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ABSTRACT
Reactive applications are difficult to implement. Traditional solu-
tions based on event systems and the Observer pattern have a num-
ber of inconveniences, but programmers bear them in return for
the benefits of OO design. On the other hand, reactive approaches
based on automatic updates of dependencies – like functional re-
active programming and dataflow languages – provide undoubted
advantages but do not fit well with mutable objects.

In this paper, we provide a research roadmap to overcome the
limitations of the current approaches and to support reactive appli-
cations in the OO setting. To establish a solid background for our
investigation, we propose a conceptual framework to model the de-
sign space of reactive applications and we study the flaws of the
existing solutions. Then we highlight how reactive languages have
the potential to address those issues and we formulate our research
plan.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Object-oriented Pro-
gramming; D.3.3 [Programming Languages]: Language Constructs
and Features

Keywords
Reactive Programming; Functional-reactive Programming; Object-
oriented Programming; Incremental Computation

1. INTRODUCTION
Most contemporary software systems are reactive: Graphical user

interfaces need to respond to the commands of the user, embedded
software needs to react to the signals of the hardware and control
it, and a distributed system needs to react to the requests coming
over the network. While a simple batch application just needs to
describe the algorithm for computing outputs from inputs, a reac-
tive system must also react to the changes of the inputs and up-
date the outputs correspondingly. Moreover, there are more tight
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constraints on computation time, because reactive systems work in
real-time and need to react quickly – within seconds or even mil-
liseconds. When the reactive behavior involves non-trivial compu-
tations or large amounts of data, various optimization strategies,
such as caching and incremental updating, need to be employed.

Object-oriented programming does not provide specific mecha-
nisms for implementing reactive behavior, with two consequences.
First, reactive behavior is usually encoded by using the Observer
design pattern, whose drawbacks have been extensively highlighted
in literature [10, 31, 30]. For example, the code responsible for up-
date of outputs is usually tangled with the code changing the inputs.
As a result, it becomes difficult to understand the computational re-
lations between inputs and outputs and, thus, the intended behavior
of the system. Second, the update functionality with the neces-
sary strategies to achieve the desired performances must be imple-
mented manually for each application. Such optimizations, how-
ever, introduce a lot of additional complexity, so that it becomes an
act of balance between complexity and efficiency.

Various approaches aim to address different aspects of these is-
sues. Event-driven programming (EDP) creates inversion of con-
trol to enable modularization of the update code [38, 22, 18]. Aspect-
oriented programming (AOP) enables complete separation of the
update concern, by specifying in the aspects the points where the
update needs to be triggered [24, 42, 37, 5]. The above approaches
fit well with mutable objects, but retain some of the problems re-
lated to a programming style based on inversion of control, similar
to the well-discussed problems of the Observer design pattern.

Declarative reactive approaches, most notably functional-reactive
programming (FRP) [17] and reactive languages, like FrTime [10],
Flapjax [31] and Scala.React [30], completely automate the update
process. The developer specifies only how a changing value is
computed from other values, and the framework ensures that the
computed value is automatically updated whenever the inputs are
changed. It is, however, not clear whether they can obsolete man-
ual implementation of update code. FRP and reactive languages
deal with update of primitive values, and may be too inefficient
since they do not provide incremental update of complex struc-
tures. Incremental update is provided by other approaches such
as LiveLinq [29], but they are limited to specific data structures.
Also, declarative approaches based on the functional paradigm do
not offer the advantages of typical object-oriented designs, includ-
ing modularization and component reuse.

In summary, the current state of the affairs is rather disappoint-
ing: Developers implement reactive applications in the comfortable
world of objects, at the cost of relying on programming models
whose limitations have been known for a long time. On the other
hand, alternatives based on reactive programming offer an appeal-



ing solution, but do not succeed because they do not provide the
necessary flexibility and do not integrate with the OO design.

In this paper, we propose a research roadmap to fill the gap be-
tween OO design and reactive approaches. Our vision is that the
concepts developed by FRP and dataflow programming can be in-
tegrated with object-orientation to provide dedicate support for re-
active applications in mainstream languages. This goal is challeng-
ing because reactive abstractions have been explored mainly in the
functional setting or in special domains, like reactive data struc-
tures. However, the analysis presented in this paper provides a solid
background and the first steps in our research plans are already on-
going. Our initial effort is the integration of events and behaviors a
la FRP into our prototype language RESCALA [40], and results are
promising. In summary, we provide the following contributions:

• We characterize the design space of reactive applications and
discuss the strategies that can be applied to implement reac-
tivity.

• To understand the practical impact of each update strategy,
we analyze the implementation of reactive behavior in sev-
eral real-world OO applications. Our analysis highlights the
drawbacks of traditional abstractions.

• We analyze the existing language solutions for reactive sys-
tems. We underline their limitations, and the key achieve-
ments to take into account in further research.

• We propose a research roadmap which addresses the issues
found in the current approaches and has the ultimate goal of
combining objects and reactive abstractions in a flexible and
efficient language.

The paper is structured as follows. In Section 2 we analyze the
design space of reactive software. In Section 3 we present an em-
pirical evaluation of real-world OO reactive applications. Section 4
outlines a possible alternative and discusses other research solu-
tions. Section 5 presents our research roadmap.

2. DESIGN SPACE IN OO LANGUAGES
In reactive systems, the outputs of the program need to be up-

dated based on changes of inputs and time. The ways of achieving
this goal are however very diverse. In this section, we overview
the possible update strategies and discuss the rationale of choosing
them.

To make the discussion more clear, in Figure 1 we show a model
of a reactive software: The outputs provided to the clients (the ob-
jects a and e) must reflect the current state of the inputs of the ap-
plication (objects b, c, and d) according to certain transformations
f and g. Objects can be composed: For example, the object a con-
tains the references a1 and a2 to other objects (e.g. by storing them
in fields). Dashed arrows model dependencies: Output objects are
computed from certain input objects. To clarify how the model ap-
plies, consider a weighted graph used to compute a derived graph.
The derived graph is composed of references to the edges exceed-
ing a MIN weight value. In the model of Figure 1 the basic graph
can be represented by the b object that contains the references b1,
b2 and b3 to the edges. The derived graph can be represented by
a and contains the references a1 and a2 to the edges. Finally, f is
the transformation that produces the derived graph a from the basic
graph b by filtering the edges according to the MIN value, modeled
by the c object. For each update strategy, we show in a Java-like
language how the dependent graph is obtained.

Figure 1: A model of reactive behavior among objects.

2.1 On-demand Recomputation
The most straightforward approach is to recompute the output

values each time they are needed. For example, when they are re-
quested by the user to generate a report, or when she refreshes a
view. Similarly, in real-time computer games and simulation appli-
cations, it is common to recompute outputs automatically at certain
intervals of time or simply as often as possible. In OO design,
the typical example of this approach are methods returning values
computed from the state of the object each time these methods are
called.

