Context-oriented programming: a software engineering perspective

Guido Salvaneschi?, Carlo Ghezzi?®, Matteo Pradella?

¢ DEEPSE Group
DEI, Politecnico di Milano
Piazza L. Da Vinci, 32
20133 Milano, Italy
{salvaneschi, ghezzi, pradella} @elet.polimi.it

Abstract

The implementation of context-aware systems can be supported through the adoption of techniques at the architectural
level such as middlewares or component-oriented architectures. It can also be supported by suitable constructs at
the programming language level. Context-oriented programming (COP) is emerging as a novel paradigm for the
implementation of this kind of software, in particular in the field of mobile and ubiquitous computing. The COP
paradigm tackles the issue of developing context-aware systems at the language-level, introducing ad-hoc language
abstractions to manage adaptations modularization and their dynamic activation. In this paper we review the state of
the art in the field of COP in the perspective of the benefits that this technique can provide to software engineers in
the design and implementation of context-aware applications.

Keywords: Context-oriented programming, Context, Context-awareness

1. Introduction

Context-awareness is a primary issue in emerging fields such as ubiquitous and mobile computing. In the design of
context-aware systems some challenges must be addressed. First, adaptation to the current context is often an aspect
that crosscutts the application logic, so it is often orthogonal to the main modularization direction. It is therefore
difficult to organize the codebase in a way that does not compromise maintainability and separation of concerns.
Furthermore, dynamic adaptation to the context requires that an application modifies its behavior at runtime. While
this is not difficult to obtain in principle even with traditional techniques, organizing dynamic behavioral change in a
systematic and effective way requires careful engineering.

Over the years, several approaches have been proposed to support the design and development of context-aware
software, at different abstraction levels. These approaches mainly encompass software architectures, component-
based design, and middleware [1, 2, 3, 4, 5, 6]. Context-oriented programming (COP) [7] was recently proposed
as a complementary approach for supporting dynamic adaptation to context conditions. COP provides language-
level abstractions to modularize behavioral adaptation concerns and to dynamically activate them during the program
execution.

In this work we review the achievements of context-oriented programming and research advances in the perspec-
tive of the benefits they can bring to the software engineering community in general and specifically to the engineering
of context-aware systems community. While so far COP has been mainly studied from a programming language point
of view, we argue that it can empower software engineers committed to the design of context-aware systems with
a very powerful approach and tool. The COP paradigm provides an additional dimension to standard programming
techniques to dynamically switch among the behaviors associated with each context, such as bandwidth availability,
presence of WiFi or data connection, battery level, or current system workload. In addition, COP provides means to
dynamically combine different behaviors when all the associated contexts are active at the same time and properly
modularize the code for each behavior.

Our work tries to bridge the gap between the programming languages and the software engineering communities,
covering the fundamental aspects which can be of interest for a software architect such as the compilation process,
modularization, dynamic activation of adaptations, and consistency of behavioral variations.

Preprint submitted to Journal of Systems and Software March 8, 2012

class Storage{ Storage s = new Storage();

Cache cache = ... // No active layers
s.getItem(10);

// Other methods
// cachelayer active

layer logLayer{ with(cachelayer){
println("Logging"); s.getItem(10);
getItem(int key){ }
// Send info to the log manager...
return proceed(); // loglLayer and cachelLayer active
}} with(cachelayer,loglLayer){
s.getItem(10);
layer cachelayer { }

getItem(int key){
println("Cache Lookup")

result = cache.get(key); -- EXECUTION --
if (result == null){
result = proceed(key); > Cache Lookup
cache.put (key,result); > Disk Lookup
}
return result; > Disk Lookup
}}
> Logging
getItem(int key){ > Cache Lookup
println("Disk Lookup"); > Disk Lookup

Object item;
// Retrieve item from disk...
return item;

}}

Figure 1: An adaptable Storage Server implemented using COP.

Starting from the pioneering work of Costanza and Hirschfeld [8], COP evolved in a variety of solutions addressing
in different ways the problems of behavioral variations modularization and their dynamic activation. The proposed
languages share the concept of language-level runtime adaptation to context, but interpret the paradigm in different
ways. Therefore, at present COP is constituted by a family of languages specifically developed to support context
adaptation, with some widely adopted design solutions and many (sometimes radically) different variants.

In the exposition we adopted the following criteria. We set up our analysis centering it on layer-based [7] COP
languages, because they represent the majority of the existing approaches and the most influential efforts in the re-
search community. Single implementations which do not fall into this category and present ad-hoc solutions are also
introduced, if they present a feature that is particularly relevant to the discussion.

The paper is organized as follows: In Section 2 we introduce the fundamental concepts of COP. In Section 3 we
present the main COP flavors that have been implemented so far. In Section 4 we show an overview of COP existing
software and application areas. In Section 5 we analyze the related work and in Section 6 we discuss a roadmap for
future research. Section 7 draws the conclusions.

2. Fundamental concepts

In this section we present the foundations of the COP paradigm. We adopt a top-down approach, which starts
from the abstract notion of context and then focuses on behavioral variations that conceptually enable context-aware
adaptation.

The notion of context traditionally adopted in COP is open and pragmatic: any computationally accessible infor-
mation can be considered as context [7]. Such a definition can be surprisingly vague, but practice with context-aware
systems confirms its validity. First of all, the definition does not limit the context to the information reaching the
system from outside (i.e., the environment), but it also encompasses information originating inside the system bound-
aries, such as performance monitoring or intrusion detection. Moreover, such a general approach does not prescribe

2

any restriction to the level of abstraction through which the context is represented inside the system. In fact in a typ-
ical context-aware application context information is first obtained by sensors in the form of numerical observables.
For example, the bandwidth consumption on a network interface can be quantified as 100Mb/sec or the processor
is observed to be busy 95% of the time. Often these values are abstracted and combined to obtain some symbolic
observable. For example, the measured processor usage can be associated with the heavy load condition.

A point on which COP approaches differ is whether a unique global context exists or different parts of the system
can live in separate contexts. The Ambience programming language [9] adopts a model whereby the whole applica-
tion shares the same global context. This model reflects the intuitive idea that there is only one real-world context.
Conversely, most COP languages [10] do not enforce uniqueness of context and therefore different parts of the ap-
plication, for example different threads, can live in different contexts and therefore adapt their behavior differently.
While from a conceptual point of view a unique context leads to a more elegant and intuitive model, the possibility of
exploiting multiple contexts in the same application is more flexible in practice. For example it allows each thread of
a server-side software to independently adapt to the specific conditions of the client which is currently in charge of.

A key concept of COP is the behavioral variation [7], which is a unit of behavior that can be made effective
(partially) modifying the overall behavior of the application. A behavioral variation is enabled by means of a variation
activation. Runtime context adaptation is achieved in COP by dynamically (i.e. during the execution) activating
behavioral variations. When multiple variations are active at the same time, they dynamically combine to generate
the emerging application behavior. In COP the role of variations is twofold. On the one hand, they allow dynamic
activation of a behavioral change; on the other hand, they are the modularization unit of such behavioral fragment.

Over the years, this conceptual framework has been interpreted in different ways, originating a variety of different
solutions. However the model based on layers is by far the most widespread. For this reason, through the paper we
generally refer to this model, pinpointing the existence of alternative solutions where needed. Layers [8] are a language
abstraction which groups partial method definitions implementing behavioral fragments conceptually related to the
same aspect of the application context. In Figure 1 we show a simplified implementation of an adaptable storage
implemented using COP concepts. This is a running example that we adopt throughout the paper. In the example and
in the rest of the paper, where not explicitly said, we adopt a Java-like language, properly augmented with the features
required for the explanation. Details not essential for the discussion, such as some type declarations or modifiers, are
omitted. By calling the getItem method, the storage can be queried for a resource, which is by default searched on
disk. The getItem method is partially redefined inside the logLayer layer and in the cacheLayer layer. The logLayer
layer implements logging facilities and the cacheLayer layer adds a caching mechanism, which improves the response
time. When getItem is called on an instance of the Storage class, if no layer is active the original version is executed,
otherwise a partial definition in the active layer is executed.

Several solutions have been proposed in COP for layer activation. They are discussed in detail in Section 3. In
the example of Figure 1, the with keyword activates the given layers for the scoped block. As a convention, the last
activated layer comes first in the execution. If more than one layer is active, the partial definitions are dynamically
combined to get the resulting execution. For example if the logLayer layer and the cacheLayer are both active,
logging and caching behaviors are obtained at the same time. Layers combination is achieved through the proceed
keyword, which is similar to proceed in aspect oriented programming or super in object-oriented languages. Through
proceed, the partial definition in the next active layer is executed. If no further partial definition is present in the active
layers sequence, the original implementation is called.

In most COP languages layers are first class entities in the sense that they can be assigned to variables, passed as
function parameters and returned as values. This is the fundamental way in which different parts of the program can
communicate the adaptation to be performed.

In the paper we use the following conventions taken from [11]: layered method definition are method definitions
for which a partial method definition is present. These methods are dispatched according to the context-oriented
semantics. Standard object-oriented method definitions are referred to as plain method definition and are not affected
by the presence of layers.

For convenience, we list the existing COP languages in Table 1. For each language, we describe a distinguishing
feature that characterizes it, and we refer to the literature for further study.

Name Underlying Distinguishing Features

Language
Context] Java First COP source-to-source Java compiler. Implements are- [7, 12]
flection API aware of COP abstractions.
JCop Java Extends Context]. Layer activation can be triggered by [13]
jointpoint-like events. Declarative layer activation allows to
reduce the scattering of with statements.
Cj Java Prototype of a subset of Context]. Runs on an experimental [14]
ad-hoc Java virtual machine.
Context]* Java First Context] prototype. Based on a Java library, does not [7]
require a special compiler.
ContextLogicAJ Java Aspect-based prototype for ContextJ. [15]
JavaCtx Java Makes COP easier to integrate with existing tools. COP se- [16]
mantics can be introduced in Java by weaving ad-hoc gener-
ated aspects.
EventCJ Java A DSL allows to specify transitions between active layers [17, 18]
triggered by joinpoint-like events. Layer activation is on per-
instance bases.
ContextR Ruby Implements a reflection mechanism to query for the active [19]
layers.
ContextS Smalltalk COP in the Squeak programming environment [20]
ContextLua Lua Conceived to support behavioral variations in computer [21]
games.
ContextPy Python COP in the Python language. [22]
PyContext Python Context variables offer specific support for contextual state. [23]
Implements implicit layer activation.
ContextL Common First layer-based COP language. Introduces the concepts of [8, 24]
Lisp layer and dynamically scoped activation.
ContextScheme Scheme Similar to ContextL. [25]
ContextJS Javascript Open implementation: the programmer can define his own [11]
layer activation strategy.
ContextErlang Erlang Mixes COP and the actor model through per-agent variation [26, 27]
activation triggered by context-related messages.
Ambience AmOS (1) Context objects implement the behavior for each context. [28, 9]
Contextual dispatching through multimethods and context
objects as implicit parameters.
Subjective-C Objective-C A DSL allows one to define constraints and automatically [29]
activate behavioral variations.
Lambic (2) Common Based on predicate dispatching. Predicates express contex- [30]
Lisp tual conditions.

