
0

An Analysis of Language-Level Support for Self-Adaptive Software

GUIDO SALVANESCHI, Technische Universität Darmstadt
CARLO GHEZZI, Politecnico di Milano
MATTEO PRADELLA, Politecnico di Milano

Self-adaptive software has become increasingly important to address the new challenges of complex comput-
ing systems. To achieve adaptation, software must be designed and implemented by following suitable cri-
teria, methods and strategies. Past research has been mostly addressing adaptation by developing solutions
at the software architecture level. This work, instead, focuses on finer-grain programming language-level
solutions. We analyze three main linguistic approaches: metaprogramming, aspect-oriented programming,
and context-oriented programming. The first two are general-purpose linguistic mechanisms, whereas the
third is a specific and focused approach developed to support context-aware applications. This paradigm pro-
vides specialized language-level abstractions to implement dynamic adaptation and modularize behavioral
variations in adaptive systems.

The paper shows how the three approaches can support the implementation of adaptive systems and
compares the pros and cons offered by each solution.

Categories and Subject Descriptors: D.1 [Software]: Programming Techniques—Object-oriented Program-
ming; D.3.3 [Programming Languages]: Language Constructs and Features

General Terms: Languages, Design

Additional Key Words and Phrases: Context, Self-adaptive software, Context-oriented programming, Auto-
nomic computing.

ACM Reference Format:
Guido Salvaneschi, Carlo Ghezzi and Matteo Pradella, 2013. An Analysis of Language-Level Support for
Self-Adaptive Software. ACM Trans. Autonom. Adapt. Syst. 0, 0, Article 0 (2011), 29 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Over the last few years, runtime adaptation to changing conditions has become a com-
mon requirement for many software applications and for a wide spectrum of computing
systems. At one end, mobile devices and sensor networks increased their computa-
tional power and became extremely common, introducing completely new dimensions
for adaptation like energy consumption, connection availability, and spatial position.
At the other end, datacenters increased in complexity to a level that demands for self-
management.

Self-adaptive software [Salehie and Tahvildari 2009] and autonomic comput-
ing [Kephart and Chess 2003; Kephart 2005] offer promising approaches to deal with
these issues. Research in these areas led to a specialized yet interdisciplinary commu-

This research has been partially funded by the European Community’s IDEAS-ERC Programme, Project
227977 (SMSCom). Author’s addresses: G. Salvaneschi, Software Technology Group, Technische Universität
Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany, salvaneschi@cs.tu-darmstadt.de; C. Ghezzi
and M. Pradella, DEEPSE Group, DEIB, Politecnico di Milano, Piazza L. Da Vinci, 32 Milano, Italy,
{carlo.ghezzi, matteo.pradella}@polimi.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1556-4665/2011/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:2 G. Salvaneschi et al.

nity [Oreizy et al. 2008], and the involved fields range from artificial intelligence to
control theory and to software engineering. This research has been addressing both
the theoretical foundations of adaptation and, more pragmatically, how adaptation
techniques can be applied to solve the problems at hand. The autonomic self-* proper-
ties [Huebscher and McCann 2008] are an example of the goals pursued by researchers
in autonomic computing. To achieve these goals, solutions to engineer self-adaptive be-
haviors are often sought at the software architecture level, including middleware and
component-based design. Accordingly, architectural approaches to dynamic adaptation
have been extensively studied by researchers [White et al. 2004; Oreizy et al. 1998;
Kramer and Magee 2007].

As a complementary approach, researchers also adopted specialized programming
paradigms to implement adaptive systems, such as metaprogramming and aspect-
oriented programming (AOP). Recently, context-oriented programming (COP) was pro-
posed to provide ad hoc language-level abstractions for adaptive software [Hirschfeld
et al. 2008]. This research was mostly driven by the programming language commu-
nity and suggested that COP can support self-adaptive applications better than tra-
ditional paradigms [Kamina et al. 2011; Salvaneschi et al. 2012b]. Language-level so-
lutions like COP, AOP, and metaprogramming bring a significant contribution. For
example, changes are supported at fine-grain level, while architectures mostly work
at the component-level granularity. They can concisely specify interception points, al-
lowing transparent monitoring of existing applications. Finally, they provide general
purpose abstractions, improving cross-framework expertise and knowledge reuse.

Although language-level solutions have appeared in the literature, and often imple-
mented as prototypes, with a few exceptions [Dowling et al. 2000; McKinley et al. 2004]
little effort has been devoted to systematizing and comparing the alternative options.
In summary, the current state of the affairs leaves many questions open: Which pro-
gramming paradigm is suitable to implement adaptive systems? Which features are
really required? Is it possible to adopt a unique paradigm providing all the needed
abstractions?

In this paper, we wish to pave the way for a discussion on these issues. First, we
present language-level adaptation and we analyze its advantages over the other tech-
niques. Then, we describe the state of the art in language-level approaches to the im-
plementation of self-adaptive systems. Finally, and more importantly, we compare the
existing techniques—metaprogramming, AOP, and COP—and discuss their features
along a number of significant directions. We show how COP’s dedicated approach
leads to certain improvements, and highlight the need for integration where other
techniques are more effective.

This paper is structured as follows. In Section 2 we describe the scope of this work.
In Section 3 we present the three linguistic approaches analyzed in the paper, which
are then compared in Section 4, highlighting also some research challenges. Section 5
briefly illustrates some other related approaches. Finally, Section 6 presents a sum-
mary and some concluding remarks.

2. LANGUAGE-LEVEL ADAPTATION
Software adaptation can be achieved at different levels of abstraction. The survey on
self-adaptive software by Salehie and Tahvildari [Salehie and Tahvildari 2009] refers
to this issue as the artifact & granularity analysis direction. The identified alterna-
tives are: parameters, method, aspect, component, application, architecture, system
and data center. Since we are interested in language-level adaptation, our analysis
roughly lies at the method/aspect granularity level. According to the above classifica-
tion, the lowest granularity level supports adaptations that can be expressed through
parametrization. In this work we focus on more complex adaptations that concern be-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:3

haviors, like alternative algorithms. This difference has been described by McKinley et
al. [McKinley et al. 2004] as parameter adaptation versus compositional adaptation.
For convenience, we adopt the terminology of the COP literature [Hirschfeld et al.
2008], and we refer to alternative complex behaviors as behavioral variations.

From a design perspective, complex behavioral changes are more challenging to deal
with. Examples of behavioral modifications are the replacement of a method body, the
insertion of a before advice to a method call and the dynamic change of an object’s
class. Parametric change requires less support from a software design standpoint; the
same computation simply executes with different input parameters. Parameter-based
adaptation is out of the scope of this work. Noticeably, a lot of research is ongoing.
Current research challenges include the design of an autonomic manager capable of
the correct parameter selection [Hellerstein 2009; Sharifi et al. 2011] and runtime
models to keep the strategy planning effective [Epifani et al. 2009].

Supporting behavioral variations at the language level is appealing with respect
to dealing with adaptation at a higher architectural level. First, language-level ap-
proaches provide means to adapt at a very fine-grain detail. Second, many language
concepts (e.g. polymorphism and late binding) are well known to programmers and
can be easily specialized to support adaptation [Ghezzi et al. 2011]. In addition, pro-
gramming languages can take advantage of tools like compilers and type checkers to
enforce safety constraints. Third, introducing adaptation does not impose the burden
of frameworks for software components or the adoption of ad-hoc middleware. Finally,
language-level approaches offer features, like method interception, or quantification,
that in higher level solutions are simply not available.

On the negative side, general-purpose language-level adaptation mechanisms (like
AOP and metaprogramming) can lead to deep modifications in the code semantics and
the final application can become cumbersome to understand. In addition, because they
are general-purpose, these mechanisms require to be tailored to the specific setting of
self-adaptive systems. This process is usually driven on a per-application basis: many
solutions are specific for a single software, so hardly adaptable to other systems. In
conclusion, limiting complexity and providing standard abstractions to promote exper-
tise, as COP has been doing, is an important improvement.

Since these requirements must be evaluated in the context of adaptive applications,
we refer to the MAPE-K loop model (Figure 1), commonly accepted in the autonomic
computing community [Kephart and Chess 2003]. An autonomic element is composed
by an autonomic manager and a managed element. The autonomic manager controls
the managed element and is responsible for the autonomic behavior. The most im-
portant aspects of the autonomic manager are summarized in the MAPE-K acronym:
monitoring, analyzing, planning, execution and global knowledge. The autonomic man-
ager collects information about the managed element through sensors and modifies its
behavior through effectors. In this paper, we assume that the managed element is a
software artifact. The autonomic manager affects the computation of the managed ele-
ment by triggering the activation of the behavioral variations. Then behavioral varia-
tions combine to produce the overall behavior of the autonomic element. Effectors are
implemented through the activation of variations. Sensors are probes in the managed
element. Indeed, sensing includes reading the value of relevant variables in the ap-
plication, but also inspecting its structure, or querying a class to obtain the list of its
methods or determining the class hierarchy. In this work, we are especially interested
in the support that a language or a paradigm can provide for actuators (activation of
variations) and for sensors (inspection of the managed application). All the internal
activities of the manager element and how they are implemented, for example event-
condition-action (ECA) rules are out of the scope of this paper. The interested reader
can refer to [Huebscher and McCann 2008].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:4 G. Salvaneschi et al.