The distinguishing aspect of on-demand recomputation is that,
after the evaluation, the output is discarded. For example, in Fig-
ure 1, every time a client requests a, a is recomputed and b is
evaluated to calculate a. Figure 2(a) shows the on-demand re-
computation strategy applied to the graph example: Every time the
getDerivedGraph method is called, the dependent graph is com-
puted from scratch by filtering all the edges (Line 6) and it is re-
turned to the client.

The advantage of this approach is that it is simple to carry out,
because the developer just needs to implement procedures comput-
ing the outputs from inputs. It also guarantees that the values are
always computed from the current state of the program, and thus
are always consistent with their inputs. The approach is also mem-
ory efficient, because only the inputs need to be stored, but not the
outputs or any intermediate computation.

2.2 Caching
Recomputing outputs every time they are requested may be too

inefficient, especially in the cases when the computations are ex-
pensive or need to deal with large amounts of data. Caching a com-
puted result is a general optimization strategy that avoids repeating
the computation. In the model of Figure 1, caching is obtained
by saving a and e, letting them available for more than one client
access. A typical design is to introduce a field for storing the com-
putation results. The method that computes the dependent value is
modified to return the value of the field if it is valid, and to compute
and save the result otherwise. Figure 2(b) shows an implementation
of the caching strategy: The derivedGraph is maintained in a field
(Line 3) and returned only if valid, otherwise, the dependent graph
is recomputed. When an edge is added to the base graph, the de-
rived graph is invalidated (Line 17).

The cached values are valid only as long as the inputs of the com-
putation do not change. When the inputs change, the cached value
must be either recomputed, or invalidated and recomputed at the
next request. The latter approach is more efficient when the com-
puted value is used not so frequently, but it is also slightly more
complicated. A major issue is to detect changes of the inputs and
decide which cached values need to be invalidated. A straightfor-
ward approach is to invalidate all cached values after the change of
every input. An efficient solution, however, is to analyze the actual



1 class Graph {
2 Edge [] edges;
3

4 getDerivedGraph(){
5 Graph g = new Graph();
6 for (Edge edge : edges){
7 if (edge.weight > MIN)
8 g.add(edge);
9 }

10 return g;
11 }
12 ...
13 }
14

15

16

17

18

19

(a)

1 class Graph {
2 Edge [] edges;
3 Graph derivedGraph;
4 boolean valid;
5

6 getDerivedGraph(){
7 if (!valid){
8 derivedGraph=new Graph();
9 for (Edge edge : edges){

10 if (edge.weight > MIN)
11 derivedGraph.add(edge);
12 } }
13 return derivedGraph;
14 }
15 addEdge(Edge e){
16 edges.add(e);
17 valid = false;
18 } ...
19 }

(b)

Figure 2: On-demand recomputation (a) and caching with in-
validation (b).

dependencies between inputs and outputs, and, after a change to
an input, update only the outputs that depend on it – as we explain
hereafter.

2.3 Tracking Dependencies
Instead of updating all outputs after a change to an input, the pro-

grammer can rather update only the outputs that actually depend on
the changed input. For example, in Figure 1, a change in c requires
an update of a, but e is still valid and should not be recomputed.
A finer-grained tracking of dependencies can take into account that
a only depends on the elements among b1, b2 and b3 that exceed
MIN. Figure 3(a) shows an implementation of dependency tracking
with caching: The dependent graph is maintained in a field, and
it is updated only when one of the edges with weight greater than
MIN is added, i.e. the logic keeps track of the edges on which the
derived graph depends. Figure 3(b) shows an implementation of
dependency tracking with on-demand recomputation. In this case,
the dependent graph is recomputed on every client request. The
knowledge about dependencies is maintained by keeping edges in
an ordered list (Line 2). In this way, the computation of the de-
pendent graph can be performed by evaluating only a subset of the
edges of the base graph. The evaluation is interrupted when an edge
not part of the dependencies is encountered (Line 9).

Although tracking dependencies may seem straightforward, im-
plementing this strategy in practice is usually not easy. The pro-
grammer needs a precise knowledge of computational relations be-
tween outputs and inputs. The dataflow of an application is usu-
ally not explicit in imperative code, and a careful code analysis is
required to reconstruct it. Moreover, the actual dataflow of an ap-
plication may depend on dynamic conditions (e.g. dynamic type
of a variable in case of subtype polymorphism) and thus may be
statically not determinable. Developers must implement the up-
date functionality that corresponds to the detected computational
dependencies: After a change of each different input, the update
of the corresponding outputs must be called. This may introduce
a substantial amount of additional code. The update functionality
may also cause modularity problems, because, when implemented
in a straightforward way, it may introduce undesired dependencies
from inputs to outputs. To avoid such dependencies, the program-
mer may employ various callback mechanisms (e.g. the Observer

1 class Graph {
2 Edge [] edges;
3 Graph derivedGraph;
4

5 getDerivedGraph(){
6 return derivedGraph;
7 }
8 addEdge(Edge e){
9 edges.add(e);

10 if (e.weight > MIN)
11 derivedGraph.add(edge);
12 } ...
13 }

(a)

1 class Graph {
2 List<Edge> orderedEdges;
3

4 getDerivedGraph(){
5 derivedGraph = new Graph();
6 for(Edge edge:orderedEdges){
7 if(edge.weight > MIN)
8 derivedGraph.add(edge);
9 else break;

10 }
11 return derivedGraph;
12 } ...
13 }

(b)

Figure 3: Tracking dependencies with caching (a) and tracking
with on-demand recomputation (b).

pattern), but this further increases the complexity of the implemen-
tation.

2.4 Update Incrementalization
Completely recomputing a cached value each time it is inval-

idated may be too expensive, especially if this value is a complex
data structure, such as an array or a graph. A common optimization,
in that case, is to update the cached value incrementally depending
on the changes to the input. In the model of Figure 1, update in-
crementalization is an optimization of the functions f and g. This
kind of optimization applies in presence of caching: to make up-
dates incremental, the entity to update must be available to receive
the changes. Figure 4(a) shows an example of update incremen-
talization: When a change occurs, the derived graph is not recom-
puted from scratch but it is modified gradually by adding only the
edges that satisfy the condition (Line 13). Note that there is no de-
pendency tracking like in Figure 3(a), i.e. the dependent graph is
always notified of the change, regardless of the weight of the added
edge (Figure 4(a), Line 7).

Incremental update requires more fine-grained analysis of the
changes to the inputs. It is not sufficient to detect that a certain
input has changed, but it is also necessary to get precise informa-
tion about the change. In addition, the programmer must design
algorithms to update the value incrementally after different kinds
of changes to the inputs. For example, in case the derived graph is
the Minimum Spanning Tree of the original graph, specific domain
knowledge in graph theory is required to implement the update al-
gorithm incrementally.

2.5 Accumulating Changes
Accumulating changes is an optimization of the computation of

outputs from inputs (i.e. an optimization of f and g in the model
of Figure 1). Changes are stored and applied to a cached output, so
caching is subsumed by this strategy.