Table 1: Existing COP languages. The bold line divides layer-based languages from non layers-based languages. (1) AmOS is a prototype-based
object system built on top of Common Lisp. (2) Lambic [31] is an extens4i-on to Common Lisp, proposed to combine generic functions and actors.

3. Flavors of Context-Oriented Programming

In this section we present COP in more detail, discussing an overview of the features of the available implemen-
tations and the variations to the basic model described so far. We adopt the following approach. First we review the
implementation techniques adopted for COP languages, which have a significant impact on their usage. For example,
library-based implementations are easier to integrate with existing projects while ad-hoc source-to-source compilers
can be harder to be accepted in an established development system and can break tool compatibility. Then we consider
the dynamic aspects of COP, i.e. how behavioral variations are activated. In many cases the with-based dynamically
scoped activation is not adequate; for example due to the design of the application, it may be necessary to perform
the activation on single objects rather than on control flows. We analyze the static aspect of COP, which is about
the way behavioral variations are modularized in the codebase. This point is essential to keep software maintainable
and easy to document. We analyze the existing COP adaptation directions. In fact adaptable applications require
not only adaptation of computation (i.e. context-aware method dispatching) but also adaptation of state as well as a
combination of both (e.g. initialization of state when a change of behavior occurs). Finally we give an overview of
how COP deals with the problem of consistency between dynamically activated adaptations.

The features discussed in this section are summarized in Table 2.

3.1. Implementation Approaches

COP languages have been implemented as extensions to existing idioms by adding the context-adaptation features.
The implementation strategies strongly depend on the underlying language. In general, COP constructs require a mod-
ification the existing languages from both a syntactic and a semantic point of view. Syntax modification requires the
extension of the language to support the new constructs. Semantic modifications require the encoding of the context-
aware behavior beside the standard method dispatching mechanism. To accomplish these tasks two approaches have
been followed: the use of libraries, (often based on metaprogramming facilities), and the implementation of source-
to-source compilers.

3.1.1. In-language Approaches

A viable solution for the implementation of COP languages is based on the use of libraries, which make COP
features immediately available to the programmer. The main advantage of this approach is that libraries seamlessly
integrate with the existing language. This makes the introduction of COP in an established development system easier.
In many COP library-based extensions, metaprogramming has a central role. Through metaprogramming, libraries can
change the pre-defined semantics of a language, introducing COP behaviors such as layer-aware method dispatching.
Metaprogramming [33, 34, 35] is a technique that allows one to programmatically inspect the entities that constitute a
program, and possibly modify their behavior. Programming languages support different degrees of metaprogramming.
In some cases, the interaction is limited to inspection and use of already existing entities. For example, this is the case
of Java in which reflection allows one to analyze classes and invoke the methods obtained from the inspection, but it
does not allow to dynamically add a new method to the class nor to perform any runtime modification to the class’
structure [36]. In other languages, instead, reflection APIs allow not only inspection, but also structural change. For
example in Ruby it is common practice to reopen a class at runtime and add new methods [37].

ContextPy[22], a COP extension to Python, uses function decorators to implement layered dispatching. Without
entering the details, decorators allow a function to be defined and called instead of the original one. Decorators can be
used to intercept a call before it executes in similar way to aspect-oriented programming (AOP) [38]. In ContextPy this
is used to execute the code which dispatches the call according to the layer mechanism. Another noticeable example
of metaprogramming-based COP implementation is ContextL, a Common Lisp extension and one of the most mature
COP implementations. The contextual features were implemented using the CLOS metaobject protocol [39], which
gives access to the mechanisms internal to the language runtime, such as the method dispatching algorithm.

Library-based implementations are also used to introduce COP concepts in cases in which it is not required to
modify the original language semantics. For example, ContextErlang [26, 27] is implemented as an extension to the
Open Telecom Platform (OTP), which is a library and a set of guidelines to implement fault-tolerant distributed and
concurrent applications. The key concept of the OTP is the behavior, a generic module that implements a recurrent
pattern. The standard behaviors in OTP include gen_fsm for finite state machines, gen_event for event handlers and
supervisor for processes in charge of monitoring other process executions. When the programmer has to implement

5

Name Implementation Activation Strategy Modularization
ContextJ Source-to-source compiler DSA LIC
JCop Source-to-source + DSA, LIC
Aspect compiler Declarative layer composition,
Conditional composition
Cj Ad-hoc virtual machine DSA LIC, CIL
Context]* Java library DSA LIC
ContextLogicAJ Preprocessor + Indefinite activation LIC
Aspect compiler
JavaCtx Library + DSA LIC
Aspect compiler
EventCJ Source-to-source + DSA LIC
Aspect compiler
ContextR Library/Meta DSA LIC
ContextS Library/Meta DSA, CIL
Indefinite activation
ContextLua Library/Meta DSA CIL
ContextPy Library/Meta DSA LIC
PyContext Library/Meta DSA, CIL
Implicit layer activation
ContextL MOP Library DSA, LIC, CIL
Global activation
ContextScheme Library/Meta DSA CIL
Context]JS Library/Meta Open implementation (2): LIC, CIL
DSA, Global activation,
Per-instance activation
ContextErlang OTP Library Per-agent activation Variations are
Erlang modules
Ambience AmOS Library DSA, CIL
Global activation
Subjective-C Preprocessor Global activation LIC

Lambic

Common Lisp Library (/)

Table 2: Main features of the existing COP languages. DSA stands for Dynamically Scoped Activation, LIC for Layer-in-class, and CIL for
Class-in-layer. (1) In Lambic, since context-adaptation is not obtained through explicit contextual entities (such as layers), the activation strategy
and the modularization features do not apply. (2) ContextJS is an open implementation [32] which allows one to design the activation strategy that
bests fits his needs. The strategies in the table are already implemented and ready to use. Part of this table is taken from [10].

e.g., a state machine, she implements the application-specific functionalities, while all the code needed for state
transition, fault tolerance and concurrency is provided by the library in the behavior. ContextErlang COP features are
implemented in a new behavior, which extends the OTP library, supporting the definition of context-aware agents.
Context-aware agents are reactive agents [40], which in addition to performing computation upon receiving standard
messages modify their functionalities when special context-related messages are received.

In some cases libraries have been used to implement initial COP language prototypes before developing source-
to-source compilers. For example ContextJ* falls in this category and is discussed in the next section.

3.1.2. Compilers

Source-to-source compilers have been used to implement several COP extensions. In particular, this solution was
adopted for those languages lacking powerful reflective capabilities for which the introduction of the COP constructs
was difficult. Source-to-source compilers map the contextual code to standard code in the original language, rearrang-
ing the source structure in order to implement the context-adaptation features. The obtained source is then compiled
in a traditional way. To the best of our knowledge, ContextJ [41, 12] was the first language to exploit this technique.
Interestingly, even in a static language like Java it is possible to simulate COP constructs. For example, in ContextJ*, a
prototypal library-based COP Java extension, the Contextj class exposes the COP functionalities. The with statement
is implemented as a statically imported method from that class. The code block evaluated in the scope of the layer
activation is simulated using an anonymous class. To give an idea of the impact on readability, we show how the
activation of the caching and of the logging layers of Figure 1 looks like:
with (Layers.cachelayer, Layers.loglayer) .eval(new Block() {

public void eval() {
s.getItem(10);

}
B

Of course, the implementation of a source-to-source compiler allows one to get rid of the code burden required to
simulate the COP constructs. This significantly increases the readability. The same piece of code in Context] would
be by far cleaner:

with (cachelayer, loglLayer) {

s.getItem(10);
}

Using source-to-source compilers, COP directives can be implemented directly, without the constraint of combin-
ing the existing constructs in some eye-pleasing way. Therefore compiler-based implementations can achieve better
performance. For example in the transition from ContextJ* to ContextJ a significant speedup was observed [10]. Ad-
ditionally, as already seen, library-based techniques often employ metaprogramming, which is notoriously inefficient.

A disadvantage of the compiler approach is that compatibility with existing tools supporting the development
process is almost certainly broken. The compilation process not only adds new keywords, but also disrupts the original
source structure. Therefore tools such as syntax-aware IDEs, code coverage analyzers and performance profilers
require to be modified. In source-to-source compilation, additional parameters can be added to method signatures, or
the methods themselves can be renamed [12]. The results of the execution of tools on target code usually have no
meaning or require to be manually mapped to the structure of the contextual code.

Besides source-to-source compilers, aspect compilers are particularly relevant in COP. Aspect compilers have
gained a central role in COP with the recent investigation of activation mechanism other than the dynamically scoped
one, such as declarative layer composition and event-driven layer transitions (Section 3.2). These mechanisms share
the idea of automatic layer composition when a certain event occurs. The events are declaratively defined pointcut-
like conditions', which can be triggered during the execution. JCop [13] and EventCJ [18, 17] support this type of
activation and both are implemented as source-to-source compilers using Aspect] as a target language.

JavaCtx [16] is a context-oriented implementation of Java, based on aspects. The goal of JavaCtx is to make
the development of COP applications easier and seamlessly integrated with existing tools. JavaCtx receives in input

'In aspect-oriented programming, the developer can use predicates called joinpoints to specify certain points in the flow of the program execu-
tion. A set of join points usually combined in a boolean expression is described as a pointcut [38].

7

plain Java, and automatically generates the aspects implementing the contextual semantics. The program is written
according to a set of coding conventions to express the contextual constructs. The contextual semantics can be injected
by weaving the generated aspects through an aspect compiler. With JavaCtx, COP applications are developed using
plain and still semantically valid Java code compatible with existing IDEs. The contextual semantics injection is
not disruptive, in the sense that it only applies to method dispatching from outside, without deeply altering the code
structure. This makes tools like a code coverage analyzer or a profiler still usable. Of course, even in JavaCtx the
introduction of COP is not completely transparent because the use of aspects has an impact on the development
process and on the use of existing tools. For example, a library containing the types used by the aspect weaver is
required to execute the application.

3.2. Activation mechanism

Behavioral variation activation as originally proposed in COP is performed through the with statement and is
dynamically scoped. Over the years researchers have recognized the need for activation mechanisms other than with-
triggered dynamic scope. In this section we present the most important solutions.

The choice of which adaptation mechanism to use depends on the design of the application. For example if
the adaptation concerns only specific entities that require local modifications, per-object activation can be the best
solution. Otherwise, if the adaptation must be performed on all the objects in control flow, dynamically scoped
mechanisms allow the activation to be locally controlled and let the behavioral adaptation propagate along the flow
of execution. In the sequel, we provide examples and comments that can help one clarify the peculiarities of each
solution. However the proper choice depends on the specific application and requires designer expertise.

