
ContextErlang: Introducing Context-oriented Programming
in the Actor Model ∗

Guido Salvaneschi, Carlo Ghezzi, Matteo Pradella
DEEPSE Group, DEI, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano, Italy

{salvaneschi, ghezzi, pradella}@elet.polimi.it

Abstract
Self-adapting systems are becoming widespread in emerg-
ing fields such as autonomic, mobile and ubiquitous com-
puting. Context-oriented programming (COP) is a promising
language-level solution for the implementation of context-
aware, self-adaptive software. However, current COP ap-
proaches struggle to effectively manage the asynchronous
nature of context provisioning.

We argue that, to solve these issues, COP features should
be designed to fit nicely in the concurrency model supported
by the language. This work presents the design rationale
of CONTEXTERLANG, which introduces COP in the Actor
Model. We provide evidence that CONTEXTERLANG consti-
tutes a viable solution to implement context-aware software
in a highly concurrent and distributed setting. We discuss a
case study and an evaluation of run-time performance.

Categories and Subject Descriptors D.1.3 [Software]:
Programming Techniques—Concurrent Programming; D.3.3
[Programming Languages]: Language Constructs and Fea-
tures

General Terms Languages, Design

Keywords Context-oriented programming, Self-adaptive
software, Erlang, OTP platform

1. Introduction
Dynamic adaptation of a software system to a changing con-
text has emerged as a common need in a wide range of sce-
narios. For example, autonomic computing is about provid-
ing a system the means to be self-managing in changing con-

∗ This research has been funded by the European Community’s IDEAS-
ERC Programme, Project 227977 (SMSCom).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25–30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

ditions. Mobile and ubiquitous computing often require ap-
plications to adapt to the external environment.

Since context-depending behaviors must be activated
at run time and typically crosscut the system functionali-
ties, managing context-dependent features in a systematic
and effective way became a key software challenge. The
context-oriented programming paradigm (COP) introduced
by Costanza and Hirschfeld [9] has emerged as a viable
approach and language-level support for context manage-
ment. The key idea of COP is to provide specific language
abstractions that enable context-adaptability through well
engineered modularization of behavioral variations, whose
dynamic activation and composition changes the basic pro-
gram behavior to support context-aware adaptation [17].

The Actor Model – originally proposed by Hewitt [16]
– is an alternative solution over traditional thread-and-lock
concurrency approaches. There is growing interest around
languages that are based on this paradigm, such as Erlang [1]
and Scala [2] which easily allow to take advantage of in-
creasing hardware parallelism. In this scenario, actors offer
an interesting solution to the new challenges of self-adaptive
and context-aware software. We argue that the Actor Model
strongly fits the requirements of context awareness. Asyn-
chronous message passing offers an intuitive representation
for context provisioning and agents are a natural abstraction
for context-adaptable units inside an application.

Hereafter, we briefly provide the motivations that lead to
the development of CONTEXTERLANG, an extension we de-
signed and developed for the Erlang programming language.
Most COP languages implement a programmatic and syn-
chronous variation activation model on a specific control
flow. Variations are activated and composed through an ex-
plicit statement such as

with(variationList) { codeBlock }
and activation is scoped to the dynamic extent of the code
block. This model has two shortcomings. On the one hand
all the objects in the control flow are automatically adapted.
This precludes fine-grain adaptation on single entities of the
application. Fine-grain control is needed in many real-world
applications where adaptation is required (see Section 2).
On the other hand, dynamically scoped activation fails to

manage event-specific context changes, i.e. context changes
that are asynchronously delivered to the application. Event-
based context changes can impact several control flows and
it is not possible to react to them through conventional COP
with-driven activations occurring at fixed points in the code.
Event-specific context changes have a prominent role in real
world applications where the adaptation is driven by changes
discovered via environmental monitoring, user interaction,
or the insurgence of internal system conditions.

Our approach abandons the traditional per-control-flow
dynamic scoped activation mechanism of thread-based COP
languages. Because of the asynchronous nature of context-
change notifications that generate event-specific context
changes, we propose a solution that is tightly coupled with
the adopted concurrency model.

Specifically, we leverage the agent-based model of Erlang
to support context-adaptations. CONTEXTERLANG is based
on the concept of context-aware reactive agents. Context-
adaptable agents have a basic behavior which can be altered
by variations, i.e. behavioral units that can be activated on
the agent. Variations can be composed to produce the ac-
tual behavior of the agent. Variation activation and the other
context-related operations are performed by sending ad-hoc
messages to the agent. Therefore, in CONTEXTERLANG, asyn-
chronous activation, as required by real-world adaptive sys-
tems, is the norm. Instead of the dynamically scoped activa-
tion model of COP languages, we adopt per-agent variation
activation and composition. This gives the programmer full
control over fine-grained adaptation of the application com-
ponents.

CONTEXTERLANG also supports variation transmission.
An agent on a remote Erlang node can be provided with a
new behavior by sending a variation to the node and acti-
vating it on the agent. This introduces a very useful support
for systems that must adapt to unforeseen situations. Since
we wanted to rely on a robust implementation, compatible
with existing Erlang applications, we developed CONTEXT-
ERLANG as part of the OTP platform, on which practically
any real-world Erlang application is based.

To summarize, the main contribution of this paper is
the introduction of COP in the Actor Model, through the
design and the implementation of CONTEXTERLANG. More
precisely in our work we achieved the following results:

• Integration of COP concepts with the Actor concurrency
model.
• Implementation as part of Erlang OTP, an industrial-

strength language for distributed and concurrent appli-
cations.
• Experimental validation of our approach through proto-

types of significant complexity and performance evalua-
tion.

The paper is organized as follows. In Section 2 we discuss
the motivation this work. In Section 3 we describe CONTEXT-

ERLANG and its design. Section 4 discusses the validation of
our approach. Section 5 discusses the related work. Section
6 draws some conclusions and presents future research.

2. Motivation
To motivate the design choices behind our work, we intro-
duce a non-trivial example called ContextChat, our proto-
type of an instant messaging server. We discuss possible
designs and implementations of ContextChat using existing
COP languages and CONTEXTERLANG. More details of the
implementation will be presented along the paper to illus-
trate CONTEXTERLANG’s features.

In ContextChat, the connected clients can exchange mes-
sages in real time. The server also implements some ad-
vanced features, which can be dynamically activated. When
users go offline, received messages are stored on the server
and delivered later when the addressee connects. An optional
backup can be enabled by the user to save both the received
and sent messages on a remote server. Additionally, the sys-
tem can activate a tracing functionality to collect informa-
tion on client communications. In a distributed environment,
this allows for self-adaptive behavior, moving users who of-
ten exchange messages on the same physical machine and
reducing cross-node communications.