Accumulating changes also implies the incrementalization of the
update. Indeed, incrementalization is required to combine the ex-
isting object with the incoming changes. Accumulation allows one
to arbitrarily choose when to apply the stored changes. One ex-
treme is every time a change occurs (no accumulation), the other is
every time the client requests the output. If the update of a value
is postponed until the client request, this strategy avoids redundant
updates of rarely requested values. However, combining a lot of
accumulated changes is more expensive and the response time in-
creases. In some cases, like in databases, the update is postponed
until the end of some logical transaction in the inputs. Figure 4(b)
shows an example of change accumulation. The changes to the



1 class Graph {
2 Edge [] edges;
3 DerivedGraph derivedGraph;
4

5 addEdge(Edge e){
6 edges.add(e);
7 derivedGraph.add(e);
8 } ...
9 }

10 class DerivedGraph
11 extends Graph {
12 addEdge(Edge e){
13 if (e.weight > MIN)
14 this.add(e);
15 } ...
16 }
17

18

19

(a)

1 class Graph {
2 Edge [] edges;
3 Graph derivedGraph;
4 Changes [] changes;
5

6 getDerivedGraph(){
7 applyChanges();
8 return derivedGraph;
9 }

10 applyChanges(){
11 /∗ Update derivedGraph
12 based on changes.
13 Clean added and removed ∗/
14 }
15 addEdge(Edge e){
16 edges.add(e);
17 changes.add(new Add(e));
18 } ...
19 }

(b)

Figure 4: Update incrementalization (a) and change accumula-
tion (b).

base graph are accumulated in the changes array (Line 4). When
the client requests the derived graph, the changes are applied and
the derived graph is returned (Lines 6–8).

Updating a value after accumulating changes is usually more
complicated than updating a value after each primitive change, be-
cause it requires more sophisticated data structures to describe the
accumulated changes and more sophisticated algorithms to imple-
ment the update. As a result, this strategy increases memory con-
sumption. However, accumulating changes also offers opportuni-
ties for optimization. For example, some changes can cancel each
other. Nevertheless, a complex a domain-specific logic is usually
required to take advantage of such cases.

3. CASE STUDIES
To analyze the design issues of OO reactive software, we in-

spected four reactive Java applications. Our goal is not to develop
a systematic empirical study on OO reactive software. Instead, we
want to provide a solid background for our research by surveying
concrete examples of how reactive features impact OO software
design. Due to space reasons, we show only a summary of our
analysis. The interested reader can find more details in a technical
report [39].

The case studies are of different sizes and cover different kinds
of software (two desktop applications, a mobile application, and a
library) as well as a variety of external sources of reactive behavior,
like network messages, data sampling, values from sensors and user
input. Figure 5 summarizes the main metrics of each application.

The SWT Text Editor (the StyledText widget) implements a
text editor in the popular SWT library used by the Eclipse IDE [15].
The application reacts to the insertion of characters and to format-
ting commands by the user.

The FreeCol Game [20] is an open-source turn-based strategy
game. The AI of the game controls the opponent players, so the
application reacts to the user and the AI. Updates concern the game
model and the map in the GUI.

Apache Jmeter [26] supports the performance assessment of
several server types (e.g. HTTP). The user specifies a test plan
by adding graphical elements to a panel. First, the application must
react to changes in the test plan. Additionally, the application is

reactive to network events, as the results of the test are visualized
in real-time.

The AccelerometerPlay Android application is one of the exam-
ple applications provided by the Android platform [2]. It displays
a set of particles rolling on the screen. The inclination of the de-
vice is detected by the accelerometer and the particles are updated
accordingly.

3.1 Design Choices in the Case Studies
Different design choices concerning reactive behavior are moti-

vated in the case studies by the design, size and kind of software.
Our analysis clearly indicates that different applications are better
“served” by different points in the design space depicted in Sec-
tion 2.

The SWT text editor adopts caching and dependency tracking
to achieve good performance. It is a typical example of an object
with an internal state, which changes in the process of interacting
with the user. The editor is implemented in the conventional event-
driven style and it is highly optimized to ensure low reaction time.
To this end, a lot of fields are used to cache intermediate values, and
a complex logic takes care of updating values only when needed.

The FreeCol game lies at the opposite side of the design space
and mostly adopts the on-demand recomputation strategy. Since
the game behavior is inherently complex, the major issue is man-
aging complexity to keep the development time and the stability of
the game within reasonable limits. So, design decisions reducing
or at least limiting complexity are favored. A substantial part of the
code implements computations of values that are used in the user
interface or for AI decision making. Almost all of these values are
computed every time they are requested by the user or by the AI.

In the AccelerometerPlay application particle positions are re-
computed on-demand every time the screen is refreshed, and in-
crementalization is applied to efficiently update the positions after
conflict resolution. The logic is summarized in Figure 7: Position
update comes first, then conflicts with the screen border and con-
flicts among particles are resolved. Finally, the particles are dis-
played. Since the application must react quickly, the update logic
is based on imperative changes and an iterative algorithm is used
for conflict resolution.

JMeter is optimized to make the GUI fast and reactive, changing
it in response both to the user and the test events. Due to the dif-
ferent nature of these sources of change, the optimization strategies
slightly differ. Caching is used for graphic widgets when the same
graphic interface is associated to multiple elements in the test plan
and can be reused when the user switches from one element to the
other. Incrementalization is applied to optimize updates of graphs
and statistics displaying the results of an ongoing test.

3.2 Problem Statement
Our analysis revealed several design issues. We argue that these

problems – commented hereafter – are not due to bad choices by
the programmers. Instead, as we explain in Section 3.3, they are the
consequence of the design limitations and the trade-offs imposed
by OO language abstractions.

3.2.1 Code Complexity
Manually caching intermediate values requires an accurate logic

that is responsible to perform the updates and maintain consistency.
Performances increase, but the application becomes more complex.
In the SWT text editor, the presence of a lot of fields in each class
(70 mutable fields in the worst case) makes reasoning on the be-
havior of the application really hard, since computations depend on
previous state. In addition, the update logic for enabling reactiv-



Case study LOC Types Cycl. Compl. LOC/Method Methods/Type Fields/Type
SWT Text Editor 9,227 48 4.77 17.39 10.64 4.75
FreeCol Game 170,597 1,175 2.60 10.67 5.77 2.11
Apache JMeter 90,704 1,081 1.84 8.39 7.19 2.13
AccelerometerPlay 460 4 2.00 10.73 4.00 8.00

Figure 5: Main metrics for the case studies.

Time% Call/Value Avg.Change Calls Time
99.57% 5.1 0.2650 14,798 76,705
97.98% 5.0 0.2672 14,732 75,821

92.13% 1.4 3.8125 29 3.6 · 106

62.20% 85.0 0.0009 8,507,562 83
40.35% 176.5 0.0038 5,437,321 84

Figure 6: Redundancy analysis of the FreeCol game.
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Figure 7: The logic of the AccelerometerPlay application.

ity pervades a considerable part of the application. For example,
the StyledText class includes 11 “addListener” methods, 11 “re-
moveListener” methods and 18 “handleEvent” methods. Moreover,
the event-handling code includes anonymous classes created on the
fly, which also expose callback methods. Finally, since values are
separated from their update logic, local reasoning is impossible and
understanding the application behavior requires inspecting a lot of
code.