The freedom of choosing the activation mechanism that best fits the programmer’s needs is limited by the fact that
not all the solutions are available in each language. It is worth noticing, however, that several languages are based
on Java. Thus, many activation mechanisms are available for this mainstream language. A recent research effort [11]
considered the option of providing an open implementation the programmer can rely on to develop the activation
mechanism which best fits his needs.

3.2.1. Dynamically scoped activation

Dynamically scoped activation is the solution proposed by most initial COP languages [8, 7]. The with statements
activate a sequence of layers in the code block. The activation has dynamic extent in the sense that it maintains its
effect also in nested calls, and obeys a stack-like discipline. If — in the flow of the execution — another with statements
is reached, it enables a layer configuration which is composed of all the already active layers, plus the newly activated
layer. When the scope expires, the previous configuration is restored. Parallel activation of several layers, such
as with(Layerl, Layer2, ...), has the same meaning of nested single-activation with statements, which individually
activate each layer. Many COP languages implement also a without statement that removes the specified layer.

class Storage{ class StorageManager{ StoragelManager sm =
new StorageManager();
layer logLayer{ layer logLayer{
getItem(int key){ manage () { sm.manage () ;
println("Logging"); println("Manager"); with(logLayer){
return proceed(); proceed() ; sm.manage() ;
}} }} }
getItem(int key){ manage () { --EXECUTION--
println("Disk Lookup"); R Disk Lookup
.. Storage s = new Storage(); Manager
}} s.getItem(10); Logging
} 3 Disk Lookup

Dynamically scoped activation exhibits a remote effect, since the adaptation propagates with the flow of execution.
This approach is convenient when all the entities in the control flow are context-dependent. Consider a graphical
environment with a complex widget made of several subwidgets. When the main component is asked to draw itself,
in turn it asks its subwidgets to do the same. Suppose that each widget can adapt its graphics to the environmental
conditions and draw itself in higher contrast when the external light is bright. This situation can be easily managed

by calling the drawing method on the main widget from inside a with statement, which activates the bright layer. In
this way all the widgets are automatically adapted. Note that thanks to dynamic extent, the adaptation is automatically
deactivated when the scope expires. This allows the programmer to properly confine adapted regions of the program.

Declarative layer composition is a dynamically scoped activation mechanism introduced in [13]. The goal of
declarative layer composition is to reduce the spreading of with statements that can derive from simple dynamically
scoped activation. For example, graphical interface classes usually expose callback methods to capture user actions.
If these classes must adapt to the current context, all possible actions must be carried on according to the active layers.
This results in several with statements scattered across all the callback methods. Declarative layer composition allows
one to quantify over control flows, defining joinpoint-like conditions to enable layer activation. This solves the
problem of scattered with statements. In the following example, layers are declared to be activated in the body of the
methods getItem, isItemPresent, and getItemSize. The layers to activate are obtained through the getActiveLayers
getter method.

in(Storage s) &&
(
on(* Storage.getItem(..)) ||
on(* Storage.isItemPresent(..)) ||
on(* Storage.getItemSize(..)) ||
)
{
with(s.getActiveLayers());
}

The on keyword identifies an event in the program execution. The predicates that can appear inside the on expres-
sion are similar to those used in AOP. When the event is triggered the layer activation in the code block is performed.
The in keyword binds the current object to a local variable.

Conditional composition was introduced to perform variation activation, reacting to asynchronous context-change
events [13]. Events are defined as predicates that are evaluated every time a method call, potentially affected by the
COP semantics, is executed. If the predicate evaluates to true, a dynamically scoped layer (de)activation is performed.

context CacheContextq{
in (Storage s) &&
when (Storage.isCacheOn()){
// Predicate
{
with(cacheLayer) ;

// and/or without(...);
}

}

In the example we suppose that the Storage class implements an isCacheOn method to inspect if the cache is
active. The when keyword introduces the dynamically evaluated expression. To enforce a higher level of consistency,
after layer activation, the condition is no more evaluated in the dynamic extent of the first layered method execution.
Conditional composition is useful when a control flow must be adapted to external events that can happen unexpect-
edly, such as user interaction. Using the basic dynamically scoped activation would require to continuously check the
condition and scattering several with statements along the control flow.

3.2.2. Indefinite activation

With indefinite activation, a layer configuration may affect the program behavior starting from a point in the
program execution, and its effect extends indefinitely. The active layer configuration is changed when a further
activation statement is encountered.

class Storage{

layer logLayer{
getItem(int key){

class StorageManager{

manage () {

StorageManager sm =
new StorageManager();
Storage s2 =
new Storage();

println("Logging"); Storage s1 = new Storage();
return proceed(); activateLayer (logLayer); s2.getItem(10);
3} sl.getItem(10); sm.manage () ;
T} s2.getItem(10);
getItem(int key){

println("Disk Lookup"); --EXECUTION--

... Disk Lookup // s2
3}

Logging // s
Disk Lookup // si

Logging // s2
Disk Lookup // s2

Indefinite activation is a powerful mechanism. It can easily lead the programmer to losing control on which
portions of the application are adapted, and which variations are currently enabled. For this reason, it is must be
used with care. Not surprisingly some languages employing this technique also provide a way to discipline layer
activation. For example, Subjective-C [29], which adopts indefinite activation, also allows one to specify constraints
among variations (Section 3.5).

Indefinite activation can affect only the thread performing the activation, or can have influence on all the threads
of the application. The latter case, referred to as global activation [10], requires particular care. In fact activation
driven by one thread can happen asynchronously and unexpectedly in the execution of another thread. In general the
adapted thread has no guarantees on when adaptations occurs.

Indefinite activation is probably a good solution when the behavior associated with the adaptation heavily cross-
cutts the structure of the application, it is not restricted to certain entities, and there is no need to limit its action.
An example of this case is the dynamic activation of logging facilities. Usually logging involves most entities of the
application and can be asynchronously activated without the risk of inconsistencies.

3.2.3. Implicit activation

In languages enforcing implicit activation, before calling a layered method, all the layers in the application
are checked for being active. Each layer exposes an active method, which states whether the layer is active or
not. Since the runtime support needs to be aware of which layers must be queried, layers must register to it.
class Storage{

class cachelLayer{ Layers.register(cachelayer) ;

layer cachelayer {
getItem(int key){
println("Cache Lookup");

isActive(){ Storage s =
if (MemUse.getVal() > 1000){ new Storage();
return true;

}else{ s.getItem(10);
}} return false; // Memory usage 800 --> 1200
} s.getItem(10);
getItem(int key){ }}
println("Disk Lookup"); --EXECUTION--

e > Disk Lookup
3

> Cache Lookup
> Disk Lookup

Implicit activation is currently available in PyContext [23]. Implicit activation is similar to indefinite activation in that
layers influence all the instances without scope restriction. However, in the case of indefinite activation, an explicit
set of layers is activated. Instead, with implicit activation all the registered layers are checked at each layered method
invocation, to determine those currently active. Indefinite activation is an interesting solution from a modularization
standpoint since layer activation can be encapsulated inside the layers themselves. However due to the fact that lay-
ers can interact in complex ways, the programmer usually needs to control activation more directly, which limits the

10

applicability of indefinite activation.

3.2.4. Per-object activation
Per-object activation allows layer activation to be controlled on single objects. The activated layers affect only the
object selected for the activation, without propagating along the control flow.

class Storage{ Storage s =
new Storage();
layer cachelayer {

getItem(int key){ s.getItem(10);
println("Cache Lookup"); s.setWithLayer (cacheLayer) ;
s.getItem(10);
}}
--EXECUTION--
getItem(int key){ > Disk Lookup

println("Disk Lookup");
e > Cache Lookup
} 3 > Disk Lookup

Per-object activation is a suitable solution when behavioral variations limitedly crosscut the application structure.
Therefore variation activation must not be repetitively performed on several objects, but rather on a few objects that
hold all the key adaptation capabilities of the system. The Pedestrian Navigation System (Section 4.1) belongs to
this category, since a single object dynamically switches between WiFi or GPS connection, concentrating most of the
adaptation capabilities of the application.

Event-driven per-object layer transitions is a variant of per-object activation, in which layer transitions are trig-
gered on specific objects by pointcut-like events [17]. In the following example, the Activate event is raised by the
execution of the doSomething method. The event triggers the activation of the cacheLayer layer on the s object.

class Storage{ declare event Activate(Storage s) Storage s =
layer cachelayer { :after call(void Storage.doSomething()) new Storage();
getItem(int key){ && target(s)
println("Cache Lookup"); :sendTo(s); s.getItem(10);
R // Triggers the event
} 3 transition MyEvent s.doSomething() ;
getItem(int key){ * activate cachelayer s.getItem(10);
println("Disk Lookup");
e --EXECUTION--
doSomething(){ } > Disk Lookup
} 3 > Cache Lookup

> Disk Lookup

The declare event keywords identify an event expressed in AOP style. sendTo identifies the object which is
adapted. The transition keyword introduces a layer transition triggered by the specified event. Layer transitions
allow to define a constraint on behavioral modifications, enforcing consistency across context changes. This aspect is
further investigated in Section 3.5.

3.2.5. Message-driven per-agent activation

Message-driven activation [26], is performed through context-related messages. Context-related messages enable
a behavioral variation on the receiver of the message. The activated variation remains in place indefinitely. The
execution triggered by subsequent standard messages is affected by the enabled variation. Of course, this activation
mechanism only makes sense in languages supporting the agent concurrency model.

11

agent Storage{ cacheVariation{ Agent s =

receive (msg){ getItem(int key){ spawnAgent (Storage) ;
// pattern matching on msg println("Cache Lookup");
[getItem,int key] -> this.getItem(key); R // sending messages
3} s -> [getItem,10];
} s -> [activate,cacheVariation];
getItem(int key){ s -> [getItem,10];
println("Disk Lookup");
Ce --EXECUTION--
} > Disk Lookup
e > Cache Lookup
} > Disk Lookup

Per-agent activation is particularly suitable in highly concurrent systems, since the adaptation mechanism is inte-
grated in the concurrency model. Context change is operated through messages which asynchronously intersect the
main control flow. So this model allows one to tackle the problem of asynchronous context provisioning in a simple
and clean way [27].

3.3. Variation Modularization

Besides dynamic variation activation, COP directly addresses the problem of modularizing context-related adap-
tations. Since COP support must integrate with the existing language, the modularization technique strongly depends
on the underlying idiom.