An abstract view of the application is sketched in Fig-
ure 1. For each user i an always-alive component Ui em-
bodies the user even when he or she is offline (e.g. U4).
Border components Bi are created when clients Ci connect.
Each border component is in charge of the network connec-
tion with the client and controls the always-alive component.
Consider the scenario in which the client C1 sends a message
to the client C2. C1 communicates the message to the border
component (e.g. via some protocol over HTTPS). The border
component B1 decodes the “send msg” command and con-
trols U1. B1 activates the send message functionality on U1.
U1 forwards the message to U2 and through B2 the message
reaches C2.
Context-oriented programming. In ContextChat, the vari-
ations to the basic behavior are clearly identified, should be
separated from the rest in the codebase, must be dynami-
cally activated, and depend on the current context of the ap-
plication – as we explain in a while. Therefore, COP looks
like the natural solution for the requirements of ContextChat.
While in traditional OO programming method dispatching
is two-dimensional, depending on the message and on the
receiver, COP adds a further dimension: methods may also
be dispatched according to the current context [17]. In COP,
the notion of context is abstract and general. Every computa-
tionally accessible information can be considered as context.
The user condition (e.g., online/offline, enabled backup) can
be considered its current context. To enable run time adap-
tation, COP supports dynamic context composition and its
abstractions avoid cluttering the code with if statements to
express context dependency. Therefore using COP to auto-

C1

C3

C2

U1

U3 U4

U2B1

B3

B2

Clients
Always-alive Components

Border Components

Message exchange

Network connections

Figure 1. The ContextChat application.

matically select and combine the proper behaviors is an ap-
pealing solution.

Figure 2 shows a possible implementation of the User

object implementing an Ui component in a COP language
extension to Java, such as ContextJ [5]. For the benefit
of the reader we use this example also to shortly intro-
duce the typical COP features. A more conceptual analy-
sis and an overview of COP can be found in [17]. COP
provides language-level abstractions to modularize context-
dependent behavioral variations and dynamically activate
and combine them. In COP languages, behavioral varia-
tions are reified in layers1, abstractions which group partial
method definitions. For example, in Figure 2 the tracing

layer contains a partial definition of the receive msg and
of the send msg methods. When a method is called, the im-
plementation to execute is chosen according to the active
layers. The proceed keyword allows dynamic combination.
It is similar to proceed in aspect-oriented programming and
calls the partial definition in the next active layer or the ba-
sic definition. Layer activation has dynamic extent and it is
done through the with statement: in the control flow all the
method calls are dispatched according to the active layers.

Dynamic scope is a powerful mechanism for variations
activation, since it allows remote effect, setting the active
layers once and automatically adapting all the objects in
the execution flow. This behavior has already proved useful
in several application scenarios [5, 9, 26]. However, imple-
menting ContextChat with the traditional COP dynamically
scoped activation highlights some inconveniences. We argue
that these problems are due to the asynchronous nature of
context provisioning, to the concurrent nature of the appli-
cation and to its non-trivial complexity. Therefore the issues
analyzed in the rest are likely to be encountered in any suf-
ficiently large self-adaptive application which needs to be
organized in several functional modules, and are not specific
of this example.

First, a context change is often an asynchronous event
coming from outside the execution flow. Since layers are
activated when the control flow reaches the statement, the
with construct is inherently synchronous and is not suit-
able for these cases. For example, the tracing layer is ac-

1 For continuity with our previous work, ContextErlang keeps the name
variation also to indicate the language abstraction. CONTEXTERLANG
variations are quite similar to COP layers; a comparison between the two is
in Section 5.

public class User {
layer offline {

void receive msg(User source,M msg){
store chats.store message(source, msg);

} }
layer tracing { ...

void receive msg(User source,M msg){
// send msg to the tracing listener

proceed(source, msg);

}
void send msg(User source,M msg){

// send msg to the tracing listener

proceed(source, msg);

} }
layer backup { ...

void receive msg(User source,M msg){
// send msg to the remote server

proceed(source, msg);

} }
... // Other methods

void receive msg(User source,M msg){
//forward msg to my border component

}
void send msg(User dest,M msg){

// forward to dest client

} }

Figure 2. An implementation of the chat server in ContextJ.

tivated by an external engine in charge of implementing
the autonomic behavior. The same holds for the activation
of the backup functionality which can be performed any-
time by the client while User objects are exchanging mes-
sages with other users. A possible solution is to adopt in-
version of control [22] and first class layers. For example,
a setActiveLayers callback method can be implemented
in the User class to notify the change of the active layers
and store them locally. However, this solution increases the
complexity the application making it less readable. Indeed,
in this case, inversion of control does not capture the de-
sign intention. Conceptually, the programmer’s intention is
to cause an entity adaptation and not to notify an entity let-
ting it perform the activation at the next with statement. In
addition to that, in some applications, it is not possible to
identify unique entry points for the control flow. As already
noticed by COP researchers [6], in this cases, layer compo-
sition statements must be scattered and replicated across all
the possible control flows, such as all the callback methods
in a GUI application.

Second, in a highly concurrent environment, the control
flow can follow complex paths. These paths hardly map
on dynamically scoped program sections, i.e. contextual re-
gions whose adaptation condition is known where the region
is entered. For example, the User object (Figure 2) may be
traversed by several control flows, and the information of
which behavioral variation to activate is not directly avail-
able to all of them. The backup functionality is enabled by
the client C1 and therefore the associated border component
B1 can trigger the backup behavior by interacting with the
User object U1 in the dynamic scope of a with statement.

However, when the User object U1 is called from another
User object U2 to receive a message, U2 does not know if
the backup layer should be activated on U1.

A third issue is that in a complex application with several
components, dynamic scope is difficult to control and can
extend too far. For example, in case a border component
B1 delivers a message through the associated User object
U1 and the client C1 activated the backup feature on U1,
the backup functionality is propagated along the flow to the
other User object U2.

COP researchers have already investigated the limitations
of dynamically scoped variation activation. ContextJS [20]
is an open implementation of COP which supports user-
defined activation strategies, such as indefinite scope or per-
object activation. Per-object activation is performed calling a
setWithLayer method on the instance. Per-object activation
solves the problem of the activation along the execution path,
since objects identify the boundaries in which layer activa-
tion is constrained. This solution nicely fits in the OO model,
resembling the way other design problems have been solved
for objects. For example, in Java, concurrency is addressed
at the language level by assigning a monitor to each object.
Similarly, in per-object activation, a list of currently active
layers is associated to each object.

EventCJ [29] is a Java COP extension which supports
declarative layer transitions and implicit activation through
pointcut-like predicates. The issue of asynchronous activa-
tion, discussed previously, is solved by AspectJ-like state-
ments: when a pointcut-like event occurs, a layer transition
is triggered. Layers are activated on per-object basis. Fig-
ure 3 shows a possible implementation of an User object
in EventCJ. Events and layer transitions are declared inside
direction modules. When the onStatusChanged method is
called, the StatusOffline or the StatusOnline events are
triggered, depending on the parameters. These events trigger
layer transitions from Online to Offline and vice versa.
The approach solves the problem of asynchronous activa-
tion by introducing points in the program execution which
implicitly activate layers.