On the other hand, on-demand recomputation, like in the FreeCol
game, clearly simplifies the logic of the application: As values are
generated only when required, the behavior is not hidden by the
code that maintains the dependencies.

3.2.2 Hidden Design Intent
The AccelerometerPlay application is an example of how reac-

tive functionalities can hide the design intent of the developer. Al-
though it is quite simple (less than 500 LOC), the reactive logic
is spread all over the code and a conceptual model like the one
in Figure 7 must be harvested from the system of callbacks and
events. The origin of this complexity is that the design intent of
each update strategy is not explicit in the implementation. For ex-
ample, certain values are functionally dependent on other values
but the design does not express this aspect. Only a careful analysis
of the code reveals that a field is never changed directly, but updated
after changes of other fields. To reconstruct the intended computa-
tional dependencies, the developer must analyze all the update code
scattered across the application. Our analysis revealed that compu-
tational dependencies are quite common in complex applications.
For example, we determined that in the StyledText class of the
SWT text editor, about half of the 70 mutable fields are not freely
changeable, but store values functionally dependent on other fields.
Despite that, all fields are declared in the same way and identify-
ing dependent fields requires to reverse engineer the logic of the
application, which is lost in the callbacks.

3.2.3 Redundant Computations
The major advantage of on-demand computation is to keep the

design simple. However, the overhead that is observed when this
design choice is prevalent can be relevant.

We used a profiler and instrumentation via AspectJ to count the
potentially redundant calls of the most time-consuming methods in
the case studies. The computations after which the returned value
does not change (for the same parameters) are potentially redun-
dant. The impact of the design choices on redundancy can be seen
in Figure 8. It compares the level of redundancy (calls per different
observed values) in the 20 most expensive methods in the FreeCol
game and in the SWT text editor, which lie at the opposite posi-
tions in the design space. The SWT text editor (right), thanks to
its complex logic, shows values of redundancy which are substan-
tially lower. We devoted further investigation to the potential op-
timizations in the FreeCol game, which largely adopts on-demand
recomputation. For example, we discovered that the most expen-
sive method (99.57% of the time) has 80% of potentially redundant
calls, i.e. the computed value changes only in ∼26% of the method
calls (Figure 6). Further details are in [39].

3.2.4 Scattering and Tangling of Update Code
When values are intermediately cached, they must be updated in

every point of the application where the inputs of the computation
are changed. This leads to scattering of the update code.

To evaluate code scattering in the case studies, we considered
the places where a field is directly written except the initialization.
Since in many cases fields are not modified directly, but a setter
method is used, we also included setter methods in the analysis.
With the exception of the AccelerometerPlay application which is
too small to suffer from scattering and tangling issues, we found
that update scattering is extremely common. For example, in the
FreeCol game, in JMeter and in the SWT text editor, respectively,
only 38.4%, 46.0% and 30.7% of the fields is updated in just one
place. In the worst case, a field was updated in 96 places!

3.2.5 Error-proneness and Code Repetitions
When the updates of the dependencies are managed manually, it

is often hard for developers to understand when to trigger an up-
date. For this reason, programmers code in a defensive way and
introduce an update even when not necessary. For example, in
the JMeter application we found cases in which selecting a GUI
with the cursor triggers a sequence of four updates of the interface
even before the user changes any value. However, update errors are
not the only inconvenience that manual updates can cause. When
update functionalities are complex, managing consistency by hand
can easily lead to code repetitions because the same update pattern
is cloned in many places. We evaluated the occurrence of code sim-
ilarities in the case studies; the results are in Figure 9. The numbers
in the table show that for applications of significant size, even when
the update functionalities are carefully designed, like in the case of
the SWT text editor, it is hard to keep the code clean.
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Figure 8: Redundancy of the most expensive methods in the FreeCol game and the SWT text editor.

Application Similarities Similarities / LOC
SWT Text Editor 29 0.00314
FreeCol Game 281 0.00106
Apache Jmeter 381 0.00420
AccelerometerPlay 0 0

Figure 9: Code repetitions.

3.3 Lesson Learned from the Case Studies
In this section, we summarize the major results from the case

studies. A crucial observation is that, in OO applications, reactive
entities are separated from the code responsible to keep them up-
dated. This has two bad consequences. First, the dependencies are
not explicit, so the design rationale of the application is hard to
grasp even for trivial cases. Second, updates are scattered across
the application and tangle the rest of the code.

Unfortunately, modularization of update code is hard to achieve
in the OO style, because dependencies must be imperatively up-
dated every time an input value is changed – which can occur in
several places of the application. Furthermore, manually analyz-
ing dependencies and writing corresponding update code is error-
prone; certain dependencies may be overlooked and consequently
the programmers can fail to update all functionally dependent val-
ues. Therefore, values are often updated defensively without pre-
cise knowledge of whether it is actually necessary.

Manually written update code also produces a maintenance prob-
lem, because there are no automatic checks ensuring the consis-
tency of the update code with the actual dependencies of the com-
putation. In addition, each time the computational dependencies
are changed, the developer must correctly update the update func-
tionality to reflect the current state of the dependencies! Errors of
such a manual maintenance activity may remain undetected for a
long time; forgetting to update a certain value usually does not lead
to a crash, and a redundant update may even not cause any visible
effects at all, only inefficiency.

Importantly, in our analysis, we observe a clear trade-off be-
tween efficiency and complexity. To keep the design simple, pro-
grammers accept the cost of on-demand recomputation and po-
tential redundancy. For example, intermediate caching via object
fields highly complicates the application because the update logic
must be implemented manually. In conclusion, keeping the de-
sign simple has a high cost in performance. In some cases, like
the FreeCol game, there is a wide space for potential optimization.

However, this is not easy to achieve, because the computations in-
volve complicated algorithms and depend on various different in-
puts.

4. ANALYSIS OF ADVANCED LANGUAGES
In this section, we discuss some advanced language concepts to

support reactive applications. For each approach, we analyze the
problems it addresses and its limitations. We start the discussion
with functional reactive approaches, as they provide interesting in-
sights as how to overcome the problems discussed in the previous
section and are the source of inspiration for our planned research,
a roadmap of which is presented in the following section.

4.1 Functional Reactive Languages
Functional-reactive programming (FRP) was introduced by El-

liott [17] to model time-changing values as dedicated language ab-
stractions. Further approaches refined and extended the concept,
mostly focusing on the formal semantics of continuous time [35].
More contemporary incarnations of the concepts are integrated in
recent languages such as FrTime [10], Flapjax [31], and Scala.React [30].
To make the argumentation more concrete, in Figure 10, we show
an example of Flapjax, a dataflow language that overcomes sev-
eral limitations of reactive design based on inversion of control.
Our considerations can be substantially generalized to FrTime and
Scala.React. The functionality presented in Figure 10 consists of
displaying the elapsed time since the user clicked on a button in a
Web page.