In the layer-in-class model, a layer definition is spread among many modularization units. This model is adopted
in languages which already enforce a main modularization direction. The introduction of layers must not break
this design. For example, most COP Java implementations (Table 2) adopt this model: since in Java the code is
organized along classes, they are preserved as the main modularization direction. Each class declares the partial
method definitions belonging to different layers (Figure 1). So partial definitions are modularized together with the
layered methods they augment.

In the so-called layer-in-class model, layer declarations are outside the lexical scope of the code unit they alter.
This model is usually adopted in languages which does not strictly enforce a modularization policy based on language
constructs. The layer-in-class approach reminiscent of Aspect], where aspects are defined outside the classes they
augment. As an example of the layer-in-class model we show a fragment of ContextL [8]. In Common Lisp, methods
belong to generic functions rather than classes. The following code snippet shows the definition of a log-layer layer.
A generic function get-item declares a set of operations with name get-item that can be performed on a single object.
Method declarations specialize generic functions on certain objects types.

In the example, a layered method definition of get-item specialized on storage objects is defined (t in the
:in-layer field means “base” layer). A partial definition is then declared in the log-layer layer. The storage class,
potentially affected by the partial method definition, is declared apart.

(deflayer log-layer)
(define-layered-function get-item (object))

(define-layered-method get-item :in-layer t ((s storage))
(format t "Disk Lookup")
.

(define-layered-method get-item :in-layer log-layer :before ((s storage))
(format t "Logging")
-

(define-layered-class storage ()
((cache :initarg :cache)))

Which model better fits a language is not always a clear choice. For example, two of the current Python COP
extensions make different choices: PyContext adopts the class-in-layer model, while ContextPy adopts the layer-in-
class model. This can be considered as a consequence of the fact that Python is an object-oriented and class-based
language, but nevertheless exploits modules rather than classes as the main modularization unit.

12

From a software engineering perspective, the main advantage of the class-in-layer approach is that it facilitates
software evolution. In fact, adding new behavioral variations only affects those modules defining layers and mod-
ifying the already existing modules is not required. On the other hand, with the layer-in-class strategy, variations
are declared together with the basic behavior they alter, simplifying the comprehension of the program. Moreover,
all the behavioral variations are included in the entity they augment. The resulting code is self-contained and each
class encapsulates all its possible behaviors. The layer-in-class solution is more effective in those cases in which it is
not possible to recognize a basic behavior and a variation, but the system switches between two or more alternative
behaviors. Consider a variant to the storage example, in which the application can pursue the goal of optimizing
either the response time or the memory consumption. In this case, the system can be designed with two layers,
optimizePerformance and optimizeMemory. The getItem partial definition in the optimizePerformance layer stores
the items in memory, while the getItem partial definition in the optimizeMemory layer stores them on disk. So only
one layer is active at a time. Of course, switching from a layer to another requires all the items to migrate from
memory to disk and vice-versa. The problem of automatically performing initialization operations on layer activa-
tions is analyzed in Section 3.4. This example shows that behavioral variations not always are added upon a basic
behavior and, sometimes, a basic behavior does not exist at all. In such cases, the layer-in-class design allows one to
encapsulate the alternative behaviors in classes, improving code modularity and readability.

ContextErlang [26] adopts an hybrid approach. In ContextErlang, each variation is implemented as an autonomous
module specifically aimed at modifying the behavior of a certain context-aware agent. Therefore, a certain degree
of modularization is maintained, since each context-aware agent is associated with a set of variation modules, all
concurring to defining the behavior of the agent. Adding new adaptations is straightforward, since it only requires a
new variation module to be provided, without modifying the existing code. Implementing variations as single modules
enables an interesting feature of ContextErlang, namely remote variation transmission. A context-aware agent running
on a remote Erlang node can be unable to adapt properly to an unforeseen situation. In ContextErlang, if another node
holds the proper variation, it can send the variation to the remote agent and dynamically activate it. This feature is
possible thanks to the Erlang virtual machine, which supports module loading during the program execution.

3.4. Adaptation directions

In a context-aware application, adaptation can be traced back to two aspects: adaptation of computation, and
adaptation of state. The distinction is not crisp in practice, since computation determines access to state and state
directly influences computation. However, it is particularly useful for the exposition of the specific COP constructs.
Adaptation of computation deals with selection of alternative methods or functions. Adaptation of state deals with the
choice among different state values. COP main focus is centered around adaptation of computation (i.e. context-aware
method dispatching) rather than state. Nevertheless, some language constructs have been proposed to support state
adaptation. In this section, we investigate both adaptation techniques in details, analyzing the variants that have been
proposed. Finally, we consider the problem of initialization when a behavioral variation is triggered, an aspect that
involves both computation and state.

Layer-driven dispatching has been extensively illustrated in the previous sections. As we observed, this is the so-
lution adopted by most COP languages. However other approaches exists. The Ambience programming language [9]
is a based on the Ambient Object System (AmOS), an object system alternative to CLOS built on top of Common
Lisp. Ambience, originally developed simultaneously to ContextL, is not layer-based and adopts a global context
model. AmOS is based on prototypes rather than classes and delegation links between objects rather than inheritance
relations. Ambience leverages multimethods for context-aware dispatching. Multimethods [42], supported tradition-
ally in Common Lisp through generic functions, differ from single dispatching in that all the arguments participate
in the method lookup. In AmOS, methods are declared outside objects, similar to standard Common Lisp methods.
In Ambience, a context object is passed as an implicit first parameter of each call, therefore methods are dispatched
according to the active context. The basic context object delegates to subcontexts, creating a delegation tree. For
example an in-depth inspection of the tree can give: the basic context, an environment context, an acoustics context,
and one leaf among the quiet, the normal and the noisy context. When a method is declared to belong to a certain leaf
context, it is executed only if the context is currently active, i.e. it is reachable by following the delegation links from
the root. Dynamic adaptation is obtained in a straightforward way, by changing the delegation links at runtime.

13

Predicated generic functions were proposed in [30] as a viable approach to implement context-aware dispatching.
Predicated dispatching [43] allows predicates to be expressed in the method definition (e.g. to specify a value for a
parameter). When a method is called, the definition whose predicates are fulfilled is actually executed. Traditional
dispatching can be considered as a particular case in which the predicates express a condition on the type of the
parameters. However, in case of overriding, a problem of ambiguity arises. While types can be linearized to find
the most specific type, the problem of computing predicates implications, to find the most specific condition, cannot
be decided in the general case. Predicated generic functions alleviate this problem, fostering the declaration of user-
defined predicates and the priorities among them in the generic function. In this way, when multiple overriding
methods refer to these predicates, there is no ambiguity on which must be executed. Predicates can be easily used to
express contextual conditions on the execution of the application, such as the fact that a figure is currently selected,
or that the user is moving a shape on the screen. The methods triggered by subsequent user actions, e.g. mouse press
or release, are dispatched according to contextual conditions. These features were implemented in Lambic [31], a
prototype extension to Common Lisp.

Adaptation of state has been explored in ContextL, which allows one to define :layered-accessors class slots >
accessors. Slot accessor methods are only visible when certain layers are active. If access to the slot without the
proper layer being active is attempted, an error is raised. Therefore, the same class can declare different state elements
associated with different layers. For example in a class representing a graphical shape, the current-color slot can be
accessible only when the colored-image layer is active.

A similar approach can be used in languages which do not support any special contextual state feature. In this
case, context-specific state can be simulated by implementing state locations whose access is performed only from
computation triggered by that context. For example a private field can be accessed only by a partial method definition,
obtaining a sort of layer-specific state.

An interesting combination of COP concepts and state was proposed in PyContext [23] context variables. Con-
text variables have context-dependent binding in the sense that the binding of a variable to a value depends on the
currently active layer combination. Therefore, context variables’ state is preserved across a layer (de)activation i.e., a
binding is no more accessible when the active layer combination changes, but it becomes again accessible in case that
combination is eventually restored.

The practical implementation of context-aware software raises some problems. When a behavioral change is
triggered in the system, it is often needed to perform an initialization of the state before starting the adapted execution.
For example, in the storage server of Figure 1, activating the cacheLayer layer for the first time may require the cache
object inside the Storage class. Safe initialization has been long recognized as a problem by COP researchers. COP
languages were augmented with constructs that allow arbitrary code to be executed when a behavioral variation is
activated or deactivated. For example, EventCJ introduced the activate and the deactivate keywords, which inside
a layer definition within a class declare code blocks that must be executed when the layer is activated or deactivated. In
the Pedestrian Navigation System (Section 4.1) mobile application, which can use GPS or WiFi connection to get the
device location, this mechanism is used to initialize and shutdown the GPS receiver. In a similar way, ContextErlang
introduced the on_activation and the on_deactivation functions inside variations modules.

3.5. Behavioral Consistency

In COP applications, behavioral variations are activated at runtime depending on the contextual conditions. When
software grows and becomes complex, the resulting system behavior can evolve in a manner that is not easy to fore-
see. Moreover, since active variations dynamically combine with one another and with the basic application logic,
inconsistencies and conflicts can arise. We refer to this problems as behavioral consistency. The COP research com-
munity has given several contributions to tackle these issues, devising solutions that can achieve better control over
variation activation and enforcing constraints among variations. These approaches encompass reflection, declaration
of constraints in the language or through domain specific languages (DSL), and encapsulation of variations manage-
ment into abstract data types. Despite the importance of the behavioral consistency problem, no general solution is
available and most contributions strictly refer to specific language implementations.

2In Common Lisp, class fields (in Java terminology) or member variables (in C++ terminology) are referred as slots.

14

We point out that behavioral consistency is strictly related to variations activation. Activation policies constitute
per se a form of consistency enforcement among layers. For example, dynamically scoped activation enforces a strict
discipline: the layers enabled in the with statement are consistently kept active for the whole dynamic scope and
automatically removed when the scope expires. It is not surprising that more fine-grained activation approaches, such
as per object layer activation, required to be regulated by an additional constructs specifying layer transitions. We will
also see later that formal verification can be used to ensure activation correctness.

Costanza and Hirshfeld [24] introduced computational reflection for COP languages, which allows one to express
constraints on layer activation and to control the fulfillment of constraints during the execution. For example, with
layer-aware reflection, it is possible to check if a required layer is already active before activating a layer relying on it.
Despite its extreme flexibility, computational reflection is quite complex to master. Further studies proposed to extend
ContextL to include declarative constraints on layers [44]. This approach makes layer dependency enforcement easier.
The violation of a constraint raises an error and the programmer is expected to interactively fulfil the unmet constraint.
Thanks to the resumable nature of Common Lisp exceptions (or conditions), the execution may subsequently continue.
This approach may require human intervention, a fact that limits its applicability in a self-managing autonomic system.