However, none of the existing COP languages leverages
the concurrency model to easily support asynchronous con-
text propagation. As a result, the layer activation mechanism
can be quite complex (Figure 3).

As we have seen, the backup and the tracing functional-
ities in the example are activated by a different thread than
the one actually affected by them. This aspect is not pecu-
liar of our example, but is common to many self-adaptive
applications. The MAPE-K model (Monitor, Analyze, Plan,
Execute-Knowledge), conceived by the autonomic comput-
ing community, decouples the adaptive application in a man-
aged element, which implements the application logic and
an autonomic manager, which collects data from sensors
and plans the adaptive behavior [18]. So, these subsystems
are not only conceptually separated, but usually run in sep-

public class User {
void onStatusChanged(Status s){...}

...

}
direction UserLayerActivations{

declare event StatusOffline(User u)

:after call(onStatusChanged(Status s)) && target(u)

&& args(s) && if(s==Status.OFFLINE) :sendTo(u);

declare event StatusOnline(User u)

:after call(onStatusChanged(Status s)) && target(u)

&& args(s) && if(s==Status.ONLINE) :sendTo(u);

... // Other events

transition StatusOffline: Offline switchTo Online;

transition StatusOnline: Online switchTo Offline;

... // Other transitions

}

Figure 3. ContextChat in EventCJ.

arate threads and communicate asynchronously. However,
the relation between context-adaptation and the language
concurrency model has not been investigated so far in COP
research. Even more advanced COP languages are quite tra-
ditional in this sense. ContextJS is single-threaded, since
it extends JavaScript, a single-threaded language; while
EventCJ adopts the standard Java share-and-lock concur-
rency model. By leveraging the integration of COP with the
Actor Model, CONTEXTERLANG directly addresses the is-
sue of context propagation in concurrent systems, it allows
asynchronous context provisioning directly in the language,
without pointcut-like expressions, and solves in a natural
way the problem of context confinement adopting actors as
context boundaries.
ContextErlang. CONTEXTERLANG mainly differs from other
COP languages in the way it supports the activation of
context-specific functionalities. To address the issue of
asynchronous context provisioning, variations are activated
through messages. This approach nicely reflect the design
intention and avoids the cluttering of control inversion. To
cope with the complexity of a concurrent application orga-
nized in several behavioral units, in CONTEXTERLANG, varia-
tions are activated on per-agent basis, and each agent can be
controlled individually. This also eliminates the risk of un-
intended adaptation propagation. After activation, variations
are implicitly associated with the agent. They are managed
transparently and do not need dedicated local variables or
other boilerplate code.

To make the benefits of such design more concrete, here-
after we illustrate how ContextChat is designed in CONTEXT-
ERLANG. Always-alive components are context-aware user

agents exchanging Erlang messages. Border components are
standard Erlang agents, since no special adaptation is re-
quired. The offline, online, backup and tracing variations
implement the dynamically activatable features for the user

agents. Other agents can directly control the adaptation state
of a user agent. For example when a client Ci closes the
connection, the border agent sends a context-related mes-
sage to the associated agent Ui, which has the effect of

−module(cache).
−behavior(gen server).

...

start() −>
gen server:start link({local, ?MODULE},

?MODULE, [], []).

get(Name) −>
gen server:call(?MODULE, {get, Name}).

add(Name, Item) −>
gen server:cast(?MODULE, {add, Name, Item}).

init([]) −>
% ... initialization here

{ok, State}.
handle call({get, Name}, From, State) −>

% ... retrieve Item from the state

Reply = Item, {reply, Reply, State}.
handle cast({add, Name, Item}, State) −>

% ... add Item to the state

{noreply, State}.
terminate(Reason, State) −>

% ... manage shutdown here

ok.

Figure 4. A callback module of an OTP gen server.

activating the offline variation. In a similar way Bi acti-
vates the backup of the conversations and the autonomic en-
gine activates the tracing variation. Active variations can
be dynamically combined to allow coexisting multiple adap-
tations. For example, the backup variation proceeds to ei-
ther the online or the offline variation to send a chat to a
backup server and then either forward or store it locally.

In order to present a peculiar feature of CONTEXTERLANG,
i.e. variation transmission, we augment the ContextChat ap-
plication with an additional functionality. A client can apply
a customizable filter to its outgoing messages such as capi-
talizing all the first letters of sentences or adding emoticons
to each message. Despite its triviality, this feature is interest-
ing because the type of filter cannot be forecast in advance.
In CONTEXTERLANG this kind of situation is specifically ad-
dressed by variation transmission, which allows one to send
a variation to a remote agent and dynamically load it. In this
way the agent can react to unforeseen situations.

Further insights into the details of the ContextChat imple-
mentation in CONTEXTERLANG are provided in the following
sections.

3. Design of ContextErlang
In this section, we describe and motivate the basic con-
cepts and the language constructs introduced by CONTEXT-
ERLANG. To achieve the high quality standards of Erlang ap-
plications, CONTEXTERLANG is built on the OTP platform – a
library and a set of procedures for structuring fault-tolerant,
large-scale, distributed applications. We provide a minimal
description of the Erlang syntax and a short introduction to
the OTP.

3.1 OTP in a Nutshell
While the language provides the basic functionalities for
software development, practically any real-world Erlang ap-
plication is based on the OTP platform. The concept of be-
havior is central in OTP and is based on the idea that, in an
application, many processes enact similar patterns, such as
serving requests, handling events, or monitoring other pro-
cesses. OTP generalizes these common patterns, and gives
a ready implementation of the generic structure (called the
behavior), which provides features such as message pass-
ing, error handling and fault-tolerance. The user only needs
to implement the specific part in a callback module, which
exposes a predefined interface. This kind of code structuring
makes programs easier to understand, and prescribes a gen-
eral architecture that should be common to all OTP applica-
tions. In the paper we use the term behavior also to indicate
the way an agent behaves with respect to the software sys-
tem. To avoid confusion, we will use the term OTP behavior
to disambiguate.

In Figure 4 we present a callback module for the most
common OTP behavior, the gen server, a process which
stands waiting for requests from other processes. An Er-
lang module starts with attributes introduced by “-”. They
state the module name, the exported functions and other
declarations. Functions implementation follows. A func-
tion body is started by “->”. Curly braces indicate tuples
of fixed length, square braces indicate lists. Variables start
with an uppercase letter, other literals are atoms, i.e. literal
constants. The ?MODULE literal macroexpands to the mod-
ule name. In the example, the process implements a cache
that allows for adding and retrieving items. The gen server

process is spawned with the start function. It is common
practice in OTP that the callback hides the interaction with
the behavior, providing an API to the user. In this case,
the callback exposes the get and the add functions that in
turn interact with the spawned process. A call to the get

function invokes call on the gen server module, which
causes a message to be sent to the created process. When the
message is received, the corresponding callback function
handle call({get, Name}, From, State) is invoked (no-
tice that this function is executed in a different process with
respect to call). The returned result is sent back through
a message and the gen server:call function ends. All the
machinery associated with message passing, possible mes-
sage loss, timeout, and dispatching over callback functions,
is hidden from the programmer. call functions are used for
synchronous messages expecting a return value, cast func-
tions are asynchronous and do not return a value to the caller.