Flapjax supports behaviors, i.e. reactive abstractions that model
time-changing values (named with a final “B” in the code snippet).
For example, the value nowB is a behavior that represents the cur-
rent time updated every second. Behaviors can be sampled to ob-
tain “traditional” values via the valueNow function: startTm is the
initial instant of the simulation. In addition, behaviors can be com-
bined with events: In Line 3, the snapshot function captures the
instant value of the nowB behavior every time the click event of
the reset button occurs. As a result, clickTmsB always contains
the time of the previous click (or startTm before any click event).
elapsedsB keeps the value of the time elapsed from the last click,
and insertValueB updates the value in the graphic every time the
elapsedsB value changes (Line 6). The crucial aspect of the reac-
tive semantics is that a declaration like the one in Line 5 expresses
a constraint rather than a statement. The example shows how the
language creates implicit dependencies among time-changing val-
ues. The general idea is that when the programmer defines a con-
straint a=f(b) and b is a time-changing value, the framework auto-
matically detects the dependency of a on b and is responsible for



performing the updates automatically. In Line 5, when either nowB
or clickTmsB changes, the value of elapsedB is automatically up-
dated. So, whenever the programmer accesses elapsedB, she sees
the updated value. Reactive languages provide abstractions to com-
pose time-changing values and combine them with event streams.
Eventually, time-changing values are bound to the GUI which auto-
matically reflects the changes. The reader interested in more details
can refer to [31].

Automatic dependency tracking addresses several issues high-
lighted in the case studies. The application is simplified, because
the programmer does not shoulder the burden of keeping depen-
dent values consistent (Section 3.2.1). As a consequence, the er-
rors that can derive from forgetting the updates are automatically
avoided (Section 3.2.5). The update code, which captures the be-
havior of a program entity, is modularized with the entity, allowing
local reasoning and avoiding scattering and tangling with the rest of
the application (Section 3.2.4). In contrast to callbacks, which re-
turn void, reactive behaviors can be easily composed. As a result,
software is much more readable because the design intention of
the programmer is explicit and direct modeling of relations among
objects enforces a more declarative style (Section 3.2.2). Finally,
reactive languages automatically derive dependencies and perform
only necessary updates (Section 3.2.3).

In summary, reactive languages are an appealing solution to the
issues identified for OO languages. In particular, since updates are
performed by the runtime and do not add complexity to the applica-
tion logic, they have the potential of solving the trade-off between
efficiency and simplicity described in Section 3.3. However, there
are some crucial issues that prevent their broader adoption.

Functional flavor and immutability.
Reactive languages impose a functional style, while OO pro-

gramming features an imperative style. When a lot of code al-
ready exists, a functional refactoring of the entire application is
in general not acceptable. Some computations are cumbersome to
express functionally, while retaining acceptable performance and
algorithmic clarity. For example, the conflict resolution algorithm
in the AccelerometerPlay application is expressed in an imperative
style using for loops, sequences of imperative statements to detect
the conflicts, and imperative updates of the particles positions. The
AccelerometerPlay application is also an example of performance-
critical software. Conflicts among potentially hundred of particles
must be solved in a sufficiently short time that the movement ap-
pears fluid to the user. Expressing the resolution algorithm in func-
tional style with somewhat acceptable performance, would involve
accumulative recursion: Functions in this style are rather hard to
understand and, yet, probably not as efficient as encodings based
on loops and imperative updates.

A consequence of the functional flavor of reactive languages is
that they are effective with primitive values, but do not fit well with
mutable objects. Strategies for incremental computation are highly
application-specific and a framework can hardly address the prob-
lem in a domain-agnostic way. As a result, there is no way to au-
tomatically incrementalize object updates. So, reactive languages
recompute the dependent object every time the base object changes.
To clarify this point, consider the expression
list2 = list1.filter(x>10), an instance of the case a=f(b) –
discussed previously – where a and b are list2, respectively list1
and f is the filter function for the given predicate. The expression
establishes a dependency between list1 and list2 via filter. In
our case, each time object list1 changes, the filter operator pro-
duces a new list2 object. Instead, imperative approaches update
the mutable dependent object in-place, which is more efficient and

1 var nowB = timerB(1000);
2 var startTm = nowB.valueNow();
3 var clickTmsB = $E("reset", "click").snapshotE(nowB)
4 .startsWith(startTm);
5 var elapsedB = nowB − clickTmsB;
6 insertValueB(elapsedB, "curTime", "innerHTML");
7

8 <body onload="loader()">
9 <input id="reset" type="button" value="Reset"/>

10 <div id="curTime"> </div>
11 </body>

Figure 10: Automatic dependency tracking in Flapjax.

preserves the object identity. For example, the SWT text editor em-
ploys mutable data structures to efficiently store the inserted text.

These observations are symptoms of a more general problem in
reactive languages: The update strategy is hardcoded in the reac-
tive framework, so only a point in the design space described in
Section 2 is available to the programmer. As a result, efficiency
might be an issue even for trivial cases.

Design of complex systems.
So far, we defended the mutability of OO. Another, even more

important reason, why we do not want to abandon the OO style is
that it has established itself as the paradigm of choice for complex
applications, for reasons related to design clarity and evolvability.
A first remark is about modeling: Objects are effective in modeling
complex systems because they reproduce the interaction of real-
world entities. For example, the hundreds of simulation elements
used by the FreeCol game are conveniently represented by objects.

Objects enable the development of large applications by modu-
larizing rather large pieces of functionalities while abstracting over
implementation details. For example, all the SWT widgets are
ready-to-use components, but at the same time open for future mod-
ifications via subtype polymorphism: E.g., the SWT text editor uses
a default implementation for the text container, but clients can pro-
vide a custom container by implementing a proper interface.

OO also supports reuse by class inheritance. This aspect is cru-
cial in libraries which are developed incrementally, e.g., the
StyledText class is part of an inheritance hierarchy of depth 7. An-
other key requirement of complex systems is runtime variability.
Objects address this issue via dynamic polymorphism. For exam-
ple, the simulation elements in JMeter are treated uniformly and
late bound depending on the user decisions. In the SWT library, a
text editor can be used wherever a generic widget is expected.

4.2 Observer and Event-Driven Programming
The Observer pattern enables decoupling the code that changes

a value from the code that updates the values depending on it. The
Observer pattern has a number of drawbacks that have been ex-
tensively analyzed by researchers. The main points of criticism are
summarized hereafter; the interested reader can refer to [31, 30] for
a detailed discussion. First, with the Observer pattern, applications
are harder to understand because the natural order of dependencies
is inverted. A lot of boilerplate code is introduced to correctly im-
plement the pattern. Another problem is that, since callbacks do not
return a type but perform imperative updates on the objects state,
reactions do not compose. Finally, the notification to the observers
is triggered in an imperative fashion and can be easily scattered and
tangled with the rest of the application. Interestingly, many of these
points of criticism clearly emerged in our case studies.