EventCJ allows one to declare layer transition rules, which change the active layers of an object when a contextual
event is received (Section 3.2). Layer transition rules are constituted by a left-hand side condition on the currently
active (or not active) layers, and a right-hand side operation which can use either the switchTo or the activate
operators to specify the layers to activate. The former operator deactivates the layers specified without the not modifier
in the left-hand side, while the latter keeps them untouched. Transition rules allow layer activation to be controlled
with great precision, enforcing constraints between layers. With several events, the behavior given by all the transitions
can become complex. The authors of EventCJ propose to model transition rules with finite state automata, and use
model checking techniques, namely SPIN [45], to verify safety properties such as constraints on layer activations
(e.g.,“layers A and B are never active at the same time”).

Subjective-C, a COP extension to Objective-C [29] includes a DSL that can be embedded in the applications to
express context dependencies. Subjective-C is based on contexts rather than layers, resembling Ambience. Similarly
to layer-based systems, in Subjective-C methods can be defined to belong to contexts, and dispatching depends on
the currently active contexts. In the DSL, four types of relations can be enforced between two contexts A and B.
Weak inclusion: the activation of A implies the activation of B but the converse does not necessarily hold. The
former context is said to include the latter one. For example, window open can include cold, but not cold does not
necessarily imply that the window is closed. Strong inclusion: deactivation of B implies the deactivation of A. E.g.
raining and cloudy. Mutual exclusion: A and B cannot be active at the same time. Requirement relation: A requires
B to work properly. For example, this code snippet declares the 0ff1ine and the Online contexts and enforces their
incompatibility (mutual exclusion is expressed by the >< symbol).

Contexts:
Online
0ffline

Links:
Online >< 0Offline

When a context change occurs, the system inspects all the user-defined relations, checking the consistency of the
change with the constraints, and possibly triggering new context activation if needed. The DSL solution has probably
the advantage of being more intuitive and less verbose than programmatic constraint declaration.

The solution of ContextErlang starts from the observation that when the application is designed, the programmer,
in most cases, already knows which use will be done of variations. The ContextChat application [46] is an instant
messaging server developed in ContextErlang, where users are implemented as context-aware agents. When users
go offline, received messages are stored on the server and delivered later when the addressee connects. An optional
backup can be enabled by the user to save messages on a remote server. The user can also provide a custom filter to
apply a modification to all its messages, such as changing colors or adding emoticons.

These features are implemented as variations on context-aware agents. For example, the offline, online and
the backup variations are provided. In ContextErlang, the programmer does not operate on single variations, but
variations are encapsulated in a context abstract data type (ADT), which exposes the fundamental operations for their
management. The context ADT is organized as a fixed-size stack. Each slot of the stack has a name for direct access.
Slots can be of three types, depending on the constraints between the variations that can be activated in each of them.

15

Activatable slot

persistency

online I offline

persistency

online I offline

Switch slot

base behavior

Free slot —_— >

text effect

[
[Status
[
[

——

|) e N

[
(scus
[
[

base behavior

Activatable slot

Figure 2: The context ADT in ContextErlang. Switching from the online to the offline variation.

Activatable slots contain a single variation that can be active or not. Switch slots contain two or more variations, only
one of which can be active at a certain time instant. Free slots contain a single variation which is left undefined and
can be assigned later. Free slots are required, because in ContextErlang it is possible to send a variation to a remote
node, dynamically load it into the Erlang runtime, and activate it on an agent.

In Figure 2 we show the context ADT associated with agents representing a user in the ContextChat server. The
offline and the online variations are in a switch slot since they are mutually exclusive and they are never activated
together. The backup variation is in an activatable slot. Optional filters provided by the client are placed in a free slot.
For symmetry, the base behavior of the agent is placed in a slot like other variations, even though normally it is never
deactivated.

4. Emerging COP application areas

COP has recently appeared in the landscape of programming languages and the amount of real-world applications
currently leveraging the paradigm is rather limited. For this reason, hereafter we consider not only complete im-
plementations, but also proof-of-concept prototypes. We also present running examples discussed in literature when
useful.

Most COP applications can be traced back to the fields of ubiquitous and mobile computing. It is interesting to
note that COP has proved to be useful not only in this area, which naturally deals with adaptation to the changing
environment. In more “traditional” applications, such as text editors, the concept of context-adaptation allows one
to easily implement advanced features, achieving cleaner design and better modularity. An overview of the existing
applications and a summary of their adaptation capabilities is summarized in Table 3.

4.1. PDA devices

The Pedestrian Navigation System [17] is a mobile application developed using the Android SDK [47]. The
application detects the position of the mobile device and displays it on a map. Context awareness is implemented
by defining the GPSNavi layer and the WiFiNavi layer. When the GPSNavi layer is active, the current coordinates are
obtained using the GPS, and a street map is displayed on the screen. When the user is inside a building, instead, the
WiFiNavi is active, the position is obtained through a WiFi connection, and the floor plan is displayed by fetching it
from a local database.

A scenario which involves smartphones and GPS integration is also described by Gonzales et al. as a case study for
the Ambience Object System [28, 9]. The CityMaps application stores the map of a city annotated with information
for tourists. When a GPS connection is available, instead of using a static map, the application updates the portion of
map currently displayed on the screen according to the position of the user. When the GPS module is disabled, the
application reverts to the static view. Other phone functionalities are also managed in a context-aware manner. For
example a noisy context allows the tone of the calls to become louder and the duration of the ring to increase, while
the quiet context reduces the noise generated by an incoming call.

Gonzales et al. developed a set of proof-of-concept applications as a validation of Subjective-C [29]. The first
case study simulates a complete home automation system which integrates smartphones as a centralized control for
the regulation of temperature, ventilation, lights as well as for control of household appliances. The control appli-
cation dynamically modifies its behavior and interface according to the current environmental conditions inside the
house. A second case study aims at evaluating the use of COP techniques to extend with context-aware features an

16

Type Application Language Adaptation State

Pedestrian EventCJ The mobile’s position is obtained via WiFi or C

Navigation GPS. The GUI displays the street map from

System googlemaps or from local database accord-
ingly.

CityMaps Ambience Displays a static map or a dynamically up- R

PDA dated map with the user position depending on

Devi whether the GPS connection is available. The

evices tone of the calls and the duration of the ring
depends on the environmental noise.

Home Subjective-C ~ Controls of temperature, ventilation and light P

Automation depends on environmental conditions.

System

Accelerometer Subjective-C =~ Changes bar color and label depending on the P
device orientation.

Data Filtering Subjective-C ~ Dynamically switches between different filters P
applied to the collected data.

ContextJ Changes the UI and the reaction to user activ-

CIEdit JCop ity depend.ing whether it is in commenting or C
programming mode.

EventCJ
LivelyKernel ContextJS The testing framework displays additional in- C
formation when a test is run singularly. Shapes
Desktop in the workbench can dynamically adapt their
Software appearance and modify their behavior, e.g. be-
cause connected to other components.

Geuze Lambic The effect of user actions (e.g. mouse press) C
depends on the action context (e.g. drawing
shape).

Software ContextL The strategy adopted by the STM can be C

Transactional switched dynamically to fit the current needs

Memory of the application.

ContextChat ContextErlang Chat server. Online users forward messages to P
the client. For offline users, messages are kept
for future reading. Optional backup and trac-
ing of all messages can be activated for each
user. Clients can provide filters for their out-

Server going messages.
Software Autonomic ContextErlang Items can be stored either in memory to reduce C

Storage response time, or on disk to reduce memory
consumption. Optional logging can be dynam-
ically activated.

Autonomic ContextJ Each page component can be served in high C

Web bandwidth or in low bandwidth mode to con-

Application trol the network consumption of the web ap-

plication.

Table 3: COP applications: complete prototypes (C), proof-of-concept implementations (P), running examples (R).

17

existing application. In this simple case, the original application exploits an accelerometer to display a bar on the
screen, keeping the bar always parallel to the ground. The contextual extension simply consist of changing the bar
color and label according to the current orientation. Despite the simplicity of the application, this is a first effort
in evaluating the integration of COP constructs with existing code. The results show a seamless integration and no
apparent performance degradation. A third application is aimed at studying the refactoring with the COP constructs
of an existing application, preserving the original behavior and improving the code quality. The application graphs
the values gathered by an accelerometer, dynamically switching between the optional filters applied to reduce the
noise. COP allows to avoid code duplication in the different operational modes of the application (e.g. low-pass or
high-pass) modelling them as different contexts.

4.2. Desktop software

CJEdit is a desktop text editor and programming environment. During the years, it has been used as a case study
for the development of new COP languages and it is currently one of the most complete projects in the area. CJEdit
was firstly proposed as a case study for ContextJ [41]. The editor allows one to keep documentation and code together
in an effective way, enabling rich text formatting for the comments inside a compilation unit. The current context
switches between text formatting and code development, depending on the area on which the user is working. The
menus, the toolbar and the layout of the application are automatically adapted accordingly. CJEdit was used as a test
case for the JCop language [13]. For example the introduction of declarative layer composition was motivated by
scattered with statements in each callback method triggered by a user action. Event-specific layer activation were
introduced to easily deal with the event-oriented nature of a GUI application. Kamina et al. [17] used the CJEdit
application as a case study for EventCJ and event-based context transitions. In their implementation the transition
between active layer configurations can be stated declaratively and is directly driven by the events generated by the
user interaction.

Lincke et al. [11] implemented a context-aware unit testing framework in JavaScript. When the whole test suite
is executed, the global time spent in the execution is taken and displayed. When the user selects a single test, an
adaptation is activated and the time spent in the test is measured and displayed in a separate window. The unit test
tool is part of the Lively Kernel [48] which is a platform for web programming written in JavaScript. The Lively
Kernel implements the ideas of Morphic [49], an interactive environment that allows one to directly manipulate the
graphical elements in the workbench and composing them in more complex objects, with no crisp separation between
development and the final graphical result. In [11], the Lively Kernel was used as a case study for experimenting new
layer activation mechanisms. Instance-specific layer activation was showed to be useful for the adaptation of each
single Morph element in the workbench such as rectangles, circles, and text fields.

Geuze [30] is a collaborative graphical editor written in Lambic [31]. The editor allows remote users to collaborate,
working on a document at the same time. The authors identify as context conditions associated with the editor
current usage, such as “painting a shape”, “moving shape”, “drawing selection” or “selecting shape”. The actual
method to execute when an action is performed (e.g. “mouse down” or “mouse move”) depends on the context in
which the method is chosen. Indeed, dispatching is predicated using the previous conditions. Interestingly, context-
aware dispatching was not only used in the development of the graphical user interface, but also in networking,
synchronization among users, and replication.

Costanza et al. [50] developed a context-oriented software transactional memory using ContextL. Software trans-
actional memories (STM) can adopt different strategies. For example a lock can be required before writing to a
memory location, while a copy of the data is kept to restore it in case of a rollback (direct-update). Another solution
is that a transaction acquires a copy of the memory and write it back if the transaction commits, avoiding locking at
all (deferred-update). The programmer can define some class slots as transactional: when they are accessed from
inside a code section declared atomic, the access is protected. STM strategies can be activated dynamically, depend-
ing on which is performing better in a certain application configuration. Activation can be both global or dynamically
scoped, allowing each thread to independently adopt its own strategy. The implementation is open, and thanks to the
COP modularization facilities, adding a user-defined strategy is straightforward.