3.2 CONTEXTERLANG Basics
To support fast development of self-adaptive applications,
CONTEXTERLANG provides context-aware agents through the
OTP context agent behavior. According to the OTP con-
ventions, the programmer only needs to define the callback

−module(user).
−behavior(context agent).

−include("context agent api.hrl"). % contextual API

% API

receive(AgentId, Source, Msg) −>
context agent:cast(AgentId, {receive msg, Source, Msg}).
add(AgentId, Dest, Msg) −>
context agent:cast(AgentId, {send msg, Dest, Msg}).

handle cast({receive msg, Source, Msg}, State) −>
% ... forward to my client

{noreply, State}.
handle cast({send msg, Dest, Msg}, State) −>

% ... forward to dest client

{noreply, State}.
% startup, shutdown and other auxiliary functions

Figure 5. The callback for the user agents in ContextChat.

−module(offline).
−context cast([receive msg/2]). % Contextual dispatch

...

handle cast({receive msg, Source, Msg}, State) −>
store chats:store message(Source, Msg),

{noreply, State}.

Figure 6. The offline variation in ContextChat.

module containing the functions for the core functionalities.
We refer to these functions as handle functions 2.

Behavioral adaptation of context-aware agents is per-
formed in CONTEXTERLANG through variations. A varia-
tion encapsulates a set of changes that modify the way an
agent reacts to messages. Variations are combined in a stack
fashion through proceed. When the agent receives a request
message, the function to execute is searched along the stack
of active variations up to the callback. This design is sub-
stantially similar to the layer combination in other COP lan-
guages. It clearly separates the basic behavior of an agent
from the variations, making the application easier to under-
stand and maintain, and supports reuse through combination
of variations.

Figure 5 shows the callback of the context-aware agents
that implement user agents inside the ContextChat server.
The callback declares a function for receiving messages and
a function for sending them to a different agent. Based on
this example, hereafter, we analyze how the programmer
can interact with variations in CONTEXTERLANG. Then we
discuss how variations are declared and activated and how
they can be sent to another node, changing the behavior of
remote agents.
Variation creation. A variation is an Erlang module defin-
ing a set of handle functions exposed to the contextual dis-
patching. Implementing variations as Erlang modules has

2 In the OTP terminology, functions inside callback modules are commonly
referred to as callback functions. Since in CONTEXTERLANG functions
like handle call and handle cast appear both in callback and in
variation modules, we indicate them uniformly with the term handle func-
tions to avoid confusion.

−module(backup).
−context cast([receive msg/2]).

...

handle cast({receive msg, Source, Msg}, State) −>
% send Msg to the remote server

...

?proceed cast({receive msg, Source, Msg}, State),

{noreply, State}.

Figure 7. The backup variation in ContextChat.

several advantages. It makes their development invaluably
simple. It does not require syntax extensions, increasing the
chances of acceptance by the programmers and avoiding the
risk of breaking tool compatibility. Finally improves exten-
sibility, since new variations can be added by implementing
new modules without modifying the existing code.

The offline variation (Figure 6) defines an asynchronous
receive msg function, which at the moment of the activa-
tion, overrides the corresponding function in the callback
module. In Figure 7, the backup variation redefines the
receive msg function in order to forward the message to
a remote server in charge of the backup. If the backup varia-
tion is activated on top of the user callback, a call to receive

causes the implementation inside backup to be called. The
proceed call resolves to the implementation of receive msg

inside the callback module.
Variations can require an initialization or a shutdown

phase to work properly. For example, if the offline vari-
ation in ContextChat saves the conversations on disk, a file
must be created and opened. CONTEXTERLANG allows a vari-
ation to declare the on activation and the on deactivation

functions, which are guaranteed to be called when the varia-
tion is respectively made active or deactivated. Initialization
and cleanup code is placed inside these functions.
Variation activation. To allow asynchronous contextual
adaptation, variation activation is performed in an imper-
ative way by a different agent (an exception is discussed in
Section 3.4). A common pattern is that a single agent enacts
the role of context manager, and activates variations on the
other agents depending on the context conditions. We expect
that with the development of agent-based context-aware ap-
plications, new patterns arise. For example, agents could be
organized in communities sharing a local context manager,
while global context managers supervise other managers, in
a hierarchical fashion.

The modification of the behavior of context-aware agents
is exposed by the API of the context agent module. The
activate variations function activates a list of variations
on a given agent. In this example, the offline variation is
activated on the agent AgentId. Then the backup variation is
activated on top of the offline variation:

context agent:call(

{activate variations, AgentId, [offline]}),
...

context agent:call(

{activate variations, AgentId, [backup, offline]}),

CONTEXT SPEC ::= [SLOT SPEC*]

SLOT SPEC ::= { Slotname, SLOT }
SLOT ::= SWITCH SLOT

| ACTIVATABLE SLOT
| FREE SLOT

SWITCH SLOT ::=
[(Varname1,)* { Varname2, active } (,Varname3)*]

ACTIVATABLE SLOT ::=
{ Varname, active } | { Varname }

FREE SLOT ::= free slot

Figure 8. The syntax specification of a context ADT.

The same updating mechanism can then be used for vari-
ations deactivation. We require the atoms in the list to be
valid names of modules available to the Erlang virtual ma-
chine. Beside direct interaction with the context agent, we
adhere to the OTP convention of hiding the interaction with
OTP behaviors inside the callback and referencing the agent
with the callback name (Section 3.1). The following code
equivalent to the first call in the previous example:

user:activate variations(AgentId, [offline]),

This is achieved thanks to a context agent api.hrl module
which makes the API is available when imported by the
callback.
Variation transmission. Variation transmission is a power-
ful mechanism to implement software which reacts to un-
foreseen conditions. For example, our previous work [11]
shows how this feature can be used to adapt PDA devices to
support rescue operations in an emergency scenario.

To design variation transmission and variation dynamic
loading we leveraged advanced Erlang VM features, such
as run time code manipulation, dynamic module loading
and remote procedure call. The variation code module pro-
vides the API for the functionalities concerning variation
transmission. The following call sends a variation var to a
remote node node2, and loads var in the virtual machine of
node2:

% on node1@machine1

variation code:send var(node2@machine2, var)

The send var call requires the var module to be available
to the node1 virtual machine. In the case of the ContextChat
server, variation transmission can be used to allow clients
to create a filter variation that manipulates the characters
of their messages. The variation is then dynamically loaded
and activated on the user agent. To include the filter in a
variation, on the fly compilation is obtained using the Erlang
compiler API. After this process completes, the variation can
be activated on an agent as usual:

user:activate variations(AgentId, [text effect])

Of course, loading a module created from a user-defined
filter is potentially dangerous and proper input validation is
required to avoid security flaws.