AUTONOMIC ELEMENT

AUTONOMIC MANAGER

MANAGED ELEMENT

SENSORS EFFECTORS

Fig. 1: The reference model of a self-adaptive system with language-level adaptation.

3. PROGRAMMING MODELS
In this section, we introduce the three main language approaches that are assessed
in this paper: metaprogramming, AOP, and COP. For each technique, we describe the
main features it offers and how it can improve the design of self-adaptive systems.

3.1. Metaprogramming
Computational reflection [Maes 1987; Smith 1984] is the ability of a program to reason
about itself, by observing the ongoing computation and possibly modifying its behav-
ior. Metaprogramming refers to the use of computational reflection, i.e., programming
at the meta level. A different use of the term metaprogramming refers generically
to programs capable of processing other programs. With this meaning, metaprogram-
ming includes, for example, compilers. However, in this paper we are interested in
the abstractions available to the developer, so we consider metaprogramming only in
the sense of using a reflective interface on the program. Like traditional program-
ming abstracts over low-level activities, metaprogramming must access the required
information and alter the program functionalities hiding the unnecessary details. A
meta-object protocol (MOP) provides the abstractions for metaprogramming, i.e., it is
the meta-interface used to access the meta level computation [Kiczales and Rivieres
1991]. Since the meta level is causally connected to the base level, a change in the
meta level reflects in a behavioral change of the base level. In this paper, we are in-
terested to the way metaprogramming can provide abstractions to support monitoring,
and dynamic activation of behavioral variations.

It must be noted that computational reflection is an extremely general mechanism.
It addresses the most diverse needs such as runtime class definition, reverse engineer-
ing of private interfaces, and separate compilation [Lamm 2001]. For this reason, when
reflection is used in the scope of dynamic adaptation, it must be tailored to this pur-
pose. So, developers specialize the use of reflective abstractions to enable inspection
and runtime change.

In languages which natively offer a metaprogramming interface, adaptation can be
directly built on top of the reflective services. Conversely, when a reflective API is not

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:5

available, or when it is not powerful enough, the designers of adaptive systems extend
the language with the required features [Hsieh et al. 1996]. Alternatively, they resort
to general-purpose extensions which introduce the reflective support. For example, Xu
and Zorzo implemented an adaptable fault-tolerant system [Xu et al. 1996] using the
Open C++ extension of C++ [Chiba 1995]. Ledoux [Ledoux 1997] proposed an adapt-
able ORB object based on Neoclasstalk [Rivard 1996], a reflective kernel for Smalltalk.

Noticeably, the term reflection has been used to refer not only to language abstrac-
tions, but also to a class of systems capable of self-inspection and self-modification.
For example, reflective middleware borrows the idea of reflection from programming
languages: they reify the middleware behavior and allow self-analysis and dynamic
change. Often, these frameworks provide ad-hoc means to implement reflective func-
tionalities, and do not necessarily rely on the metaobject protocol of the underlying
language. In this case, the meta level controls the behavior of entities which do not
necessarily belong to the language runtime or to the virtual machine. Instead, they
are at a higher level of abstraction and are specialized for the application domain.
Some approaches discussed in the following sections, like Open ORB [Blair et al. 2001]
and CARISMA [Capra et al. 2003], belong to this category. From a practical standpoint,
the resulting solutions are therefore more similar to APIs in traditional programming:
they provide access to the middleware internal structures and operational behavior.
Conceptually, however, the user can access the system at a higher level of abstraction,
since all the relevant entities are modeled via metaobjects.

Example. In Figure 2, we show an example of the Iguana/J language [Redmond
and Cahill 2006]. Iguana/J is a reflective extension to Java, which supports dy-
namic modification of running applications. The example, taken from [Redmond and
Cahill 2006], shows the implementation of an adaptive communication system that
dynamically switches between Message data structures and Block data structures to
hold the exchanged information. Adaptation is achieved by redirecting the method
calls to Channel objects to NewChannel objects. Iguana/J allows reification of a num-
ber of language operations like object creation, field reading, and method dispatch-
ing. In Iguana/J, a coherent set of metaobject classes representing a new behavior
is called a protocol. In the example, the RedirectChannel protocol (Line 18) reifies
method invocation (referenced by the Invocation identifier) into the RedirectExecute
class. The local keyword regulates class associations and creates an instance of the
RedirectExecute class for each instance of the Channel class. The Meta.associate
statement dynamically applies a protocol to a given class. The actual behavioral mod-
ification is implemented in the class RedirectExecute. The RedirectExecute class ex-
tends the MExecute (Meta-Execute) class and redefines the execute method which is
responsible to alter method executions. The send and receive methods are intercepted
(Lines 39 and 45) and redirected to a NewChannel class which uses a Block instance to
hold the information exchanged in the communication.

Applications. Reflection and MOPs have been actively used to support dynamic adap-
tation in various fields. Most of the approaches belong to the research areas of operat-
ing systems, distributed systems, and mobile and ubiquitous computing.

With some limitations, many production operating systems present forms of dy-
namic adaptation. For example, it is possible to supply parameters at boot time.
More interestingly, at runtime, the administrator can install and remove kernel mod-
ules [Denys et al. 2002]. Usually this approach adopts “hooks” in the system, so
the changes are constrained to predefined places. Gowing and Cahill [Gowing and
Cahill 1995] proposed the use of MOPs to support dynamic adaptation and exten-
sion of the operating system. Their approach, namely extension protocols, supports
non-predetermined change but still preserves system security and integrity. Madany

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:6 G. Salvaneschi et al.�
1 // Old API:
2 public class Channel {
3 public boolean send (Message m) { ... }
4 public Message receive() { ... }
5 }
6 public class Message { ... } // Data str.
7

8 // New API:
9 public class NewChannel {

10 public boolean write(Block b) { ... }
11 public Block read() { ... }
12 }
13 public class Block { ... } // Data str.
14

15

16 // Protocol:
17 package com.foo.adapters;
18 protocol RedirectChannel {
19 local:
20 reify Invocation: RedirectExecute;
21 }
22

23 // Dynamic association:
24 Meta.associate("com.acme.comms.Channel",
25 "com.foo.adapters.RedirectChannel");
26� �

�
27 // Invocation metaobject:
28 public class RedirectExecute
29 extends MExecute {
30 private NewChannel nc;
31

32 public Object execute(Object o,
33 Object[] args,
34 Method m)
35 throws InvocationTargetException {
36 if(nc == null)
37 nc = new NewChannel(...);
38 String mname = m.getName();
39 if(mname.equals("send")) {
40 Message msg = (Message)args[0];
41 ... // Convert msg to new Block
42 return (nc.write(blk));
43 }
44

45 else if (mname.equals("receive")) {
46 Block blk = nc.read();
47 ... // Convert blk to new Message
48 return (msg);
49 }
50 else return(proceed(o,args,m));
51 }
52 }� �

Fig. 2: An example of the Iguana/J language.

et al. [Madany et al. 1992] discuss metaprogramming extensions to C++ in the scope of
operating systems. For example, they advocate the need for runtime definition of inher-
itance relationships to support late time specialization. In the Apertos object-oriented
operating system [Yokote 1992; Itoh et al. 1995] an object is associated to a group of
metaobjects (a meta-space), which determine its semantics. An object can change the
metaobjects to modify its behavior. This solution introduces a high degree of flexibility:
for example, it is possible to select the proper network protocol to deliver a message,
to dynamically assign resources and enforce real-time constraints, or to manage the
memory at the object granularity.

