Press, 2011.

[26] M. Odersky. An introduction to functional nets. In Applied Semantics,
volume 2395 of LNCS, pages 333–377. Springer, 2002.

[27] I. S. Paula. JCThorn: Extending Thorn with joins and chords. Master’s
thesis, Department of Computing, Imperial College London, 2010.

[28] T. Pawlitzki and F. Steimann. Implicit invocation of traits. In SAC ’10,
pages 2085–2089. ACM, 2010.

[29] H. Plociniczak and S. Eisenbach. JErlang: Erlang with joins. In
COORDINATION ’10, volume 6116 of LNCS, pages 61–75. Springer,
2010.

[30] H. Rajan, S. M. Kautz, E. Line, S. Kabala, G. Upadhyaya, Y. Long,
R. Fernando, and L. Szakács. Capsule-oriented programming. Tech-
nical Report 13-01, Iowa State U., Computer Sc., 2013.

[31] H. Rajan, S. M. Kautz, and W. Rowcliffe. Concurrency by modularity:
design patterns, a case in point. In OOPSLA ’10, pages 790–805.
ACM, 2010.

[32] H. Rajan and G. T. Leavens. Ptolemy: A language with quantified,
typed events. In ECOOP ’08, volume 5142 of LNCS, pages 155–179.
Springer, 2008.

[33] C. Russo. The joins concurrency library. In PADL ’07, volume 4354
of LNCS, pages 260–274. Springer, 2007.

[34] C. V. Russo. Join patterns for Visual Basic. In OOPSLA ’08, pages
53–72. ACM, 2008.

[35] N. Tabareau. A theory of distributed aspects. In AOSD ’10, pages
133–144. ACM, 2010.

[36] A. J. Turon and C. V. Russo. Scalable join patterns. In OOPSLA ’11,
pages 575–594. ACM, 2011.