3.3 Coherence among variations: context ADT
COP behavioral variations are activated and combined while
the application is running. As a result, the issue of the consis-
tency among variations arises. For example, the offline and
the online variations in the ContextChat example should not
be active at the same time. COP researchers have already
investigated this problem. For example, reflection [10] has
been leveraged to dynamically check the constraints. Other
solutions use domain specific languages (DSL) to express
declarative constraints on layers [8], in a way similar to fea-
ture diagrams in software product lines. The violation of a
constraint raises an error which must be interactively man-
aged by the programmer, so the need for human intervention
limits the applicability of this approach. Subjective-C [13]
also introduces a DSL to express context dependencies. The
system inspects all the user-defined relations, possibly trig-
gering an activation if needed. Another approach is to em-
ploy formal verification to statically guarantee layer con-
straints [29].

Our solution starts from the observation that organiz-
ing adaptability concerns in an application, and mapping
them to variations and meaningful variation combinations,
always requires careful design. For this reason, in practice,
the programmer defines in advance which variation com-
binations are required. To explicitly capture these design
choices, CONTEXTERLANG introduces a context abstract data
type (ADT). The context ADT encapsulates the variations
that can be activated on an agent, organizing the possible
variation combinations and enforcing constraints on their ac-
tivation. In this way the user of the context ADT instance is
forced by the interface to activate only valid combinations
(i.e. those designed in advance by the ADT programmer).
The creation of an unforeseen combination, required by re-
mote variation transmission, is made explicit. Note that the
context ADT solution is not specific to ContextErlang and in
principle could be ported to layer-based COP languages.

The context ADT module creates a context data type in-
stance from a given specification. The context ADT is orga-
nized as a fixed-size stack. Each level of the stack, referred as
a slot, has a name for direct access. Three types of slots are
defined. Activatable slots contain a single variation which
can be active or not. Switch slots contain one or more vari-
ations, only one of which can be active at a certain instant
of time. Free slots contain a single variation which is left
undefined and can be assigned later. Free slots are the way
variations transmitted by remote nodes can be used. In the
following example a context ADT is created for the varia-
tions of a user agent.

Spec = [{persistency, {backup, active}},
{tracing, {trace, active}},
{status, [{offline, active}, online]},
{text effect, free slot},
{base behavior, {user, active}}],

Context = context ADT:create(Spec),

user:start link(AgentId, Context)

The specification required to create a context ADT must
obey the rules in Figure 8.

To start an agent with a given context ADT, the ADT
is passed to the start link function which spawns a new
agent. The management of the variations in the context ADT
is performed through the API we provide. The following call
performs a switch on the status slot, activating the online

variation.

user:in cur context switch(AgentId, online, status)

Similar functions are provided for activating and deactivat-
ing the variation in an activatable slot, and for filling a free
slot with a variation sent from a remote agent. After filling,
the variation in the free slot can be activated normally.

The introduction of a context ADT has some drawbacks.
Most noticeably, ADT specifications require an extra effort
to be designed. However, the impact on complexity is kept
minimum by using a DSL. In addition to that, introducing
a variation into an existing context ADT instance requires
to change the specification, forcing the programmer to think
how to combine variations in a coherent way. In any case,
the effort required is similar to write a new set of layer tran-
sitions in EventCJ when a new layer is added. Another obser-
vation should be made about the choice of limiting the stack
size and forcing variations to obey certain constrains, which
possibly limits variation capabilities. This design choice ad-
vantages safety against flexibility. However, in our experi-
ence, more flexibility is not really required. For example,
changing active variations by specifying the list of all the
active ones (like we showed in the previous sections) is a
highly dynamic and flexible mechanism, which gives the
programmer more freedom than it is really needed in most
scenarios. Even in the examples provided in COP literature,
most activation schemas are quite simple and encompass
only few variations often in mutual exclusion [5, 6, 17, 29].
Nonetheless, in the spirit of leaving open the exploration of
more dynamic solutions, we decided to maintain both acti-
vation mechanisms.

The context ADT solution is different from other COP
proposals essentially in that it limits the ADT user to cor-
rect configurations instead of allowing free interaction and
ex-post constraints check. However, analogies in the kind of
constraints the context ADT allows to express can be en-
visaged. The context ADT in CONTEXTERLANG resembles
approaches based on feature diagrams to express constraints
among layers such as the one-of or the all-of relations. E.g.,
the switch slot clearly allows to express a one-of constraint.
Finally, note that none of the approaches proposed so far,
including the context ADT, relies on some automatically in-
ferred semantics to check variations configurations. Instead,
they only ensure constraints determined by the programmer.
Investigation in this direction is an open research problem.

3.4 Concurrency: consistency with context change
The combination of COP with concurrency is not easy.
While Erlang offers invaluable support for concurrency, in-
tegrating actors with run time behavioral change requires
careful comprehension of how these aspects interact. In this
section we clarify some fundamental points.

A crucial requirement is that behavioral change is safe,
i.e. a change of the active variations does not corrupt the
task in execution. As we will explain shortly, this cannot be
achieved by simply forbidding a context change in the mid-
dle of message-triggered computations. In fact, this func-
tionality is sometimes required. Our solution is based on
shaping CONTEXTERLANG around the following principles:

• Non interference. The context of a running computation
cannot be altered by a contextual message.
• Agent authority. An agent retains ultimate authority on

its current context.

The first rule states that if an agent A sends a message to
an agent B, triggering a computation cmp on B, no agent
(not even A) can change the context of B in the middle of
cmp by sending a contextual message to B. This is achieved
by processing context-related and other messages one at a
time, picking them up from the agent mailbox. Therefore, it
is not possible that context-related messages interfere with
the execution activated by a standard message.

The second rule states that an agent can change its con-
text arbitrarily during a computation. This principle reminds
OO programming, where an object is ultimately responsi-
ble for how it responds to messages. The second rule is re-
quired in some practical scenarios with non-trivial concur-
rency patterns. For example, when a client connects to the
ContextChat server, some data structures in the user agent
can be required to be initialized. Examples are the source
IP, the client version, or a status variable that must be set
to online. In addition to these operations, since the client is
now connected, the online variation must be activated and
the offline one deactivated. Now consider the case in which
these actions (state changes and variation activation) are per-
formed by two subsequent calls from another agent. With an
unlucky interleaving, a call coming form a third agent can
fall between these two, and find the agent with the status set
to online but still with the offline variation active.