In distributed systems, the need for flexibility and runtime adaptation raises natu-
rally due to the changing quality of the network communication and to the dynamic
reconfiguration of services and hosts. In this context, it has been proposed to aug-
ment existing frameworks – like Java RMI and CORBA – with a reflective interface.
The purpose is to access the adaptation capabilities of the system and dynamically
adjust policies and mechanisms for distribution [Eliassen et al. 1999]. Reflective mid-
dleware [Kon et al. 2002] has been proposed as a mean to dynamically adapt to the
environment through a metaprogramming interface. For example, reflection is used
to modify proxy objects and force them to operate locally or remotely [Ledoux 1997].
Open ORB [Blair et al. 2001] is a middleware platform developed at Lancaster Uni-
versity. Open ORB provides several reflective interfaces to access different aspects of
dynamic adaptation. These multiple meta-models include interceptors, to introduce
monitoring, and resources to adapt the resource usage and the management policies.
Dynamic TAO [Roman et al. 1999] is a CORBA reflective system, which supports var-
ious forms of dynamic reconfigurations including performance optimization, presence
of new hardware and software components, and error recovery.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:7

Specific middleware solutions have been developed to support mobile and ubiquitous
computing. Applications in these new areas introduce new technical challenges since
the need to respond to the changes in the environment often requires a dynamic re-
configuration of the system. CARISMA [Capra et al. 2003] is an adaptable middleware
which exploits reflection to enhance the development of context-aware mobile applica-
tions. MobiPADS [Chan and Chuang 2003] is an applicative layer for context-aware
mobile computing. In MobiPADS, adaptation policies are available to the program-
mer through metaobjects, which also provide access to subscribe to contextual events.
ReMMoC [Grace et al. 2003] is a reflective platform to support interoperability among
heterogeneous services. Dynamic adaptations include the binding of new services and
the discovery protocol. In addition, a meta-level API allows introspection of the plat-
form structure.

Behavioral Change. Metaprogramming facilities can be classified as inspection and
modification. Modification refers to semantic change; inspection deals with the obser-
vation of a program execution.

Self-adaptive systems based on metaprogramming rely on modification to operate
dynamic changes. Possible modifications include redefining method bodies, intercept-
ing method calls, modifying the dispatching algorithm and augmenting an object with
new methods or fields. Ledoux [Ledoux 1997] adopts dynamic class change to modify
the behavior of objects. Remote and local method invocations are managed transpar-
ently by switching between classes which implement alternative method lookup pro-
tocols. Dowling et al. [Dowling et al. 2000] leverage reflection to change the binding
between method name and method implementation. Hsieh et al. [Hsieh et al. 1996]
use reflection to enable dynamic linking of modules. Xu et al. [Xu et al. 1996] inter-
cept method executions to inject the code to implement fault-tolerance. In addition,
this mechanism enables dynamic adaptation of the fault tolerance scheme. In a previ-
ous paper we have shown how dynamic class change can be used to support runtime
adaptation in a caching system [Ghezzi et al. 2011].

Monitoring. Inspection is the way metaprogramming can be used to implement sen-
sors and monitor the execution of a self-adaptive system. Observing the current state
of the application is a basic functionality provided even by the most limiting metapro-
gramming models. For example, in Java, the programmer can query classes to know
their attributes and inspect the associated value.

Monitoring provides means to access the running application and collect informa-
tion about current values. For example, the metaprogramming support of Java allows
one to inspect an object by accessing even private fields. Dawson et al. [Dawson et al.
2008] propose to use Java dynamic proxies to monitor self-adaptive applications by
intercepting method calls. Dynamic proxies are part of the reflection facilities of Java
because they can provide an interface which is dynamically selected. In this way, it is
possible to proxy objects only known at runtime. Interestingly, via proxy chaining, this
mechanism also supports multiple monitors composition.

Beside monitoring, inspection can support the analysis of the structure of the pro-
gram environment. Structural inspection addresses the need for collecting informa-
tion about the current design of the system. This includes which modules are loaded,
how the class hierarchy is structured, and which functions are implemented. Hsieh et
al. [Hsieh et al. 1996] modified the Modula-3 language to support the inspection of the
relationships among code structures, such as the interfaces implemented by a module.

Variations and Separation. Reflection has been used to separate different concerns, espe-
cially before the introduction of AOP. Dowling et al. [Dowling et al. 2000] compare dif-
ferent language-level techniques to support software dynamic adaptation: reflection,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:8 G. Salvaneschi et al.

dynamically linked libraries (DLL), and design patterns. According to their study, com-
putational reflection offers significant advantages in separating functional code from
adaptation code.

Metaprogramming supports separation of concerns thanks to the distinction be-
tween the meta layer and the base layer. Since specific functionalities can be imple-
mented in the meta layer, what an object does is separated from how it behaves. For
example, Stroud and Wu [Stroud and Wu 1996] implement a library of atomic data
types which enforces separation of concerns using MOPs. The application code is im-
plemented at the base level, and the synchronization/recovery code is at the meta level.
Similarly, Xu et al. [Xu et al. 1996], carried out an experimental study on control struc-
tures for fault tolerance. They compared a pure C++ implementation and the use of an
external reflective library. The version based on metaprogramming can keep the fault
tolerance code better separated by implementing it in the meta layer. In this way, fault
tolerance can be introduced without adding complexity to the base code. Additionally,
different fault-tolerance schemes can be selected dynamically and applied transpar-
ently to the existing application.

Another technique to enforce separation of concerns via metaprogramming is based
on multiple metaobject protocols. In this case, separation of concerns is supported
through the implementation of several distinct meta-space models. Each meta-space
accounts for different aspects (e.g. fault-tolerance, concurrency and persistence), a
technique initially introduced in [Okamuray et al. 1992]. For example, the Open ORB 2
middleware [Blair et al. 2001] exposes an interception meta-model to insert pre- and
post- behavior at the interfaces. A distinct meta-space, the resources meta-model, in-
stead, provides access to the configuration of the resource management.

3.2. Aspect-Oriented Programming (AOP)
Aspect-oriented programming was proposed to handle separation of concerns [Kiczales
et al. 1997; Tarr et al. 1999]. With AOP, the functionalities that are orthogonal to the
main modularization direction, such as logging, persistence, synchronization and fail-
ure handling, can be kept separate, improving modularity and maintainability. After
separate development, the concerns are composed to achieve the complete functional-
ity. AOP allows one to specify points in the program execution (joinpoints) in which the
control is transferred to the code implementing the separate concern (advice). AOP lan-
guages support the specification of joinpoints through convenient expressions (point-
cuts) which quantify over joinpoints sets. An aspect weaver merges the advices and
the base application. Over the years, crosscutting concerns have become an important
issue of software design. Industrial-strength tools have been developed to support this
principle, such as JBoss AOP 1, Spring AOP 2 and the AspectJ framework 3. For a
comprehensive survey of the existing AOP techniques, the interested reader can refer
to [Brichau and Haupt 2005].

Example. In Figure 3, we provide an example of the JAsCo language [Suvée et al.
2003]. JAsCo is an AOP extension of Java, which combines ideas from aspect-
orientation and component-based software development. In JAsCo an aspect bean
captures a crosscutting behavior, and connectors bind aspects to the base code. This
design decouples orthogonal features from their context and encourages component
reuse. The example, taken from [Vanderperren et al. 2005], implements an incremen-
tal backup that can be dynamically activated on selected resources. Line 1 defines an

1http://www.jboss.org/jbossaop
2http://www.springsource.org
3http://www.eclipse.org/aspectj

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:9�
1 class DataStorePersistence {
2

3 hook Backup {
4 int i = 0;
5

6 Backup(triggeringmethod(..args)) {
7 execute(triggeringmethod);
8 }
9 isApplicable() {

10 //true when changed since last visit
11 }
12 before() {
13 FileOutputStream fw =
14 new FileOutputStream("state"+i++);
15 ObjectOutputStream writer =
16 new ObjectOutputStream(fw);
17 writer.writeObject(getDataMethod());
18 writer.close();
19 }
20 refinable Object getDataMethod();
21 }
22 }� �

�
23 refining DataStorePersistence.Backup for
24 DataStore {
25 public Object getDataMethod() {
26 DataStore store =
27 thisJoinPointObject;
28 return store.getData();
29 }
30 }
31

32

33 connector PersistenceConnector {
34 DataStorePersistence.Backup hook =
35 new DataStorePersistence.Backup(
36 * DataStore.set*(*));
37 }
38

39

40

41

42

43

44� �
Fig. 3: Persistence in the JAsCo language.

aspect bean, which declares a Backup hook in the base code. In this case, the execu-
tion of the triggeringmethod method is hooked (Line 7). To keep aspect beans generic
with respect to their execution context, at this stage, the triggeringmethod method is
abstract and it is still not bound to any concrete implementation. In the isApplicable
clause, aspect beans can declare a runtime condition that enables the injection of the
aspect behavior. Finally, the before clause defines the injected behavior.

When the aspect refers to the base code, it relies on abstract refinables like
the getDataMethod method (Line 17). Refinables are bound to concrete methods
in refinements: Line 23 shows a refinement of the DataStorePersistence aspect
for the DataStore class. The refinement provides a concrete implementation of the
getDataMethod method (Line 23). Refinements are late-bound, i.e., at runtime, the
most specific refinement for the object is executed. Line 33 defines a connector, which
deploys the DataStorePersistence aspect. The triggeringmethod parameter defined
in the DataStorePersistence aspect bean is bound to each setter method of the
DataStore class, i.e., each occurrence of the regular expression in Line 33. As a re-
sult, before the execution of a setter, the control transfers to the body of the before
clause (Line 12).