Event-based languages like C# [11], Ptolemy [38], EScala [22]
and EventJava [18] directly support events and event composition



as language constructs. These languages reduce the boilerplate
code introduced by the Observer pattern and provide advanced fea-
tures like quantification over events, event combination and implicit
events. Event-based languages integrate well with the imperative
paradigm: The callback defines all the operations required for the
update of the object state. As a result, this approach preserves
object identity – opposed to functional solutions which necessar-
ily compute a different object – and supports efficient fine-grained
changes of the updated object.

The main drawback of event-based programming is that a signif-
icant amount of modeling reactive dependencies is still encoded in
a programmatic way, rather than being supported by the language.
The update functionality must be designed and implemented ex-
plicitly in the callback method. Caching must be managed manu-
ally, deciding a proper policy and coding it in the callback as well.
Similar considerations apply for any optimization strategy. For ex-
ample, accumulation of changes must be entirely implemented by
the programmer. Another issue is that, since all the update func-
tionality must be coded manually, consistency is not automatically
guaranteed. Instead, the developer must take care of correctly noti-
fying all the entities which are functionally dependent. This leads
to error-prone code with the risk of notifying too rarely, breaking
functional dependency, or too often, defensively inserting unnec-
essary updates. Finally, non-functional design choices are hard-
coded in the callback implementation: The developer has no op-
tion to choose among different non-functional trade-offs discussed
in Section 2, such as caching or incremental updates.

4.3 Aspect-oriented Programming
In the context of reactive applications, AOP can be used to in-

tercept objects modifications and keep dependent entities updated.
Since AOP supports proper modularization of crosscutting con-
cerns, the update functionalities are separated from the code of the
object. For example, the Observer pattern can be implemented in
a modular way by using AOP techniques [24]. Other researchers
proposed AOP languages to modularize complex relations among
objects [42, 37]. AOP integrates well with the imperative style and
the mutability of object’s state. A point of criticism is that AspectJ-
like pointcut-advice models, which dominate AOP design, can po-
tentially break OO modularity. However, it has been shown that
pointcuts can be integrated with an event system preserving OO-
style modular reasoning [22].

Finally, many limitations of event-based programming hold for
AOP, too. Most noticeably, updates must be performed explicitly in
the aspect code and dependencies are not automatically tracked as
in reactive languages. In addition, composition of reactive behav-
iors is not easy to obtain, since aspects interactions are complex to
master compared to expression composition in functional program-
ming.

4.4 Reactive Collections
Reactive collections define functional dependencies among data

structures (often expressed via SQL-like queries). The crucial point
is that the framework keeps the dependent structures automatically
updated when the basic ones change. Efficient incremental up-
dates have been investigated by the database research community
for a long time in the context of the view maintenance problem [8].
More recently, researchers introduced these solutions into program-
ming languages, intercepting the updates via AspectJ [44] or using
code generation techniques [41] to trigger the updates on the depen-
dencies. Off-the-shelf libraries include LiveLinq [29] and Glazed
Lists [23].

Reactive data structures share some design advantages with re-

active languages. Computational dependencies are expressed ex-
plicitly, so the application is easier to read: Queries describe the
functional relations between program entities in a declarative man-
ner. Update functionalities are automatically derived – with little
or no additional complexity. The framework is in charge of keep-
ing the functional dependencies specified by the query constantly
up to dated. Finally, reactive collections implement efficient up-
date of various reusable operators by using incremental changes
and caching to avoid redundant computation.

The main limitation of reactive data structures it that the ap-
proach is restricted to a specific domain – changing collections.
These frameworks provide out-of-the-box reactive data structures,
but they do not support automatic update of other types of objects.
Another issue is that reactive collections do not automatically de-
tect all computational dependencies, but only exploit a set of pre-
defined ones. In general, it is not possible to specify a generic
expression and leave the framework the responsibility of tracking
all the dependencies. For example, the predicate in a filter opera-
tor (Section 4.1) is not part of the dependencies mechanism, so any
change to the predicate remains undetected. Apart from provid-
ing custom indexes to speedup certain queries, reactive collections
rely on hard-coded non-functional design choices depending on the
internal implementation. The programmer cannot fine-tune the up-
date strategy or customize the caching behavior. Finally, most of
these frameworks come in a very relational flavor. This further lim-
its their integration with OO languages in which they are usually
embedded.

4.5 Other Approaches
Constraint-based languages, like Kaleidoscope [21], support con-

straints that the framework attempts to enforce according to a prior-
ity ranking. One-way constraints have proved effective in the scope
of graphical interfaces: The Lisp-based Garnet [33] and Amulet [34]
graphical toolkits support automatic constraints resolution to relive
the programmer from manual updates of the view.

In synchronous dataflow languages like Esterel [3] and LUS-
TRE [7], the program defines a network in which a synchronous
signal propagates and triggers the computations in the nodes. These
languages are usually compiled to finite state machines and – at the
cost of limiting the language expressively – provide guarantees of
real-time and memory-bound execution.

Self-adjusting computation [1] studies the automatic derivation
of incremental programs from traditional ones. This solution adopts
an algorithmic approach, focusing on complexity boundaries of the
incremental computation.

Complex event processing (CEP) frameworks, e.g. TelegraphCQ [9]
and SASE [45] perform queries over time-changing streams of data.
Typical scenarios are monitoring of environmental data and trading
applications. Compared to database software, in which the user
triggers the evaluation of the queries, in CEP, the queries must be
reactively evaluated upon data arrival. However, usually, queries
are specified in a separate language which does not integrate with
the in-language values and with the other language abstractions.

5. A RESEARCH ROADMAP
In this section, we present a research roadmap for embedding

direct support of reactive applications in object-oriented program-
ming languages. The milestones in the roadmap are ordered from
the basic ones – which are ongoing, like the integration of reactive
abstractions into an event model, to more elaborate ones – which
address complex systems that require automatic adaptation. Beside
language design, we plan to work on the improvement of the per-
formance of reactive languages. Previous work mostly focused on



language abstractions, with less attention to optimization or perfor-
mance assessment. However, the high overhead of current reactive
languages is also among the factors that limit the spreading of this
technology.

5.1 Integration with Event-based Programming
Languages with support for event-based programming do make

an important step forward in more directly supporting reactive be-
havior in an imperative object model. As such, they are an ideal
starting point for our research. Yet, as argued, they lack the capa-
bility of declaratively expressing reactive computations dependent
on changing values. In summary, both events and reactive expres-
sions are needed. Events support fine-grained updates of mutable
objects. Reactive abstractions capture reactive computations in a
compact and declarative way.

Hence, a first step in our plan is to seamlessly integrate reactive
abstractions into object-oriented event systems. This goal requires
the design of the interface between the reactive abstractions and
the abstractions for imperative events, such that they can be treated
uniformly in computations and become composable. Such inter-
face is fundamental to support a mixed programming approach and
gradual migration of existing software to a more functional and
declarative style.