In general, it is not possible, with the functions for varia-
tion management seen so far, to execute a variation manipu-
lation atomically with a set of operations. Of course, agents
can coordinate to enforce this constraint at higher level, im-
plementing some synchronization mechanism. However this
solution requires a lot of error-prone code even for trivial
tasks. For this reason in CONTEXTERLANG all the functions
like in cur context switch have an immediate counterpart
which has effect on the context-aware agent that calls them.
For example when the user agent receives the init mes-

sage, it atomically initializes its internal data structures and
activates the online variation atomically.

−module(user).
...

handle cast({init, Data}, State) −>
% ... initialize the data structure

user:in my cur context switch(online, status),

{noreply, State}.

While a message is served, other messages are queued and
cannot interrupt it. So atomicity is guaranteed. Interestingly,
immediate activation is more general than message-based
activation, since context-related messages could be imple-
mented as standard messages which triggers the execution of
an immediate activation. To alleviate the programmer from
this annoying task we maintain both versions.

4. Validation
In this section, we discuss how we validated CONTEXTER-
LANG. To demonstrate that CONTEXTERLANG is effective
in the development of real-world applications we imple-
mented two prototypes: one is the ContextChat extensively
presented in the previous sections, and the other is an au-
tonomic storage server which will be analyzed in the rest.
To prove that a language is usable, we studied the critical
performance aspects of CONTEXTERLANG through a micro-
benchmark and we compared its performance with other
COP languages. Then we reimplemented the autonomic
storage server in plain Erlang and we compared its perfor-
mances with the CONTEXTERLANG version.

4.1 Case Study
The design of CONTEXTERLANG was done in conjunction
with the development of the ContextChat prototype which
has been an immediate testbed for our choices. This ap-
proach helped us to design CONTEXTERLANG with the con-
crete problems or run time adaptation in mind, however, fur-
ther validation is required to avoid overfitting. Indeed, the
instant messaging domain somehow puts a message-based
approach in a position of possibly unfair advantage.

The development of the storage server allowed to gain
better confidence that CONTEXTERLANG is effective in gen-
eral. The storage server is an autonomic application which
provides a space for generic resources such as web pages
or serialized data structures. The application behaves like a
key-value map: keys allow to retrieve resources or modify
their value. Resources can be stored in memory or on disk.
Autonomicity provides that the most requested entities are
moved into memory to reduce service time. The disk is used
for other resources to avoid excessive memory consumption.

Each resource is implemented as a context-aware agent
which reacts to messages like set value and get value.
These details are hidden from the user which interacts only
with an API module. The implementation of each resource
with an agent is normal in Erlang OTP due to the extremely

lightweight Erlang processes [21]. This makes the appli-
cation scalable by simply spawning agents on several ma-
chines, because Erlang manages remote messaging in a
transparent way. The on disk and the in memory variations
can be dynamically activated on each agent. An optional
logging variation provides a trace of the system execution.
Autonomic behavior is implemented in a decentralized fash-
ion: each agent migrates the resource to memory depending
on the frequency of the requests it receives.

The development of the application confirmed the de-
sign choices of CONTEXTERLANG. Since the on disk and the
in memory variations are in mutual exclusion they were man-
aged through a switch slot of the context ADT. The logging

variation occupies an activatable slot. The support for ini-
tialization and shutting down of variations (Section 3.3) is
required to automatically initialize the needed files when the
on disk variation is activated and to move the resource in
memory when it is deactivated. Since each agent adapts au-
tonomously, the in memory variation activation is performed
by the agent itself through the immediate API (see Sec-
tion 3.3). Note that moving the autonomic capabilities to a
centralized engine would require that the adaptation is driven
by context-related messages.

As a final remark we observe that all the considerations
that motivated our work (see Section 2) could be repeated
almost unchanged for the storage server example.

4.2 Performance
Our implementation introduces a performance overhead, be-
cause a function call requires to be dispatched over possi-
bly several active variations. CONTEXTERLANG is a prototype
and a wide space for optimization is available, e.g. hashing
the function lookup. However our evaluation shows that the
approach is feasible and already usable. All tests were per-
formed on a laptop equipped with an Intel Core 2 Duo T9500
2.60GHz, 4GB RAM, and GNU/Linux OS. Concerning the
languages, the version numbers are: Erlang R13 hipe, Ruby
1.8.7, ContextR 1.0.2, JavaScript Chrome 16.0.912.63, Con-
textJS Lively Kernel 2, Python 2.7, ContextPy 1.1, PyCon-
text 1.0, SBCL 1.0.45.0, ContextL 0.61.
Microbenchmark. We compare the overhead introduced by
CONTEXTERLANG with respect to other COP implementa-
tions [4]. The purpose is to compare the message dispatching
slowdown introduced by each COP extension. We decided to
keep our methodology as simple as possible, following the
approach elaborated in [15] for AOP micro-benchmarking:
compare methods performance without aspects (i.e. a non-
advised method) and with aspects deployed. To remove a
source of variability, the comparison is limited to dynami-
cally typed languages.

We assume a message delivery in a non-layered method,
as a reference (Table 1, second column). Then we evaluate
the time required to dispatch a layered method with 0 to 5
active proceeding layers/variations (columns from 3 to 8).
Each method and each partial method increments a global

Language Basic Call 0 1 2 3 4 5
ContextErlang 540.65 (OTP) / 90.58 (PA) / 9.38 (FC) 815.33 1071.14 1311.59 1531.77 1819.07 2074.73
ContextR 43.52 (Ruby) 768.58 1768.58 2768.58 3768.58 4768.58 5768.58
ContextJS 0.40 (JavaScript) 85.90 158.60 211.00 256.80 299.20 338.30
ContextPy 24.22 (Python) 406.85 661.01 873.50 1163.31 1397.62 1623.49
PyContext 24.48 (Python) 410.66 854.66 1265.21 1668.65 2073.56 2472.16
ContextL 2.2 (Common Lisp) 2.50 3.50 4.30 5.30 6.40 7.40

Table 1. Performance of COP languages in the microbenchmark. All values are in milliseconds.