Applications. Several contributions dating back to the early days of aspects are mo-
tivated by supporting software dynamic adaptation. Among the others, the issue of
dynamic adaptability can be found in the papers presenting PROSE [Popovici et al.
2002; Popovici et al. 2003], JAC [Pawlak et al. 2001; Pawlak et al. 2004], and As-
pectWerkz [Boner 2004; Vasseur 2004]. Not surprisingly, many researchers experi-
mented with AOP to implement self-adaptive systems. Yang et al. [Yang et al. 2002]
used AspectJ: in their approach, the program is firstly prepared to adaptation by in-
strumenting it with convenient interception points. At runtime, an adaptation ker-
nel based on ECA rules intercepts the execution and triggers the adaptive behavior.
Greenwood and Blair introduced dynamic AOP in autonomic computing [Greenwood
and Blair 2003]. The motivation for their choice is threefold. First, they observed that
many concerns that ask for adaptation are also crosscutting. Second, they advocated

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:10 G. Salvaneschi et al.

the benefits of encapsulating the adaptations that are required in an autonomic sys-
tem. Third, they wished to use the support given by dynamic AOP for aspect applica-
tion and removal. A subsequent work [Greenwood and Blair 2006] introduces a dis-
tinction between monitoring aspects and effector aspects. The former are in charge
of inspecting the application, the latter are behavioral modifications. TOSKANA [En-
gel and Freisleben 2005] is a toolkit for deploying dynamic aspects into an operating
system kernel. TOSKANA was used to modify NetBSD to support self-configuration,
self-healing, self-optimization, and self-protection properties. JEARS [Bachara et al.
2010] is a framework for autonomic Web applications: sensor and effectors are imple-
mented as aspects and can be deployed and removed dynamically through a user inter-
face. Besides traditional applications, AOP has been used to introduce adaptability in
service-oriented applications (SOAs) in general, and Web services (WSs) in particular.
Cibrán et al. actively worked on AOP in adaptive systems (e.g. [Cibrán et al. 2007]).
They showed how aspects can address several issues in WS adaptability, including
monitoring, policy selection and WS composition. Other researchers combined AOP
with the WS orchestration language BPEL to obtain automatic synthesis of adaptable
WSs [Courbis and Finkelstein 2005; Charfi and Mezini 2004].

Behavioral Change. To enable modularization of crosscutting concerns, AOP provides
means to intercept the execution flow in the base program and redirect it to an advice.
In self-adaptive systems, this feature supports dynamic behavioral change and inspec-
tion of the running system. Behavioral change must be triggered when certain events
in the execution of the program occur. Similarly, inspection requires that only certain
points of interest are observed. Through pointcuts, AOP allows one to explicitly refer
to and quantify over those execution points. Pointcuts can be either static or dynamic.

Static pointcuts are events in the program execution that are determinable during
compilation. For example, in AspectJ, the execution pointcut transfers control to an
advice every time a method matching a given expression is called. Static pointcuts do
not support runtime adaptation directly. However, they allow intercepting the execu-
tion flow and introduce a layer of indirection: after the interception, other mechanisms
can be used to dynamically select the context-dependent behavior. For example, in
TRAP/J [Sadjadi et al. 2004] AOP is used to intercept method calls, and behavioral
change is triggered by metaprogramming.

Dynamic pointcuts, instead, designate an execution point that cannot be decided at
compile time. For example, in AspectJ, the if and the cflow pointcuts belong to this
category [Laddad 2009]. The if pointcut activates an advice when a Boolean condi-
tion is satisfied; the cflow pointcut performs the activation along the current control
flow. In adaptive systems, dynamic pointcuts are fundamental to defer to runtime the
adoption of a certain monitoring scope or to trigger a behavioral variation. The expres-
sive power of the pointcut language is important to control the adaptation effectively.
In the case of cflow, for example, it is possible to achieve non-local adaptation, since
the change propagates along all the execution flow into nested method calls. Dynamic
pointcuts are a fundamental mechanism used by dynamic AOP, and advanced aspect
languages like CaesarJ provide even more elaborate activation strategies [Aracic et al.
2006].

Weaving is the process of binding advices with the rest of the code. Starting from
the first compile-time weavers [Kiczales et al. 2001], several solutions exploiting other
biding times have been proposed, arguing that to meet all the possible requirements,
the whole spectrum is required [Bollert 1999]. Whereas weaving is not strictly related
to dynamic capabilities, as we shortly discuss, it has important implications in the
development process of an adaptive system.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:11

In compile-time weaving – sometimes referred to as static weaving – aspects are
merged with the codebase during the compilation process. For example, the AspectJ
ajc static weaver postprocesses the bytecode from the Java compiler and introduces
the hooks for the advices. Other compile-time weavers directly operate on the source
code.

Load-time weaving enhances the code when the class is loaded in the virtual ma-
chine. AspectJ also supports this kind of weaving: via the javaagent option of the Java
VM, which specifies a preprocessor for the classes to be loaded. The introduction of
hooks for the advices is often performed by using bytecode manipulation libraries like
ASM [Bruneton et al. 2002] and BCEL [Dahm and Berlin 1998]. Load-time weaving
addresses some adaptation scenarios that cannot be managed with compile-time weav-
ing. For example, with load-time weaving, it is not necessary to distribute a woven
version of an existing library. Instead, the library can be adapted just before load-
ing. Another application of load-time weaving are execution models that include code
generation. For example, JSPs are compiled on the fly at the first request, so compile-
time weaving is simply not possible. These examples show that load-time weaving may
overcome some technical limitations of static weaving. Conversely, load-time weaving
is difficult to exploit as a mechanism for the activation of behavioral variations. In this
perspective, load-time weaving can be considered as a deferred form of static weaving.

In runtime weaving, advices are woven during the execution of the application, with-
out the need for recompilation or rebooting. Runtime weaving relies on virtual machine
support, like breakpoints, to intercept joinpoint events [Popovici et al. 2002]. JIT com-
pilers can be used to insert advice hooks [Sato et al. 2003; Popovici et al. 2003], and
hot swap allows replacing the running code [Boner 2004; Vasseur 2004]. To achieve
better performance, VM modifications have been proposed to specifically support this
feature [Nicoara et al. 2008; Bockisch et al. 2006]. The advantage of runtime weav-
ing is to perform optimizations based on information that is known only at runtime.
For example, if the aspects are not known in advance, with static weaving and load-
time weaving, all the possible joinpoints must be instrumented to intercept the control
flow and execute the advice. Depending on the aspect, only some hooks must be re-
ally activated and runtime checks can impose a high performance overhead. Instead,
runtime weaving can insert hooks only where they are needed and avoid unnecessary
checks [Sato et al. 2003]. For these reasons, runtime weaving is an important technol-
ogy to efficiently support late binding of variations in self-adaptive systems.

Dynamic AOP refers to activating, configuring and removing aspects dynamically.
With dynamic AOP, programmers can plug and unplug aspects during the execu-
tion of the program. Among the others, AspectWerkz [Boner 2004; Vasseur 2004]
JAC [Pawlak et al. 2001; Pawlak et al. 2004], JBoss AOP, CaesarJ [Aracic et al. 2006],
PROSE [Popovici et al. 2002] and JAsCo [Suvée et al. 2003] support dynamic AOP in
various forms.

Dynamic AOP is especially important for self-adaptive systems since it natively
supports dynamic modification of behavior when aspects are dynamically activated.
A typical example is caching. Caching is a crosscutting concern, since cache access
and cache invalidation are scattered across the code. So caching is correctly modeled
by AOP. Since there is no optimal strategy for all configurations and all applications,
dynamic AOP is needed to switch to a better caching strategy when the hit rate is
too low [Ségura-Devillechaise et al. 2003]. Dynamic AOP also supports runtime con-
figuration of the activation scope. In CaesarJ, the developer uses different language
primitives to activate an aspect on different portions of the application. For example,
per-instance, per-class, per-thread, application-wide and VM-wide activations are pos-
sible. Dynamic configuration of the activation scope is important in adaptive systems
to enable behavioral variations at the desired granularity. For example, in self-healing

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:12 G. Salvaneschi et al.

systems, monitoring should be activated only on the relevant components, since global
monitoring can introduce unacceptable overhead.

The relation between weaving strategy and dynamic AOP deserves some observa-
tions. Ignoring optimization, dynamic support for AOP and weaving strategy are, in
principle, orthogonal. An AOP implementation can hook all the possible joinpoints
statically and postpone at runtime their activation depending on the configuration of
the active advices. Not surprisingly, many dynamic AOP systems require pre-runtime
class preparation [Boner 2004; Pawlak et al. 2001; Aracic et al. 2006; Popovici et al.
2002].