A further step is to integrate reactive abstractions in other aspects
of the language. For example, collections must react to changes
of the contained elements. It has been shown that changes can
be suitably provided to the clients via an event-based interface1.
Similarly, reactive abstractions can be conveniently used in data
structures to model properties which are functionally dependent on
other values (e.g. the size or the head of a list, both functionally
dependent on the content of the list). The result is a library of
reactivity-enabled data structures, which expose certain values as
reactive abstractions.

This work is currently ongoing in the incarnation of RESCALA [40]
(ReactiveEScala), a language which integrates the advanced event
system of EScala [22] and reactive abstractions in the style of
Scala.React [30].

5.2 Integration with Object-oriented Design
Reactive languages provide abstractions to represent time-changing

values. For simplicity, we assume the Flapjax terminology es-
tablished in Section 4.1 and we refer to these abstractions as be-
haviors. Behavior values are bound to expressions that capture
the dependencies over other values. For example, in Figure 10,
Line 5, the elapsedB value is bound to the behavior expression
nowB-clickTmsB. It is unclear, however, how behaviors should in-
tegrate with OO design.

We believe that behaviors should be part of the interface of an
object and clients should attach to public behaviors to build com-
plex reactive expressions. Private behaviors should instead model
functionally dependent values that are consumed only inside the
object. Clearly, object encapsulation should be supported to hide
implementation details from clients. These results can be trivially
achieved by applying visibility modifies to behaviors. However, the
next steps in the integration with OO design require more investi-
gation.

An open question is whether behavior expressions can be reas-
signed. A negative answer leads to a design more similar to method
bodies in most OO languages: They are statically defined at devel-

1For example, the .NET framework provides the
System.Collections.ObjectModel.ObservableCollection<T>
class which exposes to the clients the PropertyChanged and the
CollectionChanged events.

opment time and at runtime can only be executed. On the contrary,
modifiable behaviors imply a design similar to fields that can be ac-
cessed by getter and setter methods. In that case, behavior expres-
sions would be changeable. Since behavior expressions capture the
dependencies over other application entities, allowing their reas-
signment introduces a potentially excessive degree of dynamicity,
especially if behavior expressions can be reassigned from outside
the object. However, in a large application, it can happen that the
dependencies of a long-lived component are not known when the
component is instantiated and, depending on the evolution of the
system, must be assigned during its lifetime.

While in the existing literature behaviors are usually assigned
and not modified later, this mostly seems due to accidental circum-
stances rather than justified by design considerations. First, the use
cases provided in literature are mostly small examples in which re-
assignment is not really needed. Second, the functional flavor of
the existing solutions presumably favors single assignment. Third,
reassignment complicates the reactive model both from an imple-
mentation and a semantic standpoint, so non reassignment has been
favored also for the sake of simplicity. As a result, we still lack a
broad discussion of these issues that concretely justifies the prefer-
ence for a model or the other.

Another open issue concerns inheritance. Should it be possible
to override a reactive value with a new dependency expression or
refer to the overridden one via super? Intuitively, this seems desir-
able, but the consequences on the propagation model need careful
investigation as well as the expected benefits. A final consideration
is about polymorphism. We envisage a scenario in which reactive
entities are late bound – like objects – and the dynamic type of the
reactive value captures the dependencies over the other entities of
the application.

In summary, while reactive abstractions have been applied in the
context of OO languages before, previous approaches focused on
reactive fragments that only superficially challenge OO design. As
a result, we still lack a systematic investigation of the interaction
between OO features and reactive abstractions. A starting point
for our work is [25] which focuses on the specific scenario of an
application in a functional reactive style interfacing with an OO
graphic library.

5.3 Efficient Reactive Expressions
Reactive languages enable to define arbitrary constraints on de-

pendencies between objects and leave the framework shouldering
the recomputation of the dependent objects. However, as shown in
Section 4.1, current approaches enforce immutability and recom-
pute dependent objects every time, which negatively impacts effi-
ciency. On the other hand, reactive collections (Section 4.4) over-
come this problem by applying advanced strategies such as update
incrementalization for a predefined set of operators.

Unfortunately, optimizations are provided out-of-the-box for built-
in operators and are not at the fingertips of end developers. As
discussed in Section 2.4, in certain circumstances, only domain
knowledge enables the developer to provide a mechanism that sup-
ports incremental updates. Hence, a predefined set of operators is
not sufficient.

Motivated by the above observations, a fundamental step in our
research roadmap is to design a framework that combines the open
approach of reactive languages, which support arbitrary reactive
computations, with the efficiency of built-in reactive data struc-
tures. This solution overcomes the frustrating state of the art, where
efficient reactive data structures and reactive languages are separate
worlds. We will follow two lines of research.

As a first step towards this goal, we aim at bringing efficient



built-in operators to reactive abstractions. We will provide a variety
of efficient operators that seamlessly operate on reactive collections
and reactive abstractions. Highly efficient libraries will be designed
along the lines of [44, 41], but integrated with the abstractions of
existing reactive languages. For example, by allowing behavior-
like expressions in the predicate of a filter operator or by modeling
the result of the reactive operators as behaviors. Predefined oper-
ators must cover the most common applicative scenarios such as
collections and relational operations.

The second step of research will aim at reconciling the openness
of reactive languages with efficient reactive operators. This is only
possible if the optimization of generic computations is available to
application developers. Optimizing a particular step of a reactive
computation process must be handy: Providing a faster version of
a reactive computation must be as easy as – say – overriding an
existing method.

Our idea is to separate the creation of dependent objects, which
is performed from scratch, form the maintenance of objects. In
the default case, both creation and maintenance are accomplished
by complete recomputation, i.e. by applying the function that re-
lates basic and derived objects, for example filter in the list2
= list1.filter(x>10) expression. However, the programmer can
provide refinements for the maintenance case. Those refinements
can be implemented by imperative algorithms or by taking advan-
tage of domain-specific knowledge to efficiently update dependent
objects. In this way, efficient event-based computations that apply
the optimization principles well-known from the OO context can
be conveniently hidden behind high level operators expressed in a
functional style. Reactive objects are then connected by those op-
erators to compose constraints. To further open the framework, the
programmer should be able to refine existing operators with a more
efficient version when better performance is needed. Finally, late
binding can be leveraged to obtain the dynamic selection of the best
operator (i.e. the best refinement for a set of types).

A second line of research concerns optimizations that must take
into account a broader scope than single operators. For exam-
ple, considerable performance improvement in relational expres-
sions comes from reordering by anticipating selections and defer-
ring joins. In addition, those optimizations must be performed, at
least partially, at runtime, to allow cross-module analysis. Deeply-
embedded DSLs come with powerful interfaces to support custom
optimizations for DSL expressions embedded into the host lan-
guages. For example, in LINQ, the developer is provided with the
raw compiler output in the form of an – internally untyped – ex-
pression tree. Scala-virtualized [32] employs a similar approach,
but fosters more typing guarantees. We will investigate the ap-
plicability of these techniques to optimizing reactive expressions.
However, these mechanisms are quite low-level. As a result, opti-
mizations are hard to perform and require highly specialized skills.
It has been reported that building a LINQ provider for the RavenDB
database took more time than building the database [16]. Also, they
do not support dynamic optimizations. We will opt for hiding the
complexity of those techniques behind higher-level abstractions.