 1

 10

 100

ContextErlang
 Vs OTP

ContextErlang
 Vs Erl. Agent

ContextErlang
 Vs Erl. Function

ContextR
 Vs Ruby

ContextJS
 Vs JavaScript

ContextPy
 Vs Python

PyContext
 Vs Python

ContextL
 Vs Common Lisp

Pe
rf

or
m

an
ce

 s
lo

w
do

w
n 0

1
2
3
4
5

Figure 9. Performance of layered methods compared to the basic methods in various COP languages.

variable (in the CONTEXTERLANG benchmark we used an
agent-local variable, since Erlang has no shared state by
design). All benchmarks are executed 105 times taking the
mean over 10 executions, with a complete dry run (therefore
106 executions) to achieve steady state of the runtime. Infor-
mation about warm-up times for each implementation is not
easy to find. However benchmarks are running for minutes,
and we observed a x10 time factor from 105 to 106 execu-
tions, increasing our confidence on the steady state of the
runtimes. In the case of CONTEXTERLANG, COP functional-
ities are implemented in the OTP library which adds many
time-consuming operations due to the built-in fault-tolerance
support. Therefore, it has scarce significance to compare
message sending to a CONTEXTERLANG context-aware agent
with a basic function call. For this reason, we compare it (Ta-
ble 1, line 2, column 2) not only with a pure Erlang function
call (FC), but also with a message to a pure Erlang agent
(PA), and with a message to a standard gen server OTP
agent. Figure 9 shows the ratio between the time required
to call a layered method and a basic method for various lan-
guages (note the logarithmic scale). For CONTEXTERLANG

we report the comparison with all the three cases.
Previous work [4] highlighted a huge performance im-

pact of COP and motivated research on possible optimiza-
tions [3]. Our evaluation confirms this result. Our results
also show that CONTEXTERLANG introduces a non-negligible
overhead, which, however, is not dissimilar from other COP
languages. For example, a CONTEXTERLANG message to a
context-aware agent is approximately 87 times slower than a
function call in Erlang and 1.5 times slower than a message
sent to a gen server standard OTP agent. Note that Figure 9
should be read carefully. For example, results of ContextJS
are due to the aggressive optimization of JavaScript com-
piler and VM which makes basic methods extremely effi-

cient [20]. This leads to the apparently poor performance of
the ContextJS COP implementation compared to the basic
language in Figure 9. Nevertheless, ContextJS is among the
fastest COP extension in our test (Table 1).
Performance on the case study. To overcome the obvious
limitations of micro-benchmarking, we estimated the over-
head of CONTEXTERLANG in a complete application. We
implemented the autonomic storage server in plain Erlang.
Variations are simulated by if chains switching between
different behaviors. Active behavioral variations are stored
in each agent’s state. Since the logging functionality intro-
duces a uniform overhead, we left it off. The Erlang version
resulted in 390 non-comment LOC instead of the 380 non-
comment LOC of the CONTEXTERLANG version. While this
value is not impressive, it is likely to significantly increase
with the number of variations and variations combinations.

In the experiment, each resource is initially created, it
is requested 10 times, and then deleted. This is equivalent
to starting an agent, delivering 10 messages, and shutting
down the agent. We tuned the autonomic behavior so that
the resource is initially stored on disk and after the first
2 requests is moved to memory. The measures were taken
by repeating this process on all the resources for a variable
number of resources, from 1 up to 1000. For each run we
took the mean among 10 executions. Figure 10 shows the
results. To make the graph more readable we plot the trend of
the two executions as the mean over 100 values. The analysis
shows that the significant overhead detected by the micro-
benchmark becomes almost negligible in a real application.

5. Related work
The problem of dynamic software adaptation to respond to
context changes has been extensively tackled from a soft-
ware architecture standpoint [23]. Over the years, however,

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Number of resources

ContextErlang
Erlang OTP

Figure 10. Performance comparison for the autonomic stor-
age server.

language-centered techniques have been progressively in-
vestigated leading to the development of ad-hoc program-
ming paradigms for context adaptation.
Context oriented programming. COP has been recently
explored, starting from the pioneering work on ContextL
[9, 10] based on the CLOS metaobject protocol. Over the
time, many COP extensions have been developed for differ-
ent languages such as Python, Smalltalk, Ruby, JavaScript
and Groovy. This effort has been extended to less dynamic
languages, in which COP extensions are more difficult to
implement due to the limited reflective capabilities, such as
Java [5, 6, 17, 27, 29]. A comparison of the existing COP
languages with a performance evaluation of the available so-
lutions can be found in [4].

CONTEXTERLANG is in the COP tradition since it sup-
ports modularization, dynamic activation, and combination
of behavioral variations. It differentiates from most COP ap-
proaches, since behavioral variations are activated on per-
agent bases through context-related messages rather than in
a dynamic scope. CONTEXTERLANG variations are similar
to COP layers. The difference is that layers usually contain
partial definitions associated with different classes. While
nothing prevents a CONTEXTERLANG variation from contain-
ing partial definitions referring to different agents, this is
scarcely used in applications, since the variation must be
activated singularly on each agent. Therefore a CONTEXT-
ERLANG variation is usually associated with a specific agent
and contains the partial definition for that agent.

Ambience is a COP language based on AmOS, an ob-
ject system built on top of Common Lisp [14]. Ambience
– designed simultaneously with ContextL – is alternative
approach to layer-based COP languages, leveraging multi-
methods dispatching and context objects. In [14] the authors
recognize the need for variations activation by an external
monitoring thread. In Ambience the context – and therefore
the active variations – is global and shared among all the
threads. A monitoring thread can asynchronously change the
context of the whole application. In CONTEXTERLANG each
agent can adapt individually, as we believe that in certain
scenarios this feature is required. For example, in the Con-

textChat server, per-agent adaptation is crucial to adapt to
each single client. As stated by the authors of Ambience,
asynchronous activation exposes the system to the risk of
behavioral inconsistency. CONTEXTERLANG enforces consis-
tency by design, avoiding that variation activations conflict
with other computations (Section 3.3).
Event-based COP. The need for event-based composition
and activation has been recognized as an emerging need for
COP in our previous work [12], in which we presented the
initial implementation of CONTEXTERLANG as a promising
solution. As already discussed (Section 2) Kamina et al. [29]
also tackled this issue in the EventCJ Java COP extensions.

Jcop [6] is a Java COP extension which introduces two
constructs. Declarative layer composition allows to express
variation activation declaratively through joinpoint quantifi-
cation. Conditional composition activates variations depend-
ing on a run time condition. So the developer is relieved from
specifying variation activation programmatically in the code.
Jcop allows the compact representation of otherwise scat-
tered with activation statements, a problem that emerged in
the development of ContextChat (Section 2). However, acti-
vation in Jcop is always dynamically scoped and can lead to
the problem of excessive adaptation propagation.
Aspect oriented programming. COP has a certain de-
gree of similarity with Aspect-Oriented Programming [19],
which may be viewed as a general term indicating a family of
approaches that support modularization of crosscutting con-
cerns. The main contribution of COP with respect to AOP is
to provide specific abstractions for context adaptation. AOP
can be indirectly applied for the same purposes and some
COP language implementations rely on AOP [6, 27, 29].
However, although AOP frameworks exist which support
dynamic aspect activation, such as Prose [24], AOP focuses
on compile time feature selection and combination, while
the COP core concept is run time activation and combina-
tion of behavioral variations. A detailed comparison of the
two approaches can be found in [6, 9, 17].
Event-based programming. Event-driven or event-based
programming is a programming paradigm in which the flow
of control is determined by events that can be triggered and
listened according to the Observer pattern. This approach
is a contribution to address the problem of concerns not
amenable to modularization along the main dimension of
decomposition. Implicit invocation (II) languages [22] offer
a linguistic support for this mechanism, obtaining better
encapsulation of crosscutting concerns and decoupling from
other code. The Ptolemy language [25] combines ideas from
AOP and II languages. In Ptolemy code blocks are bound
to events as closures which can be executed inside the event
handler. Since basic behavior can be written in the closure
and observers can execute code around the execution of
the closure, Ptolemy seems to be the II language that most
resembles COP techniques.