Monitoring. With AOP, it is possible to modify the execution of an application by in-
serting additional or alternative behavior. Monitoring is a simple application of this
feature: the injected behavior simply detects information about the running program.
Since monitoring and logging are typically crosscutting aspects, AOP is an extremely
effective way to accomplish this task. Remarkably, aspect languages include proper
abstractions to transfer data from the intercepted point to the advice. A common ex-
ample is accessing the parameters of a method call to perform a security check [Win
et al. 2001]. Another advantage of AOP is that quantification allows one to concisely
activate monitoring on several execution points. These features make AOP convenient
to implement monitoring in self-adaptive systems.

Greenwood and Blair [Greenwood and Blair 2006] use AOP to monitor the execu-
tion time of getter methods. If the execution time exceeds a threshold, an ECA rule is
triggered and caching is activated. When the requirements of an application change
dynamically, monitoring must be part of the adaptable functionalities. In this case,
dynamic AOP is an ideal solution. For example, Cibrán et al. [Cibrán et al. 2007] use
dynamic AOP to monitor a pool of WSs and select those compliant with certain policies.
Since policies can be added at runtime, new monitoring features must be introduced
dynamically. Janik and Zielinsky [Janik and Zielinski 2010a] present a reconfigurable
monitoring system based on AOP. Monitoring can be enabled dynamically through as-
pect activation and deactivation. This also limits the number of resources that are
monitored simultaneously.

Variations and Separation. In many systems, the set of modifications that coherently
determine a behavioral adaptation crosscut the application structure. For example, in
a mobile device, adapting to a context with low bandwidth availability can require
several countermeasures. First, the network management system must be modified to
increase the number of times a transmission is tried again in case of failure. Addi-
tionally, the data model must be adapted to use local information instead of a remote
service (e.g. a map from a database instead of a dynamically updated one). Finally, the
interface must be modified to inform the user. So, the adaptation to the low-bandwidth
context impacts on different functionalities of the application.

Several researchers observed the crosscutting nature of dynamic adaptations. Or-
thogonal concerns include network availability [Kamina et al. 2011], user activity [Ap-
peltauer et al. 2010], device location [Popovici et al. 2003] and access control poli-
cies [Popovici et al. 2002]. Proper modularization of crosscutting concerns is the fun-
damental motivation behind AOP, so adaptive applications can clearly benefit from
AOP design. Remarkably, McKinley et al. [McKinley et al. 2004] in their analysis on
self-adaptive systems take into consideration separation of concerns and identify AOP
as an enabling technology to design adaptive software.

3.3. Context-Oriented Programming (COP)
COP was recently introduced to provide ad-hoc language-level abstractions for context-
aware software. Without proper programming support, context-aware applications are

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:13

cumbersome to design. In the absence of specific COP constructs, context adaptation
would be achieved by spreading across the application conditional statements that
trigger dynamic changes. The basic program logic is thus tangled with the possible
adaptations, and this leads to applications that are hard to understand and main-
tain. Another issue is that adaptations rarely occur individually. More often, multiple
context conditions coexist at the same time and adaptations must be combined accord-
ingly. In traditional languages, this combination must be performed by dedicated code.
COP, instead, addresses these issues by providing abstractions that modularize oth-
erwise scattered software adaptations. Additionally, COP directly supports variations
activation and runtime combination.

COP defines context as any computationally accessible information [Hirschfeld et al.
2008]. So, the programmer can represent any dynamic variability along the direction
of context. This pragmatic approach makes COP ideal for self-adaptive software, since
the adaptations can be easily modeled as contexts and triggered in response to detected
changes.

COP extensions have been proposed for several languages, including Java, Python,
Ruby, JavaScript, Common Lisp and Scheme [Appeltauer et al. 2009]. Since the new
abstractions need to fit into the underlying programming model, the concrete solutions
are not completely homogeneous. In addition, researchers have investigated amend-
ments to the original COP model to better address specific design issues. This adds
further variability to the available COP solutions. Despite this variety, some concepts
are essential and are supported in all implementations. The support of abstraction
for behavioral variations is the distinguishing feature of COP: variations are repre-
sented in the language by dedicated abstractions. These abstractions are usually first
class, so they can be referenced, assigned to parameters and returned by functions.
Additionally, variations provide means to modify the application in different places,
potentially scattered across the code. This feature is fundamental to support cross-
cutting adaptations. Activation distinguishes many COP approaches from traditional
AOP techniques: variations can be dynamically enabled and disabled. When a vari-
ation is activated, the behavior it models starts modifying the application. Variation
deactivation returns to the original application behavior. Finally, behavior combination
supports the reaction to simultaneous contextual conditions. If multiple variations are
active at the same time, the software behavior is given by the combination of all the
active variations. According to the crosscutting nature of certain variations, the com-
bination occurs at each execution point.

COP languages provide alternative activation mechanisms depending on the scope
on which behavioral variations are enabled. From a practical standpoint, the program-
mer has the choice of extending the activation on different portions of the application.
Indeed, this aspect also has deeper consequences: conceptually, different activation
mechanisms coincide with different context models.

In most COP languages, including ContextJ [Hirschfeld et al. 2008], which is dis-
cussed shortly, context is associated to control flow, so threads can live in different con-
texts. In this case, the behavioral variations propagate their effect along the dynamic
extent of the activation block. In self-adaptive systems this model is useful when con-
text is per-thread and it is fetched before a long sequence of operations: an adaptation
is planned and remains the same for the whole subsequent computation of that thread.

A different approach is adopted in the Ambience language [González et al. 2007],
where context is shared across all the application. So, if a thread activates a variation,
the change is seen by all the other threads. This solution has the advantage that the
communication between the autonomic manager and the managed elements is simpli-
fied: the thread implementing the autonomic manager can directly trigger a variation
activation on the whole program. Yet, this model requires care, since the activation

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:14 G. Salvaneschi et al.

is completely asynchronous and it is easy to activate conflicting or inconsistent varia-
tions.

ContextErlang [Salvaneschi et al. 2012b], a COP extension of Erlang 4, explores
another alternative in the design space. The Erlang concurrency model is based on
agents which exchange messages and have no shared memory [Hewitt et al. 1973].
ContextErlang improves Erlang agents to account also for context-awareness. In Con-
textErlang, variations are activated on context-aware agents, which encapsulate the
current context along computation and state. This solution is especially effective to
model self-adaptive systems in which the context is associated to different entities in
the application. For example, clients using different communication protocols can be
modeled as context-aware agents and can be individually adapted.

Although most COP languages enforce a single activation model, an interesting per-
spective is to open the activation model and leave to the programmer the freedom of
designing the activation mechanism that better fits her needs. ContextJS, proposed by
Lincke et al. [Lincke et al. 2011], is an attempt in this direction. ContextJS is an open
implementation, which provides an interface to customize the activation strategy. For
example, global, dynamically scoped, and even per-object activation can be easily im-
plemented. Beside those known solutions, the programmer can implement own custom
activation models.

Example. To be more concrete, in Figure 4, we present a COP example taken
from [Appeltauer et al. 2011]. The example is written in the ContextJ language, a
COP extension to Java. It is taken from [Appeltauer et al. 2011] and implements an
adaptable bank account system. Most COP languages represent behavioral variations
via layers. In ContextJ, layers are defined by the layer keyword. Layers contain a se-
quence of methods, which implement an alternative behavior of the application. In the
example, the EncriptionLayer layer and the LoggingLayer layer define an alternative
behavior of the Account class and of the TransferSystem class.

The Account class defines a variation of the credit method which encrypts the credit
value (Line 12) and a variation which logs the operation (Line 20). If no layer is active,
the standard definition of credit is executed. The with statement dynamically acti-
vates a layer in the scoped block. In case of multiple activations, they are executed in
reverse order, starting from the innermost activated layer and proceeding towards the
outermost layers. Variants of the with statement accept a collection of layers which
can be unknown at compile time. A without statement can be used to temporarily
disable layers. Layers combine through proceed, which calls the method in the next
active layer or the basic method if no active layers are left. The proceed method call is
similar to its homonymous call in AOP and to super in many OO languages. The effect
of the with statement propagates along the control flow. So it is possible to adapt not
only the local execution, but also to propagate changes over the dynamic extent. Since
layers are first-class entities, they can be stored in variables and activated later. Other
forms of combinations are also possible. Besides around methods, which are executed
in place of the original definition, layers can provide before and after methods.

The example presented here only accounts for the basic functionalities provided by
COP. In the following sections, we describe the most important variants of this model.
The interested reader can find a comprehensive overview in [Appeltauer et al. 2009]
and [Salvaneschi et al. 2012a].

Applications. Since COP is a recent technique, the number of existing applications
is limited. However, several scenarios for self-adaptive software have been already
explored and COP abstractions proved to be an effective solution.