4.3. Server-side software
ContextChat [46] is a prototype of an adaptable chat server written in ContextErlang. As briefly introduced in
Section 3.5, users are represented inside the server by context-aware agents which act as “avatars” of the user inside

18

the system. When a client is connected, the associated agent activates the online variation, which forwards the received
messages to the client. When a client is offline, the offline variation is active, storing messages for future reading.
Clients can optionally activate a backup variation that sends messages to a remote server for persistent storage. A
tracing variation can be activated by an autonomic manager to collect information on the current message traffic.
In a distributed environment, this knowledge can be used to migrate agents which frequently exchange messages to
the same node, reducing the overhead of network communications. Finally, thanks to remote variation transmission
(Section 3.3) a client can provide the associated agent with a variation by implementing a custom filter for outgoing
messages, such as adding emoticons or changing the font. The variation is automatically loaded and activated on the
remote agent.

The autonomic storage server [46] is prototype of another autonomic application written in ContextErlang. Items
can be stored and retrieved using an assigned key. Frequently required items are placed in memory, the others on
disk. Each item is implemented as an independent ContextErlang adaptable agent. Adaptability is obtained through
the disk and memory variations, which are dynamically activated by the agent when the item is frequently requested.
Additionally, a 1og variation can be activated to trace the application execution.

ContextJ has been used to develop an autonomic web application [51] using servlets inside the Tomcat application
server. The application can dynamically modify the amount of network bandwidth it uses. The component of each
page (e.g. header, footer, navigation bar) defines the toString method, which creates the component representation
inside the page. The method is defined both in the high_band and in the low_band layers. The high_band implemen-
tation generates a richer page with images and animations, while the low_band implementation generates a simpler
and less appealing but lighter page. A context manager activates the right layer for each user session. The active layer
affects all the components of the page propagating to the subcomponents called in the dynamic scope of the with state-
ment. The context manager uses a proportional-integral feedback controller to regulate the fraction of users in each
mode. The control is performed according to a defined threshold and the current network bandwidth consumption.

5. Related approaches

In this section we review the techniques used to implement adaptive systems, with a special focus on language-
level solutions. In this perspective, COP is compared with other similar paradigms such as AOP or other techniques
which proved to be effective in the development of context-aware software, like metaprogramming. Finally, we com-
pare COP with feature-oriented programming (FOP) and we trace the concepts of COP back to the first works on
layers and multidirectional dispatching. Previous work on comparing COP languages was done in [10]. This paper
takes into account recent changes in the COP landscape and assumes a less language-centric perspective.

Design Patterns. Design patterns [52] can be used to support the implementation of context-aware software. For
example, the State pattern consists in a proxy class that exposes a generic interface for a certain behavior. The actual
behavior implementation is chosen among concrete classes dynamically linked to the proxy class depending on the
context conditions (see e.g. [30]). The State pattern is a “standard” design pattern which can be effectively exploited
to implement dynamic adaptation. Riva et al. [53] identified extensions to the GOF patterns [52] to specifically tackle
the problem of context, and two totally new were proposed. Rossi et al. [54] also introduced four new patterns. The
proposed patterns solve common issues in the development of context-adaptable software, such as turning existing
legacy software into a context-aware application, monitoring the current context of the system, or performing the
adaptation according to a set of predefined rules. It is interesting to note that some of these patterns tackle problems
which COP directly addresses at the language level. For example, the Typified Context Element pattern in [54] solves
the issue of context adaptation through polymorphism and dynamic dispatching, while context-aware dispatching over
partial method definitions is natively available in COP. Ramirez and Cheng [55, 56] studied the presence of adaptation-
specific design patterns in self-adaptive systems in the context of autonomic computing. They analyzed over thirty
adaptation-related research and project implementations, harvesting twelve adaptation-oriented design patterns.

Aspect-oriented programming. COP shares some features with AOP [38], such as the availability of special

language support to modularize crosscutting concerns. AOP provides a general mechanism for modularization of
orthogonal functionalities, while COP is specifically devoted to organizing behavioral variations. More generally,

19

the focus of AOP is on modularization, while the focus of COP is on runtime activation of variations. This is also
confirmed by recent research trends in COP which mainly concentrate on activation mechanisms [13, 17, 11].

Dynamic AOP is about activating aspects at runtime. This allows one to modify software behavior during the
execution. Several dynamic AOP frameworks have been implemented, such as CaesarJ [57], Prose [58], JAC [59]
and AspectWerkz [60]. These approaches offer general mechanisms for dynamic activation of aspects that can be
leveraged to implement ad-hoc frameworks to support context-adaptation. On the other hand, COP directly offers the
required facilities. Moreover, dynamic features are not widespread among industrial-strength AOP tools. For example
control-flow-based activation is supported in the Aspect] language [38], that allows to define percflow pointcuts, but
this feature is currently lacking in the Spring AOP pointcut model [61].

Dynamic AOP has been introduced in the field of autonomic computing by Greenwood and Blair [62]. Their
work highlights the role of Dynamic AOP in adding autonomic behavior to already existing applications, modular-
izing autonomic features as a crosscutting concern. The TOSKANA [63] toolkit introduces autonomic computing
into operating systems using dynamic AOP. Aspect-orientation is used to deploy runtime-activatable aspects into an
operating system kernel and modify its behavior while the system is running. Dynamic AOP has been used not only
to implement runtime change of behavior, but also to monitor a running application. In this case, sensing operations
crosscut the main application logic, and AOP is probably more suitable than COP. For example J-EARS [64] is a
framework for autonomic system development and management which allows sensors and effectors to be dynamically
added and removed from a working Java application using Dynamic AOP.

Metaprogramming. Computational reflection can be exploited to inspect and modify the dynamic behavior of an
application. This approach was studied by Dowling et al. [65]. They compared different language-level techniques to
support software dynamic adaptation: reflection, dynamic link libraries (DLL), and design patterns. They concluded
that, at the cost of a non-negligible performance overhead, computational reflection offers significant advantages in
separating functional and adaptation code. This study, however, dates back to before the wide spreading of AOP.
With the gain in popularity of AOP, the role of metaprogramming in managing separation of concerns became less
appealing. AOP is specifically targeted to modularization of crosscutting concerns, but in the non-dynamic version
it lacks features supporting runtime modification. It is interesting to observe that AOP was used in conjunction with
metaprogramming to fill this gap. For example Sadjadi ef al. [66] used a mix of AOP and computational reflection
to implement TRAP/J, a toolkit that allows adaptive behavior to be added to an existing Java application, without
modifying the original source code. Thanks to AOP, the original classes are replaced by wrappers at instantiation time;
then, using a meta object protocol, the application behavior is changed at runtime by dynamically redirecting methods
calls to delegated objects. TRAP/C++ [67] is a C++ implementation of the same concepts that uses generative
programming to overcame the lack of reflective capabilities of the C++ language.

These works show that computational reflection is used to support runtime change, while AOP allows separation
of adaptation concerns. COP addresses the problem of variation modularization and dynamic behavioral change in
a single paradigm. The role of metaprogramming and AOP in self-adaptive systems is investigated by McKinley et
al. [68], who analyzed in detail the techniques applied to adaptive software composition, identifying three key en-
abling technologies: separation of concerns, computational reflection, and component-based design.

Other techniques similar to COP. Feature-oriented programming (FOP) is about synthesizing programs in software
product lines [69] through step-wise refinements from single units of functionality conventionally called features. The
AHEAD toolsuite [70] is a Java-based implementation of FOP, in which separate files are used to express class refine-
ments. COP and FOP share the idea of supporting variations of the original program with language-level techniques.
Since the behavior of a product variant is known in advance, FOP features are normally selected and combined at
compile time. COP variations, instead, due to the volatile nature of the context, are activated and combined dynam-
ically. Dynamic Software Product Lines (DSPL) [71] are a recent solution for adaptive systems in which available
features are switched at run time [72, 73]. Research in this direction is mostly at the architectural level, while COP
specifically focuses on language-level abstractions.

In object-oriented programming the binding of a method call with the actual implementation depends on two
elements: the message (i.e. the method name and the actual parameters) and the receiving object. This overcomes
the single-dimension dispatch of procedural languages where the function to execute is selected only on the basis of
the name and the parameters of the call. Subjective dispatch [74] adds a dimension to the receiver-based dispatching

20

of object-oriented languages, taking into account also the sender. COP can be considered a solution which enables
dispatching along the context dimension.

Self-adaptive Sofware. Software engineering research in the area of self-adaptive software mostly addressed the
issues of dynamic adaptation from an architectural viewpoint. Research in this direction have investigate architectural
styles, in order to find the approach that better supports self-adaptation, and solutions for the problem of runtime
change. For example, [75] shows how the C2 architectural style enables dynamic evolution. In C2, adaptation is
achieved through addition or removal of components and can be carried out without suspending the computation. The
Rainbow framework [76] offers facilities for distributed component monitoring, deployment of sensors and system
reconfiguration based on strategies. It provides a reusable infrastructure to support architecture-based self-adaptation,
offering a general approach that can be then tailored to a specific class of systems.

Middlewares have been investigated to implement self-adaptation. Sadjadi and McKinley [77] proposed ACT
(Adaptive CORBA Template), which allows the weaving of adaptive code into CORBA applications, modifying
their behavior at runtime. The injected code operates on messages and exceptions which pass through the CORBA
infrastructure. The Madam middleware [78] is able to detect context changes, make decisions about the adaptation
to perform and finally implement the architectural changes. Interestingly, instead of condition-actions rules such as
those used by Rainbow, Madam adopts utility functions which establish general objectives that the middleware must
fulfill. Reasoning mechanisms are provided to find the best solution to implement the user-defined policies.

6. Discussion and Research Roadmap

COP is a recent technique compared to other more established paradigms such as AOP, which is now implemented
in many enterprise frameworks. So far, COP research has been mostly carried out by the programming languages com-
munity. This established a proper foundation for the emerging field, and helped to identify the peculiarities of COP
with respect to existing similar solutions. Several examples were reported that show success of COP in tackling cer-
tain programming problems, where traditional techniques fail or are less effective to cope with. However, the portfolio
of applications actually implemented with COP is still limited. We believe that one of the important roles of software
engineering research is to provide all the conceptual and practical tools that support the development of a software
artifact leveraging language abstractions. In this section, we trace a possible research roadmap for COP, analyzing the
issues that most evidently require (further) investigation.