Other language-level techniques. Subjective dispatch [28]
adds a dimension to the receiver-based method dispatch of
OO languages, considering also the sender in the dispatch
mechanism. COP conceptually operates in a similar way,
taking into account the context as a dispatching dimension.
Feature oriented programming (FOP) targets crosscutting
concerns with the goal of synthesizing programs in software
product lines [7] from single units of functionality conven-
tionally called features. Features are selected and combined
at compile time while COP variations, due to the volatile na-
ture of the context, are activated and combined dynamically.

6. Conclusions and Future Work
Model through the development of CONTEXTERLANG, a COP
extension of the Erlang language based on the OTP platform.
We discussed the mechanisms through which CONTEXTER-
LANG supports dynamic software adaptation. We argue that
due to the asynchronous nature of context provisioning, con-
text adaptation should be designed taking into account the
concurrency model of the language. CONTEXTERLANG con-
stitutes a first contribution in this direction.

Our purposes for the future are twofold. On the one hand
we plan to further improve the CONTEXTERLANG implemen-
tation, for example by optimizing the code in order to min-
imize the overhead introduced by the context management.
On the other hand we are considering the option of exploit-
ing the coupling between event-based context adaptability
and concurrency model investigated in this paper in other
agent-based languages, such as Scala.

References
[1] http://erlang.org. Reference website for Erlang.

[2] http://www.scala-lang.org/. Reference website for Scala.

[3] M. Appeltauer, M. Haupt, and R. Hirschfeld. Layered method dispatch
with INVOKEDYNAMIC: an implementation study. COP ’10, pages
4:1–4:6, 2010.

[4] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid.
A comparison of context-oriented programming languages. In COP
’09, pages 1–6, 2009.

[5] M. Appeltauer, R. Hirschfeld, M. Haupt, and H. Masuhara. ContextJ:
Context-oriented Programming with Java. Information and Media
Technologies, 6(2):399–419, 2011.

[6] M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and
K. Kawauchi. Event-specific software composition in context-oriented
programming. In B. Baudry and E. Wohlstadter, editors, Software
Composition, volume 6144 of LNCS. 2010.

[7] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise
refinement. In Proceedings of the 25th International Conference on
Software Engineering, ICSE ’03, Washington, DC, USA, 2003.

[8] P. Costanza and T. D’Hondt. Feature descriptions for context-oriented
programming. In Software Product Lines, 12th International Confer-
ence (SPLC), pages 9–14, September 2008.

[9] P. Costanza and R. Hirschfeld. Language constructs for context-
oriented programming: an overview of ContextL. In Proceedings of
the 2005 symposium on Dynamic languages, DLS ’05, 2005.

[10] P. Costanza and R. Hirschfeld. Reflective layer activation in contextL.
In SAC ’07: Proceedings of the 2007 ACM symposium on Applied
computing, 2007.

[11] C. Ghezzi, M. Pradella, and G. Salvaneschi. Programming lan-
guage support to context-aware adaptation - a case-study with Erlang.
SEAMS: Software Engineering for Adaptive and Self-Managing Sys-
tems,International Workshop, ICSE 2010.

[12] C. Ghezzi, M. Pradella, and G. Salvaneschi. Context-oriented pro-
gramming in highly concurrent systems. In Proceedings of the 2nd
International Workshop on Context-Oriented Programming, COP ’10,
New York, NY, USA, 2010. ACM.

[13] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C. Libbrecht, and
J. Goffaux. Subjective-C: Bringing context to mobile platform pro-
gramming. In Proceedings of the International Conference on Soft-
ware Language Engineering, Eindhoven, The Netherlands, 2010.

[14] S. González, K. Mens, and P. Heymans. Highly dynamic behaviour
adaptability through prototypes with subjective multimethods. In
Proceedings of the 2007 symposium on Dynamic languages, DLS ’07,
pages 77–88, 2007.

[15] M. Haupt and M. Mezini. Micro-measurements for dynamic aspect-
oriented systems. In M. Weske and P. Liggesmeyer, editors, Object-
Oriented and Internet-Based Technologies, volume 3263 of LNCS.
Springer Berlin / Heidelberg, 2004.

[16] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR
formalism for artificial intelligence. In IJCAI’73: Proceedings of
the 3rd international joint conference on Artificial intelligence, pages
235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann.

[17] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3), Mar. 2008.

[18] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36:41–50, 2003.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An overview of AspectJ. In J. Knudsen, editor, ECOOP 2001
– Object-Oriented Programming, volume 2072 of LNCS, pages 327–
354. Springer Berlin / Heidelberg, 2001.

[20] J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld. An open
implementation for context-oriented layer composition in ContextJS.
Sci. Comput. Program., 76:1194–1209, 2011.

[21] M. Logan, E. Merritt, and R. Carlsson. Erlang and OTP in Action.
Manning Publications, 2010.

[22] D. Notkin, D. Garlan, W. G. Griswold, and K. Sullivan. Adding im-
plicit invocation to languages: Three approaches. In Object Technolo-
gies for Advanced Software, First JSSST International Symposium,
volume 742 of LNCS, 1993.

[23] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based
runtime software evolution. In ICSE ’98: Proceedings of the 20th
international conference on Software engineering, pages 177–186.
IEEE Computer Society, 1998.

[24] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-
oriented programming. In Proceedings of the 1st international confer-
ence on Aspect-oriented software development, AOSD ’02, 2002.

[25] H. Rajan and G. T. Leavens. Ptolemy: A language with quantified,
typed events. In J. Vitek, editor, ECOOP 2008, Cyprus, volume 5142
of LNCS, pages 155–179, Berlin, July 2008.

[26] G. Salvaneschi, C. Ghezzi, and M. Pradella. Context-Oriented Pro-
gramming: A Programming Paradigm for Autonomic Systems. Tech-
nical Report, arXiv:1105.0069, 2011.

[27] G. Salvaneschi, C. Ghezzi, and M. Pradella. JavaCtx: Seamless
Toolchain Integration for Context-Oriented Programming. COP ’11.
2011.

[28] R. B. Smith and D. Ungar. A simple and unifying approach to
subjective objects. TAPOS, 2(3):161–178, 1996.

[29] K. Tetsuo, A. Tomoyuki, and H. Masuhara. EventCJ: A context-
oriented programming language with declarative event-based context
transition. In Proceedings of the 10nd international conference on
Aspect-oriented software development, AOSD ’11, 2011.