4http://erlang.org

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:15�
1 public class Account{
2 private int accountNumber;
3 private float balance;
4 ...
5 public void credit(float amount){
6 balance = balance + amount ;
7 }
8 public void debit(float amount){
9 balance = balance - amount ;

10 }
11 layer EncryptionLayer{
12 public void credit(int am){
13 proceed(RSA.decrypt(am));
14 }
15 public void debit(int am){
16 proceed(RSA.decrypt(am));
17 }
18 }
19 layer LoggingLayer{
20 after public void credit(int am){
21 Logger.logCredit(this, am);
22 }
23 after public void debit(int am){
24 Logger.logDebit(this, am);
25 }
26 }
27 }
28� �

�
29 public class TransferSystem{
30 public void transfer(Account from,
31 Account to,
32 float amount){
33 from.debit(amount);
34 to.credit(amount);
35 }
36 ...
37 layer EncryptionLayer{
38 public void transfer(Account from,
39 Account to,
40 int amount){
41 without(EncryptionLayer){
42 proceed(from, to,
43 RSA.encrypt(amount));
44 }} }
45 layer LoggingLayer{
46 after public void transfer(Account from,
47 Account to,
48 int amount){
49 Logger.logTransfer(from, to, amount);
50 } }}
51 ---
52 public void transfer100(Account from,
53 Account to){ ...
54 with(LoggingLayer, EncryptionLayer){
55 transferSystem.transfer(from, to, 100);
56 } }� �

Fig. 4: An example of the ContextJ language.

In the area of desktop applications, Appeltauer et al. [Appeltauer et al. 2010] pro-
posed CJEdit, an adaptable development environment. This program dynamically
switches from a code-editing mode to a documenting mode depending on the user ac-
tivity. Lincke et al. [Lincke et al. 2011] developed the LivelyKernel application. In
LivelyKernel, the user can draw new shapes inside a virtual desktop and figures in
the workbench adapt their appearance depending on the surrounding entities.

Mobile applications are a classic scenario for adaptive software. Gonzales et
al. [González et al. 2007] developed the CityMaps mobile application. CityMaps can
modify its behavior depending on environmental conditions. For example, it displays
a static map when no connection is available; when the GPS sensor is active, instead,
the map is dynamically updated with the user position. Kamina et al. [Kamina et al.
2011] present the Pedestrian Navigation system, an adaptable Android application ca-
pable of switching at runtime between the WiFi and the GPS to provide a better user
experience when more information is available.

In the field of server-side software, we implemented a chat server which adapts to
the user state [Salvaneschi et al. 2012b]. For example, when users are offline, a cor-
responding variation is activated and the messages are stored and delivered later.
Finally, in [Salvaneschi et al. 2011a] we designed an autonomic Web application which
modifies the quality of the Web pages depending on the available network bandwidth.

Behavioral Change. Most COP languages adopt explicit mechanisms to trigger vari-
ations. Adaptive systems monitor the events from the external world and from the
application execution, then modify their behavior depending on the collected data.
Concretely, in COP, the programmer can rely on specific primitives – like the with
statement – to activate variations. In the design of adaptive systems, explicit activa-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:16 G. Salvaneschi et al.

tion is often adopted when the events come from the external environment. Conversely,
when the source of the events is the application itself, i.e., events are points in the
execution flow, explicit activation can be cumbersome to apply. Since each activation
point must be explicitly managed, the programmer can incur in the code scattering
problems that COP should specifically avoid. To solve this issue, COP researchers bor-
rowed quantification from AOP and introduced in their languages expressions that
can refer to execution points in the program. For example, in JCOP [Appeltauer et al.
2010] variations are enabled on the control flow depending on pointcut-like predicates.
Since pointcuts quantify over several execution points, the activation code can be prop-
erly modularized. EventCJ [Kamina et al. 2010; 2011] is a Java extension which sup-
ports per-object layer activation. In EventCJ, the programmer can declaratively define
variations transitions on objects. When an event associated to a point in the program
execution is reached, the associated transitions are triggered.

Monitoring. Interestingly, the contamination of COP with pointcut-like expressions
from AOP is the first attempt to provide COP with dedicated abstractions for program
monitoring. However, COP does not address external events or complex event combi-
nation. In the aforementioned approaches, the events observed in the execution are
immediately bound to variation activation and do not constitute a general mechanism
for accessing the application’s state. For this reason, at the time being, monitoring is
probably the area of adaptive systems where COP has more needs to be coupled with
other techniques. For example, in [Rho et al. 2011] COP is coupled with a context pro-
visioning system. The framework supports queries on the current context, which are
continuously evaluated, and COP provides means to dynamically adapt the application
when the result changes.

Variations and Separation. From a modularization standpoint, ContextJ layers, dis-
cussed in the previous sections, are defined inside classes. The advantage of this ap-
proach is that the alternative behavior is immediately available in the same code unit
of the basic behavior. Other COP languages – for example ContextL [Costanza and
Hirschfeld 2005] – support different modularization conventions and allow variations
declaration outside the lexical scope of the module they augment. This design improves
extensibility, since adaptive systems can be provided with new behaviors without mod-
ifying the existing codebase. A survey of the modularization solutions investigated by
COP can be found in [Salvaneschi et al. 2012a].

4. DISCUSSION AND CHALLENGES
In this section, we provide a comparative discussion of the linguistic mechanisms de-
scribed earlier, by focusing on how they impact on some key aspects of the development
of self-adaptive applications.

4.1. Modularization and Extensibility
In adaptive software, modularization includes adding new behavioral variations to the
system. A desirable property is that, when the basic system is extended, the varia-
tions automatically extend to the new portion. Composition enables reuse of existing
code units, like behavioral variations, by combining them to achieve complex behav-
ior. Future extensions of the adaptive system are then immediately available through
composition of existing features.

In many adaptive systems, the code implementing the adaptations is kept separate
from the codebase. This solution has a number of advantages. In the maintenance
phase, the code is more readable and modifications are localized. In the development
phase, separate teams can work on different adaptations separately. For example, pro-
grammers specialized in fault-tolerance can implement recovery strategies indepen-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:17

dently of security experts focusing on access control. It has been argued that, in gen-
eral, a clear separation between functional logic developers and adaptability develop-
ers is highly desirable [Janik and Zielinski 2010b].

Behavioral variations often plug into different basic functionalities of the applica-
tion [McKinley et al. 2004; Cibrán et al. 2007]. This aspect is aggravated by the fact
that often adaptation involves non-functional requirements, like performance or secu-
rity, which are known to be crosscutting, and can lead to scattering and tangling code
if not properly modularized [Kiczales et al. 1997].

In the context of metaprogramming, crosscutting adaptation is supported by inject-
ing orthogonal functionalities in several places of the application, e.g. by intercept-
ing method executions in a way similar to AOP. However, since metaprogramming
does not provide elaborate pointcut languages to express interception concisely, this
is more tedious than in AOP. Another issue stems from the fact that metaprogram-
ming does not adopt a standard model for behavioral variations, so modularization of
the adaptive behavior has no uniform granularity. This may easily conflict with the
way object-oriented software is organized, e.g. it is possible to replace entire classes or
single methods indiscriminately. Another serious drawback is that the behavior of a
program can be modified in ways that break encapsulation; for example, by accessing
private attributes or by modifying the internal structure of classes. Even if some of
these features can be extremely convenient for monitoring, they are potentially dan-
gerous. Powerful metaprogramming models can overcome these limitations, e.g. by al-
tering the dispatching algorithm to account for adaptations, but custom modifications
are inevitably complex and error prone.

In AOP, extensibility along the adaptation direction is achieved by adding new as-
pects to the application. Thanks to quantification, existing aspects apply also to any
extension of the basic system. This mechanism, however, must be used with care, to
avoid undesirable extensions. Also, many AOP frameworks define pointcuts as syn-
tactic expressions, and therefore suffer from the fragile pointcut problem [Koppen and
Storzer 2004]: due to the tight coupling introduced by syntactic expressions, small
modifications of the system or even refactoring can cause advice matching failures or
erroneous match to certain joinpoints. A key benefit of AOP is instead automatic com-
position of aspects defined on the same pointcut.

AOP provides specific support for crosscutting adaptive concerns and it is probably
the strongest solution along this direction. Not surprisingly, separation of adaptation
concerns is among the main motivations of the popularity of AOP in self-adaptive sys-
tems [David and Ledoux 2006]. However, pointcut languages require specialized skills
by the programmers, and complicates code comprehension.