Specification. The area of specification in relation to COP is still unexplored, and the definition of a precise
description of the behavior implemented by each variation is an open problem. This is particularly significant in the
context of self-adaptive software. In fact adaptation is usually triggered automatically by some reasoning engine,
which is in charge of pursuing high-level goals. Therefore, a formal specification of the behavioral change introduced
by each variation is required to effectively plan the activation in a fully automated manner.

A first effort was done in the specification of constraints among layers. Costanza and D’Hondt [44] used Feature
Description Language [79] to express layer constraints. An open problem is how to solve possible conflicts. In [44],
a violation raises an error which is prompted to the programmer, but in a fully automated environment this is clearly
unacceptable. Gonzales et al. [29] (see also Section 3.5) used a DSL for expressing layer dependencies and automat-
ically fulfill constraints violations.

Modelling. Another emerging issue is the representation of COP abstractions using modelling languages. Costanza
and D’Hondt [44] borrowed feature diagrams [80] from feature-oriented programming to model COP layers. Lincke
et al. [11] represent layers as UML containers marked with the <<Layer>> stereotype. In their approach, classes are
replicated in multiple layers with the <<partial class>> stereotype, to model partial method definitions. <<partial
class>> definitions are associated with their definition in the Base layer through the adapts relation. This notation
is effective in practice and it was adopted in the work to analyze the structure of a running example. However, a
systematic effort to propose a shared notation for the representation of COP abstractions in UML is still needed, either
by extending existing notations or using the available constructs.

21

Verification and Testing. Dynamically adaptable software is hard to design, since runtime adaptations can trigger
unpredictable behavior. Verification can play an important role in assuring that, even in a highly dynamic environment,
the desired properties hold. As already mentioned, Kamina et al. [17] verified properties expressing constraints on
layer activations using the SPIN model checker. This approach is a first attempt to verify a system implemented in
a COP language, taking into account context-related abstractions. However in [17] the specification of the system in
Promela (SPIN’s language) is written manually and no support is given to automatically translate the DSL for layer
transitions to Promela code. Another research direction is the verification to those layer activation mechanisms for
which there is no direct mapping to FSMs, such as dynamically scoped activation.

To the best of our knowledge, the area of testing for COP applications is completely unexplored. Traditional test-
ing techniques can be applied to COP programs, but they do not consider contextual constructs, which can enrich the
semantics of the analysis result. For example, a first effort in this direction could be the definition of COP abstractions-
aware coverage criteria, such as layer coverage which allow to analyze how a test suite can stress each layer of the
application. Another interesting point is to define testing techniques that are able cover layer combinations, to get
some confidence that a certain combination does not lead to runtime errors.

7. Conclusion

In this work we presented an overview of the COP techniques in the perspective of software engineering of context-
aware systems. We strongly believe that the community of context-aware systems research can benefit from the recent
advances in COP languages.

COP languages have been investigated only recently by the programming languages community. While the re-
search is still in an early stage, this new field is promising. Supporting dynamic adaptation through proper language-
level abstractions allows to address the issues of adaptive software in a direct and elegant way. Currently, many
adaptive systems leverage custom solutions, like component-based architectures, middlewares, or general paradigms
like metaprogramming which must be tailored to the needs of context adaptation. With the wide spreading of COP,
programmers can use standard abstractions to model the adaptive parts of a system. This improves the development
process, since developers do not need to learn how adaptation is implemented in each project, but just rely on well-
known abstractions. Analysis tools which support reliability and correctness of adaptive systems would benefit form
this standardization as well.

A important contribution to the adoption of COP languages should come from the implementation of prototypes
of medium to large size that take advantage of this technology. This step is fundamental to validate the design choices
made so far and to indicate which issues require further investigation.

As far as our experience is concerned, we started working on ContextErlang in the wide scope of the SMSCom
(Self Managing Situated Computing) project we are engaged in, with the aim of evaluating the COP paradigm in
real-world middle-sized projects. The term situational indicates that software behaves according to the evolving
situation in which it operates, a concept that fully correspond to context in COP. Developing and running situational
software imposes a paradigmatic shift from a conventional development to new scenario in which bits of applications
are composed in possibly unpredictable ways. At runtime COP, appears to be a natural approach for developing this
kind of applications, and our experience has been so far encouraging. Lastly, also traditional non-COP languages can
offer some support to dynamic adaptation; the interested reader may find a first proposal for our evaluation framework
presented in [81].

Acknowledgments
This research has been funded by the European Community’s IDEAS- ERC Programme, Project 227977 (SMSCom).

References

[1] A.T.S. Chan, S.-N. Chuang, MobiPADS: A reflective middleware for context-aware mobile computing, IEEE Trans. Softw. Eng. 29 (2003)
1072-1085.

[2] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, Context-aware middleware for resource management in the wireless internet, IEEE
Transactions on Software Engineering 29 (2003) 1086—1099.

22

[3]
[4]
[5]
[6]

[7]
[8]

[9]
[10]

[11]
[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]
(20]

[21]

[22]
(23]

(24]

(25]
[26]

(27]
(28]

[29]

(30]

[31]

[32]
(33]

[34]

[35]
(36]

T. Gu, H. K. Pung, D. Q. Zhang, A service-oriented middleware for building context-aware services, Journal of Network and Computer
Applications 28 (2005) 1-18.

T. Gu, H. Pung, D. Zhang, Toward an OSGi-based infrastructure for context-aware applications, Pervasive Computing, IEEE 3 (2004) 66 —
74.

K. Geihs, P. Barone, F. Eliassen, J. Floch, R. Fricke, E. Gjorven, S. Hallsteinsen, G. Horn, M. U. Khan, A. Mamelli, G. A. Papadopoulos,
N. Paspallis, R. Reichle, E. Stav, A comprehensive solution for application-level adaptation, Softw. Pract. Exper. 39 (2009) 385-422.

L. Capra, W. Emmerich, C. Mascolo, CARISMA: Context-aware reflective middleware system for mobile applications, IEEE Transactions
on Software Engineering 29 (2003) 929-945.

R. Hirschfeld, P. Costanza, O. Nierstrasz, Context-oriented programming, Journal of Object Technology 7 (2008).

P. Costanza, R. Hirschfeld, Language constructs for context-oriented programming: an overview of ContextL, in: Proceedings of the 2005
symposium on Dynamic languages, DLS "05, ACM, New York, NY, USA, 2005, pp. 1-10.

S. Gonzdlez, K. Mens, A. Cadiz, Context-oriented programming with the Ambient object system, j-jucs 14 (2008) 3307-3332.

M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, M. Perscheid, A comparison of context-oriented programming languages, in: COP ’09:
International Workshop on Context-Oriented Programming, ACM, New York, NY, USA, 2009, pp. 1-6.

J. Lincke, M. Appeltauer, B. Steinert, R. Hirschfeld, An open implementation for context-oriented layer composition in ContextJS, Sci.
Comput. Program. 76 (2011) 1194-12009.

M. Appeltauer, R. Hirschfeld, M. Haupt, H. Masuhara, ContextJ: Context-oriented programming with Java, Information and Media Tech-
nologies 6 (2011) 399—419.

M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, K. Kawauchi, Event-specific software composition in context-oriented program-
ming, in: B. Baudry, E. Wohlstadter (Eds.), Software Composition, volume 6144 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 2010, pp. 50-65. 10.1007/978-3-642-14046-4.

H. Schippers, M. Haupt, R. Hirschfeld, An implementation substrate for languages composing modularized crosscutting concerns, in:
Proceedings of the 2009 ACM symposium on Applied Computing, SAC *09, ACM, New York, NY, USA, 2009, pp. 1944-1951.

M. Appeltauer, R. Hirschfeld, T. Rho, Dedicated programming support for context-aware ubiquitous applications, in: UBICOMM ’08:
Proceedings of the 2008 The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, IEEE
Computer Society, Washington, DC, USA, 2008, pp. 38—-43.

G. Salvaneschi, C. Ghezzi, M. Pradella, JavaCtx: Seamless toolchain integration for context-oriented programming, in: Proceedings of the
3rd International Workshop on Context-Oriented Programming, COP ’11.

T. Kamina, T. Aotani, H. Masuhara, EventCJ: a context-oriented programming language with declarative event-based context transition, in:
Proceedings of the tenth international conference on Aspect-oriented software development, AOSD *11, ACM, New York, NY, USA, 2011,
pp. 253-264.

T. Kamina, T. Aotani, H. Masuhara, Designing event-based context transition in context-oriented programming, in: Proceedings of the 2nd
International Workshop on Context-Oriented Programming, COP *10, ACM, New York, NY, USA, 2010, pp. 2:1-2:6.

G. Schmidt., ContextR and ContextWiki., Master’s thesis, Potsdam, 2008.

R. Hirschfeld, P. Costanza, M. Haupt, An introduction to context-oriented programming with ContextS, in: R. Limmel, J. Visser, J. Saraiva
(Eds.), GTTSE, volume 5235 of Lecture Notes in Computer Science, Springer, 2007, pp. 396-407.

B. H. Wasty, A. Semmo, M. Appeltauer, B. Steinert, R. Hirschfeld, ContextLua: dynamic behavioral variations in computer games, in:
Proceedings of the 2nd International Workshop on Context-Oriented Programming, COP *10, ACM, New York, NY, USA, 2010, pp. 5:1-5:6.
C. Schubert., ContextPy and PyDCL - Dynamic Contract Layers for Python., Master’s thesis, Potsdam, 2008.

M. von Lowis, M. Denker, O. Nierstrasz, Context-oriented programming: Beyond layers, in: Proceedings of the 2007 International Confer-
ence on Dynamic Languages (ICDL 2007), ACM Digital Library, 2007, pp. 143-156.

P. Costanza, R. Hirschfeld, Reflective layer activation in ContextL, in: SAC *07: Proceedings of the 2007 ACM symposium on Applied
computing, ACM, New York, NY, USA, 2007, pp. 1280-1285.

ContextScheme website, http://p-cos.net/context-scheme.html, 2011.

C. Ghezzi, M. Pradella, G. Salvaneschi, Programming language support to context-aware adaptation - a case-study with Erlang, SEAMS:
Software Engineering for Adaptive and Self-Managing Systems, International Workshop, ICSE 2010 (2010).

C. Ghezzi, M. Pradella, G. Salvaneschi, Context oriented programming in highly concurrent systems, in: Proceedings of the 2nd International
‘Workshop on Context-Oriented Programming, COP *10, ACM, New York, NY, USA, 2010, pp. 1:1-1:3.

S. Gonzdlez, K. Mens, P. Heymans, Highly dynamic behaviour adaptability through prototypes with subjective multimethods, in: Proceedings
of the 2007 symposium on Dynamic languages, DLS *07, ACM, New York, NY, USA, 2007, pp. 77-88.

S. Gonzdlez, N. Cardozo, K. Mens, A. Cédiz, J.-C. Libbrecht, J. Goffaux, Subjective-C: Bringing context to mobile platform programming, in:
Proceedings of the International Conference on Software Language Engineering, 2010, Lecture Notes in Computer Science, Springer-Verlag,
Eindhoven, The Netherlands.