5.4 Propagation Model
To enforce the constraints defined by the user, reactive languages

keep a runtime model of the dependencies in the application. Usu-
ally, this model is a directed graph in which a change in a node
triggers an update over the transitive closure of the dependency
relation. Reactive languages mostly enforce a push propagation
model in which changes are proactively applied to dependents in
the graph [10, 31]. However, also lazy models with invalidation
of the cached values and on-demand recomputation have been pro-

posed [30]. The propagation of the changes along the graph has a
considerable performance impact.

Optimization techniques regarding the propagation model have
been already proposed. For example, lowering is a technique that
applies static analysis to collapse several reactive nodes in the graph
into one [6]. As a result, the computation is moved from the reac-
tive model to the usual (and more efficient) call-by-value system.
The Yampa FRP framework employs a similar approach but merges
the computations at runtime [35].

Based on the above observations, one research direction that we
plan to follow concerns optimizations related to the propagation
model.

First, alternative graph constructions can be performed that lead
to observationally equivalent reactive models. As a result, perfor-
mance considerations can guide the choice. For example, as noted
in [6], always collapsing the computations can lead to poor per-
formance in certain cases. Consider the following code snippet
from [6]. A time consuming operation depends on an operation
whose output rarely changes. The second operation, instead, de-
pends on a frequently-changing value:
(time-consuming-op

(infrequently-changing-op frequent-emitter))
Consider the case in which this code results in three nodes: A
source node frequent-emitter, an infrequently-changing-op
node which depends on the first one, and a time-consuming-op
node, which depends on infrequently-changing-op. Every time
frequent-emitter emits a new value, infrequently-changing-op
is executed. Since the outcome of infrequently-changing-op
rarely changes, time-consuming-op is executed just a few times.
Instead, if infrequently-changing-op and time-consuming-op are
collapsed into the same node, time-consuming-op is executed at
the same rate frequent-emitter changes its value. This effect is
even more significant in languages like Scala.React, which apply
collapsing of computations as the principal composition mecha-
nism. In summary, collapsing should not be accepted or refused
in its entirety and code analysis or dynamic techniques must be ap-
plied to detect where each solution leads the best results.

A second aspect of the propagation model that needs further in-
vestigation is the choice of a push-based implementation that is
adopted by most reactive languages. According to the design space
presented in Section 2, this solution favors caching over on-demand
recomputation. The choice is motivated by a constraint: A push-
based solution is necessary to guarantee that possible side effects
in the reaction are really performed. However, change propaga-
tion does not always involve side effects. An optimization should
explore the space between caching and on-demand recomputation
and provide a convenient compromise. For example, reactive data
structures dynamically switch to a caching strategy when the re-
quests exceed a threshold [44].

However, this solution is quite simple and does not consider fac-
tors like the current machine load. For example, if the load is low, it
may be convenient to recompute cached reactive values even if they
are rarely requested. On the other hand, with heavy load, this strat-
egy can further degrade the performances without providing signif-
icant benefits. More advanced approaches relying on concepts from
control systems need to be investigated. The latter have been e.g.,
explored for parallel data structures to provide the best performance
adapting to different machines, configurations and workloads [14].

Finally, update propagation models are common to both reactive
languages and event-based systems. The former use these models
to propagate updates across dependencies, the latter to trigger de-
pendent events [22]. Since these mechanisms are more and more
used in programming languages, an obvious question is if those



functionalities should be supported at the VM level. In previous
work, starting from similar considerations, we investigated dedi-
cated VM support for AOP [4]. Research work on runtime environ-
ments which natively support the concept of reactive memory was
recently carried out at the OS level [12]. However, implementing
a similar approach in a managed environment which specifically
supports propagation of changes across reactive entities is still a
research challenge.

A second research direction is optimization by design. This ap-
proach is enabled by making the performance implications of the
language abstractions explicit and leaving the choice in the hands of
the programmer. Current reactive languages focus on expressivity
rather than performance. As a result, the programmer has no clear
control of how performance is affected by the design choices. Un-
like reactive languages, dataflow languages, like Esterel and LUS-
TRE, intentionally limit the expressive power of the available ab-
stractions to achieve memory and time-bound execution. Attempts
to limit expressivity to improve performances have already been
done in the reactive languages community. For example, real-time
FRP [43] is a time-bound and space-bound subset of FRP. However,
real-time FRP is a closed language [28], i.e. it is not embedded in
a larger general-purpose language, which considerably limits the
applicability of this approach.

In summary, programmers face a black-or-white choice: Relin-
quish performance for expressivity or abdicating abstraction for ef-
ficiency. Instead, reactive languages should incorporate reactive
primitives that, at the cost of a reduced expressive power, have a
high-performance profile. Static analysis or a dedicated static type
system can ensure that those primitives are not combined with the
rest of the reactive system in a way that cancels the performance
improvement.

A starting point is to implement lexically scoped dependencies.
In current reactive approaches, reactive dependencies are estab-
lished dynamically. When, during the evaluation of an expression,
a reactive value is found, the value is inserted in the dependency
graph. This approach introduces considerable overhead. In fact,
the evaluation is slowed down by the process of double-liking de-
pendent values with their dependencies. Similarly, when the value
of a node changes, it must be unlinked from the nodes depending
on it. This behavior is required to keep the graph updated, since de-
pendencies can change dynamically. For example, the value of the
expression if(a) b else c depends on either b or c on the bases
of a. As a consequence, the structure of the graph is not fixed but
must be continuously restructured to capture the current dependen-
cies [30]. In contrast, lexically scoped dependencies are fixed. This
results in regions in which the graph structure does not change,
avoiding the computations required to keep the graph updated and
improving performances.

5.5 Evaluation
To make sure that our research leads to concrete results, we plan

to evaluate each progress. However, evaluating language design is
not easy, because design quality is hard to capture with synthetic
metrics and design choices have long term effects which are hard
to predict. For example, the impact of programmers experience or
the maintainability of large systems can be evaluated only when a
considerable amount of projects have been developed. As a conse-
quence, we believe that a priori reasoning and careful analysis of
the available options remain fundamental steps [27]. Nevertheless,
where applicable, we plan to perform objective evaluations of our
results.

Performances can be evaluated effectively by running bench-
marks. For example, former studies compared the performance

of OO programming (Java) with the mixed OO-functional style
(Scala) in the context of parallel applications and multicore envi-
ronments [36]. We believe that similar experiments can evaluate
the performance impact of reactive abstractions compared to the
traditional solutions for reactive applications.

Other aspects of the language design can be evaluated by using
software metrics. Common metrics include coupling and cohesion,
lines of code, number of operations and others [19]. We plan to
adopt this approach to evaluate our design choices in the advanced
state of our research, when studies can comprise several artifacts.
Other researchers already used metrics to validate language design
choices in reactive applications. Recently, the combined use of syn-
thetic metrics and manual inspection (to investigate specific issues)
was successfully applied to evaluate event quantification in soft-
ware product lines [13].
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