AOP can be an effective way to introduce adaptive capabilities into an existing appli-
cation. First, aspects are specifically designed to be separated from the existing code.
Second, AOP enforces obliviousness, i.e., the basic program is not aware of the aspects,
like in most OO languages classes are not aware of subclasses. Third, the AOP devel-
oper only needs to specify the execution points in which advices must be triggered.
Therefore, self-adaptive behavior can be added without modifying the structure of the
existing application. In principle, AOP can be used to add self-adaptive behavior to
existing software even without accessing the source code, like in legacy systems [Yang
et al. 2002]: the application can be augmented with probes through bytecode instru-
mentation or by using virtual machines with dedicated support for aspect weaving.
Transparent shaping [Sadjadi et al. 2005] is a programming model to enable adap-
tation in existing programs, which combines AOP to support separation of adaptive
features and metaprogramming to control the dynamic reconfiguration. For example,
TRAP/J [Sadjadi et al. 2004] allows one to intercept method calls and redirect the
execution flow to the adaptation logic.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:18 G. Salvaneschi et al.

In COP, the class-in-layer approach offers the best support for modularity, because
layers are organized independently of the existing codebase, so new layers can be
added to an adaptive application without modifying the existing code. Since in adap-
tive systems behavioral variations need to dynamically combine, incorrect configu-
rations should be detected and avoided. For example, the low bandwidth and the
high bandwidth variations should not be active at the same time. COP emphasizes the
importance of these constraints. Some languages use reflection to dynamically enforce
combination restrictions [Costanza and Hirschfeld 2007]. Other approaches introduce
a domain specific language to express constraints on layers and throw an exception
when they are violated [Costanza and D’Hondt 2008]. Alternatively, it is possible to
actively enable certain layers to fulfill the constraints [González et al. 2010]. Another
approach is to encapsulate variations in an abstract data type and permit only legal
operations [Salvaneschi et al. 2012b]. The problem of constraints among concerns has
been explored in AOP as well [Rashid et al. 2003; Nagy et al. 2005; Durr et al. 2005;
Nagy et al. 2004].

COP modularization abstractions take into consideration the lesson of AOP con-
cerning the crosscutting nature of some functionalities. COP supports crosscutting
concerns through the concept of layer, which is orthogonal to classes – the main modu-
larization direction in OO. However, COP focuses more on the representation of alter-
native behavior. Thus, separation is no more mandatory, and some languages adopt a
layer-in-class approach, favoring side-by-side placement of basic behavior and adaptive
variations. In this case, the application is often more readable, because each method is
defined together with all its possible variations.

A point of debate is whether the separation of the adaptation features should in-
clude the code performing the dynamic activation, as in [David and Ledoux 2006;
Cibrán et al. 2007]. These approaches aim at reducing the tangling of the base code
by adaptation-related concerns, including the activation of variations. Activation in
the base code is probably a more natural solution when the software is designed from
scratch with adaptation in mind. Metaprogramming provides access to activation in-
side the meta layer, but it is also possible to access the meta layer from the base
code. Some AOP languages keep activation separate. In AspectJ, activation can be
performed by conditional pointcuts declared in the aspect, but other frameworks sup-
port activation through an API which can be even accessed remotely. CaesarJ keeps
the activation code in the basic application and the programmer of the base code is re-
sponsible for enabling an aspect and selecting its influence scope. COP provides both
approaches: e.g., in ContextJ, layers are activated by with statements in the base code;
in ContextPy, each layer can activate itself depending on an external condition.

4.2. Adaptation to Unforeseen Situations
Systems need to be self-adaptive to automatically react to changes in the requirements
or in the environment in which they are embedded. Indeed, many modern applications
operate in an open world where requirements are not stable [Baresi et al. 2006]. The
surrounding environment behaves in a way that is hard to predict when the software
is developed and can also change dynamically. In this scenario, anticipating all possi-
ble changes is simply not possible. Systems should be therefore open, to support the
dynamic insertion of new functionalities without compromising service availability.
Many off-the-shelf runtime environments address this issue and provide means to dy-
namically load code modules. For example, Java customized classloaders can be used
to fetch classes from a remote network location. The Erlang VM supports hot code re-
placement, which dynamically swaps a module implementation without restarting the
system. These environments, in combination with distribution frameworks such as

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:19

RMI, RPC or CORBA, can be used to transfer behavioral adaptations to remote nodes
and dynamically activate the new functionalities.

Self-adaptive systems can take advantage of the dynamic loading in combination
with metaprogramming, since code can be loaded via these services and then easily
manipulated via reflection. For example, methods can be entirely replaced by updated
versions coming from the network. Metaprogramming interfaces, however, do not pro-
vide a unique level of granularity and the change can be rather unstructured, limited
only by the expressive power of the metaprogramming protocol. An extreme case is
the one involving the eval function, which executes arbitrary code provided as data. In
languages supporting this feature, eval makes it extremely easy to modify the existing
codebase, as new features can be simply transmitted as data over the network and in-
stalled. Of course, running in the interpreter code provided as a data bypasses safety
guarantees and is often a security hazard.

Some AOP frameworks specifically address the problem of unforeseen adaptation.
In PROSE [Popovici et al. 2002; Popovici et al. 2003] aspects can be sent to the aspect
manager through a remote interface (JVMAI, Java Virtual Machine Aspect Interface).
Aspects are instantiated and initialized in a first VM, then marshaled and sent over
the network to the target VM, where aspects are woven and become effective. Sim-
ilarly, JAC [Pawlak et al. 2001; Pawlak et al. 2004], supports remote uploading of
aspect components in a distributed environment. Remote transmission of aspects has
been explored also for monitoring previously unobserved portions of code. For exam-
ple, in the AOP-based monitoring framework proposed by [Janik and Zielinski 2010a],
aspects can be downloaded and dynamically applied.

In COP, little attention has been given to unforeseen adaptation. Concerning this
issue, we believe that dynamic layer loading could be easily integrated in many COP
languages, e.g. this could be done by using the dynamic loading capabilities of the
underlying runtime system. However, to the best of our knowledge, only ContextEr-
lang [Salvaneschi et al. 2012b] currently addresses this issue.

4.3. Performance impact
Adaptive systems monitor the environment, make decisions based on input data, and
perform dynamic adaptation to meet the requirements under the changed conditions.
Inevitably, these activities have a performance cost. Focusing on the managed element,
three main sources of overhead can be identified. First, there is an activation cost to
enable the behavioral variation. Second, once the behavioral variation is active, its
execution is often less efficient than the base code, since the mechanism to support
dynamic linking introduces a level of indirection. Finally, monitoring can penalize per-
formance.

Comparing the performance of the paradigms presented in this paper is extremely
difficult, because of the variety of the approaches and of the underlying languages and
implementations. Surprisingly, very few research efforts have been directed to compar-
ing the available solutions with concrete code examples, highlighting differences, ad-
vantages, and disadvantages. A remarkable exception is [Dowling et al. 2000], which
unfortunately is becoming outdated and does not include neither AOP nor COP. Be-
sides synthetic examples, we need empirical studies on real applications showing the
impact of design choices. Many papers describe specific implementation of autonomic
systems, but very few discuss the concrete solutions used to achieve autonomic behav-
ior. Nevertheless, experimental analysis is fundamental to evaluate the impact of a
technology on medium to large-size projects and in the long term.

Metaprogramming is usually considered to be expensive in terms of performance.
Dowling et al. [Dowling et al. 2000] indicate this as one of the limitations of metapro-
gramming compared to DLLs and design patterns to implement self-adaptive software.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:20 G. Salvaneschi et al.

However, this should not be overgeneralized. For example, the ABCL/R2 reflective lan-
guage [Masuhara et al. 1992] shows performances similar to C on concurrent pro-
grams. Furthermore, it must be noted that optimization techniques can mitigate the
performance problems of metaprogramming in the Java virtual machine 5. Finally, an
important remark is that reflection techniques do not necessarily operate at runtime.
Compile-time metaprogramming (e.g. macroexpansion) alters the code during compi-
lation.

As AOP became more and more popular, performance issues were increasingly taken
into account and several studies are available. Albeit being somewhat outdated, the
results of the AWbench AOP benchmark 6 represent an indicative reference for the
performance of many AOP languages. From a methodological standpoint, Haupt and
Mezini [Haupt and Mezini 2004] propose a benchmark suite for AOP based on the
Java Grande benchmark frameworks [Bull et al. 2000; 1999]. Other performance anal-
ysis can be found in the papers describing specific implementations, such as [Bock-
isch et al. 2006; Bockisch et al. 2006; Haupt et al. 2005]. Even if it is hard to ob-
tain a general overview of AOP performance, the existing benchmarks allow us to
draw some conclusions. For example, AOP based on bytecode instrumentation, as in
AspectJ, performs better than solutions which relay on dynamic proxies like Spring.
Compile-time weavers usually produce faster code than load-time weavers [Nicoara
et al. 2008]. Finally, virtual machines are in the general case less efficient than static
approaches [Nicoara et al. 2008]. However, they provide advantages in terms of flexibil-
ity, since the application can be modified at runtime, and exhibit considerable speed up
for dynamic pointcuts – particularly slow in traditional AOP implementations [Bock-
isch et al. 2006]. However, highly optimized compilers like the aspect bench compiler
(abc) can produce comparably efficient code [Avgustinov et al. 2005], when the whole
program is available for analysis; but this precludes the use of Java dynamic load-
ing capabilities to achieve self-adaptation. As most of the performance evaluations in
AOP focus on steady state, i.e., once aspects are already installed, fewer results are
available on the overhead of dynamic activation [Bockisch et al. 2006]. They show how
existing approaches have very high activation and deactivation costs and how dedi-
cated VMs can support fast aspect deployment and still provide competitive steady
state performance.