J. Vallejos, S. Gonzdlez, P. Costanza, W. De Meuter, T. D’Hondt, K. Mens, Predicated generic functions: enabling context-dependent method
dispatch, in: Proceedings of the 9th international conference on software composition, SC’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp.
66-81.

J. Vallejos, P. Costanza, T. Van Cutsem, W. De Meuter, Reconciling generic functions with actors, in: ACM SIGPLAN International Lisp
Conference 2009, Cambridge, Massachusetts.

G. Kiczales, Beyond the black box: open implementation, Software, IEEE 13 (1996) 8, 10 —11.

B. C. Smith, Procedural reflection in programming languages, Thesis (Ph.D.)-Massachusetts Institute of Technology, Dept. of Electrical
Engineering and Computer Science, 1982.

P. Maes, Concepts and experiments in computational reflection, in: Conference proceedings on Object-oriented programming systems,
languages and applications, OOPSLA *87, ACM, New York, NY, USA, 1987, pp. 147-155.

J. Ferber, Computational reflection in class based object-oriented languages, SIGPLAN Not. 24 (1989) 317-326.

J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification, Third Edition, Addison-Wesley Longman, Amsterdam, 3 edition,

23

[37]
(38]

[39]
[40]
[41]

[42]

[43]
[44]

[45]
[46]

(47]
(48]
[49]
[50]
[51]

[52]
[53]

[54]
[55]
[56]
[57]
(58]
[59]
[60]

[61]
[62]

[63]
[64]

[65]

[66]
[67]

(68]
[69]

[70]

(71]

2005.

P. Perrotta, Metaprogramming Ruby, Pragmatic Bookshelf, 1st edition, 2010.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An overview of Aspect], in: J. Knudsen (Ed.), ECOOP 2001
— Object-Oriented Programming, volume 2072 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2001, pp. 327-354.
10.1007/3-540-45337-718.

G. Kiczales, J. D. Rivieres, The Art of the Metaobject Protocol, MIT Press, Cambridge, MA, USA, 1991.

C. Hewitt, P. Bishop, R. Steiger, A universal modular actor formalism for artificial intelligence, in: IJCAI’73: Proceedings of the 3rd
international joint conference on Artificial intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1973, pp. 235-245.

M. Appeltauer, R. Hirschfeld, H. Masuhara, Improving the development of context-dependent Java applications with ContextJ, in: Interna-
tional Workshop on Context-Oriented Programming, COP 09, ACM, New York, NY, USA, 2009, pp. 5:1-5:5.

L. Salzman, J. Aldrich, Prototypes with multiple dispatch: An expressive and dynamic object model, in: A. P. Black (Ed.), ECOOP 2005
- Object-Oriented Programming, volume 3586 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2005, pp. 734-734.
10.1007/11531142_14.

M. D. Ernst, C. S. Kaplan, C. Chambers, Predicate dispatching: A unified theory of dispatch, in: ECOOP ’98, the 12th European Conference
on Object-Oriented Programming, Brussels, Belgium, pp. 186-211.

P. Costanza, T. D’Hondt, Feature descriptions for context-oriented programming, in: Software Product Lines, 12th International Conference
(SPLC), 2008, pp. 9-14.

G. Holzmann, Spin model checker, the: primer and reference manual, Addison-Wesley Professional, first edition, 2003.

G. Salvaneschi, C. Ghezzi, M. Pradella, ContextErlang: Introducing context-oriented programming in the Actor Model, in: Proceedings of
the 11th international conference on Aspect-oriented software development, AOSD 12, ACM, New York, NY, USA, 2012.

Reference website for the Android SDK, 2011. Http://developer.android.com/sdk/.

D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, T. Mikkonen, Self-sustaining systems, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 31-50.

J. H. Maloney, R. B. Smith, Directness and liveness in the morphic user interface construction environment, in: Proceedings of the 8th annual
ACM symposium on User interface and software technology, UIST "95, ACM, New York, NY, USA, 1995, pp. 21-28.

P. Costanza, C. Herzeel, T. D’Hondt, Context-oriented software transactional memory in Common Lisp, in: Proceedings of the 5th symposium
on Dynamic languages, DLS 09, ACM, New York, NY, USA, 2009, pp. 59-68.

G. Salvaneschi, C. Ghezzi, M. Pradella, Context-oriented programming: A programming paradigm for autonomic systems, CoRR
abs/1105.0069 (2011).

Gamma, Helm, Johnson, Vlissides, Design Patterns Elements of Reusable Object-Oriented Software, Addison-Wesley, Massachusetts, 2000.
O.Riva, C. D. Flora, S. Russo, K. Raatikainen, Unearthing design patterns to support context-awareness, Pervasive Computing and Commu-
nications Workshops, IEEE International Conference on (2006) 383-387.

G. Rossi, S. Gordillo, F. Lyardet, Design patterns for context-aware adaptation, in: Proceedings of the 2005 Symposium on Applications and
the Internet Workshops (SAINT-W’05), pp. 170-173.

A. J. Ramirez, B. H. Cheng, Design patterns for developing dynamically adaptive systems (poster summary), in: Proceedings of the 6th
IEEE International Conference on Autonomic Computing and Communications, Barcelona, Spain.

A. J. Ramirez, B. H. C. Cheng, Design patterns for developing dynamically adaptive systems, in: Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS *10, ACM, New York, NY, USA, 2010, pp. 49-58.

I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann, An overview of CaesarJ, in: A. Rashid, M. Aksit (Eds.), Transactions on Aspect-Oriented
Software Development I, volume 3880 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2006, pp. 135-173.

A. Popovici, G. Alonso, T. Gross, Just-in-time aspects: efficient dynamic weaving for Java, in: Proceedings of the 2nd international
conference on Aspect-oriented software development, AOSD *03, ACM, New York, NY, USA, 2003, pp. 100-109.

R. Pawlak, L. Seinturier, L. Duchien, G. Florin, JAC: A flexible solution for aspect-oriented programming in Java, in: A. Yonezawa,
S. Matsuoka (Eds.), Reflection, volume 2192 of Lecture Notes in Computer Science, Springer, 2001, pp. 1-24.

J. Bon, Aspectwerkz - dynamic AOP for Java, in: Proceedings of the 3rd international conference on Aspect-oriented software development,
AOSD’04.

Reference website for the Spring framework, 2011. Http://www.springsource.org/.

P. Greenwood, L. Blair, Using Dynamic Aspect-Oriented Programming to Implement an Autonomic System, Technical Report, Proceedings
of the 2003 Dynamic Aspect Workshop (DAW04 2003), RIACS, 2003.

M. Engel, B. Freisleben, Supporting autonomic computing functionality via dynamic operating system kernel aspects, in: Proceedings of the
4th international conference on Aspect-oriented software development, AOSD *05, ACM, New York, NY, USA, 2005, pp. 51-62.

P. Bachara, K. Blachnicki, K. Zielinski, Framework for application management with dynamic aspects J-EARS case study, Inf. Softw.
Technol. 52 (2010) 67-78.

J. Dowling, T. Schifer, V. Cahill, P. Haraszti, B. Redmond, Using reflection to support dynamic adaptation of system software: A case
study driven evaluation, in: Proceedings of the 1st OOPSLA Workshop on Reflection and Software Engineering: Reflection and Software
Engineering, Papers from OORaSE 1999, Springer-Verlag, London, UK, 2000, pp. 169-188.

S. M. Sadjadi, P. K. Mckinley, B. H. C. Cheng, R. E. K. Stirewalt, TRAP/J: Transparent generation of adaptable Java programs, in:
Proceedings of the International Symposium on Distributed Objects and Applications (DOA’04), Agia.

S. D. Fleming, B. H. C. Cheng, R. E. K. Stirewalt, P. K. McKinley, An approach to implementing dynamic adaptation in C++, in: Proceedings
of the 2005 workshop on Design and evolution of autonomic application software, DEAS ’05, ACM, New York, NY, USA, 2005, pp. 1-7.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, B. H. C. Cheng, Composing adaptive software, Computer 37 (2004) 56-64.

D. Batory, J. N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, in: Proceedings of the 25th International Conference on Software
Engineering, ICSE 03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 187-197.

D. Batory, Feature-oriented programming and the ahead tool suite, in: Proceedings of the 26th International Conference on Software
Engineering, ICSE ’04, IEEE Computer Society, Washington, DC, USA, 2004, pp. 702-703.

C. Cetina, P. Giner, J. Fons, V. Pelechano, Designing and prototyping dynamic software product lines: techniques and guidelines, in:

24

[72]

(73]

(74
[75]

[76]
(771
(78]
(791

(80]
[81]

Proceedings of the 14th international conference on Software product lines: going beyond, SPLC’10, Springer-Verlag, Berlin, Heidelberg,
2010, pp. 331-345.

N. Bencomo, P. Sawyer, G. S. Blair, P. Grace, Dynamically adaptive systems are product lines too: Using model-driven techniques to capture
dynamic variability of adaptive systems., in: S. Thiel, K. Pohl (Eds.), SPLC, International Software Product Line Conference, Lero Int.
Science Centre, University of Limerick, Ireland, 2008, pp. 23-32.

S. Hallsteinsen, E. Stav, A. Solberg, J. Floch, Using product line techniques to build adaptive systems, in: Software Product Line Conference,
2006 10th International, pp. 10 pp. —150.

R. B. Smith, D. Ungar, A simple and unifying approach to subjective objects, TAPOS 2 (1996) 161-178.

P. Oreizy, N. Medvidovic, R. N. Taylor, Architecture-based runtime software evolution, in: ICSE *98: Proceedings of the 20th international
conference on Software engineering, IEEE Computer Society, Washington, DC, USA, 1998, pp. 177-186.

D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow: Architecture-based self-adaptation with reusable infrastructure,
Computer 37 (2004) 46-54.

S. M. Sadjadi, P. K. McKinley, ACT: an adaptive CORBA template to support unanticipated adaptation, in: Distributed Computing Systems,
2004. Proceedings. 24th International Conference on, pp. 74 — 83.

J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, E. Gjorven, Using architecture models for runtime adaptability, Software, IEEE 23
(2006) 62 - 70.

A. van Deursen, P. Klint, Domain-specific language design requires feature descriptions, Journal of Computing and Information Technology
10 (2001) 2002.

K. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson, Feature-Oriented Domain Analysis (FODA) Feasibility Study, 1990.

C. Ghezzi, M. Pradella, G. Salvaneschi, An evaluation of the adaptation capabilities in programming languages, in: Proceeding of the 6th
international symposium on Software engineering for adaptive and self-managing systems, SEAMS ’11, ACM, New York, NY, USA, 2011,
pp- 50-59.

25