Performance of COP languages is extremely variable and research on optimizations
is actively ongoing. Languages based on efficient metaprogramming support such as
ContextL [Costanza and Hirschfeld 2005] or on compilers, like ContextJ, are reported
to experience approximately a 1/3 slowdown compared to the basic language on method
dispatching [Appeltauer et al. 2009]. Unfortunately other languages are less efficient.
For example, in JavaScript some virtual machines perform aggressive optimizations,
but in the COP extension optimizations are inhibited by contextual dispatching, and
the slowdown compared to the base language is up to two orders of magnitude [Lincke
et al. 2011]. However, these values are observed in microbenchmarks targeting only
contextual method dispatching – usually a minor fraction in a real application. For
example, in the context of Web applications, we experienced no observable difference
– from a client perspective – between the Java and the ContextJ implementations
of a Tomcat application [Salvaneschi et al. 2011a]. A systematic performance evalu-
ation of COP languages, including activation costs, was carried on by Appeltauer et
al. [Appeltauer et al. 2009]. Other comparative microbenchmarks are reported in [Ap-
peltauer et al. 2011; Kamina et al. 2011; Salvaneschi et al. 2012b] Another perfor-
mance optimization is proposed by Costanza et al. [Costanza et al. 2006] where layers

5http://java.sun.com/products/hotspot/whitepaper.html#performance
6http://docs.codehaus.org/display/AW/AOP+Benchmark

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:21

are internally represented as classes. In this way, they increase efficiency by lever-
aging existing dispatching optimizations for multiple inheritance. Further improve-
ments are achieved by caching layer combinations. Krahn et al. [Krahn et al. 2012]
designed an optimization of ContextJS based on caching and method inlining. Finally,
Appeltauer et al. [Appeltauer et al. 2010] propose an optimization based on the IN-
VOKEDYNAMIC recently introduced bytecode instruction [Rose 2009].

4.4. Impact on the Development Process
First of all, simplicity is an important factor that can facilitate the acceptance of a
technology. The mechanisms to implement dynamic adaptation should therefore be
easy to use by application developers. However, simplicity often conflicts with expres-
sive power, so a reasonable trade-off must be found.

Metaprogramming is usually considered to be hard to master. First, programmers
must learn the protocol used to manipulate language abstractions. Second, they have
to deal with potentially complex semantic changes: since reflective features can deeply
modify the behavior of program entities, applications become harder to understand.

AOP can be considered as a form of constrained metaprogramming; so, not surpris-
ingly, its usage complexity is in general lower. A source of complexity is that program-
mers are required to learn an ad-hoc language to define aspects. On the other hand,
some AOP framework are based on coding conventions and do not extend the underly-
ing language, but these solutions can be verbose and hard to read, since the semantics
of pointcuts and advices is forced into the syntax of the base language [Pawlak et al.
2004]. Also, the semantics of code written in AOP languages which support a rich set
of pointcut expressions can be hard to understand.

Compared to metaprogramming and AOP, COP further reduces the complexity for
the programmers. Essentially, COP specifically addresses adaptive systems, so devel-
opers do not deal with unnecessary features, and only have to learn how to design ap-
plications with COP abstractions. Moreover, adaptation features are not application-
specific: programmers do not face the problem of how to apply generic features, like
reflection or AOP, in each project they may be involved in.

Another fundamental aspect of the development process involves tool ecosystems or
integrated development environments (IDE). Moreover, in a real-world context, pro-
grams are not developed in isolation. New applications must interoperate with the
existing ones and frequently share the same environment or VM. Programs are of-
ten designed in broader frameworks like J2EE or EJB and compatibility with existing
libraries is fundamental. Component containers provide support for aspects like per-
sistence and security, and new technologies must integrate with preexisting standards.
As a result, it is important to consider how a new technology relates to these issues:
for example, if it requires a modified runtime environment – which is often not ac-
ceptable in a production setting – or if a syntax extension breaks tool compatibility.
Most of these aspects may be transient: if a technology succeeds, proper tool support
become eventually available. Nevertheless, in practice, this is an important issue for
acceptance.

In the case of metaprogramming based on the standard language mechanisms, since
there is no language extension, tool compatibility is preserved. The implementation of
other paradigms by using metaprogramming shares the same advantages. For exam-
ple, AspectS [Hirschfeld 2003], an AOP extension of Squeak (an implementation of
Smalltalk), is based on the Smalltalk metaobject protocol. In AspectS, aspect weav-
ing and removal employs metaobject composition. In COP, many implementations rely
on metaprogramming: among the others, ContextS (Smalltalk MOP), ContextPy and
PyContext (Python decorators), and ContextL (Lisp MOP) are based on the reflective
features of the base language. While these solutions are always compatible with ex-

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:22 G. Salvaneschi et al.

isting supports for the development process, tools are often not aware of the adaptive
features. For example, when the behavior of an application is inspected through a de-
bugger, the programmer needs to step through the scaffolding introduced by metapro-
gramming, since the debugger has no high-level notion of behavioral variations.

Maintaining the syntax of the base language is a minimal requirement to pre-
serve tool compatibility. For this reason, in some AOP framework aspects are defined
in the basic language [Pawlak et al. 2004] or by using annotations, like in Spring.
JavaCtx [Salvaneschi et al. 2011b] is an attempt to minimize the impact on the devel-
opment process by expressing COP abstractions in plain Java. Then AspectJ is used to
modify the semantics of the program: behavioral modifications are compiled to aspects
that are woven into the application.

Most mature tools, like AspectJ or PROSE, provide IDE extensions (e.g. the AJDT
plugin 7), which support the new language and are aware of the specific abstractions.
COP is also moving in that direction. For example, EventCJ and JCOP are currently
provided with an Eclipse plugin. Approaches based on macroexpansion or source-to-
source compilation, generate code that can be processed by a standard compiler. For ex-
ample, metaprogramming is implemented by a preprocessor in Open C++ [Chiba 1995]
and Open Java [Tatsubori et al. 1999]. Some AOP approaches also employ source-
to-source compilation, like Aspect C++ [Spinczyk et al. 2002]. In COP, ContextJ and
EventCJ are implemented as source-to-source compilers. More radical choices include
custom compilers and VM support. Adopting a modified version of the compiler can en-
counter resistance in a production environment, but may allow one to perform specific
optimizations that are otherwise not possible. JCOP is a context-oriented compiler,
which directly emits Java bytecode [Appeltauer et al. 2010].

5. OTHER RELATED APPROACHES
In this section, we consider some other related approaches that are relevant for defin-
ing self-adaptive software, but are less directly comparable with those considered here
in details – metaprogramming, AOP, and COP.

The agent-oriented programming paradigm [Shoham 1993] has been proposed for
multi-agent systems [Shoham and Leyton-Brown 2008], a software engineering ap-
proach to implement applications open to unforeseen conditions and that can suc-
cessfully model human reasoning and team behavior. The agent-oriented paradigm
adopts agents as building elements and provides abstractions to model social and cog-
nitive behaviors. Agents are specified in terms of concepts like communication, beliefs,
plans, goals and actions. Agent-oriented languages include JADE [Bellifemine et al.
2007], AgentSpeak [Rao 1996], JACK [Winikoff 2005], Jason [Bordini et al. 2005] and
2APL [Dastani 2008]. These languages support agent structure, agent interaction and
messaging. They provide declarative abstractions, to specify the agent believes and
plans and ad-hoc semantics to model agent behavior – for example, to express rea-
soning and planning. Complex systems are supported by transparent distribution and
interfacing with mainstream languages. The latter feature is used, for example, to
model the interaction with the environment or to implement internal actions in an
imperative way.

The paradigms discussed in this paper tackle the problem of extending existing
(mainstream) languages with the flexibility required by self-adaptive systems. For ex-
ample, AOP, COP and metaprogramming introduce new directions of variability to
model behavioral adaptation, they support interception to inject monitoring code and
reify programming abstractions to dynamically modify the execution. However, those
paradigms are not bound to any specific software engineering style. On the other hand,

7http://www.eclipse.org/ajdt

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:23

agent-oriented languages specifically address the multi-agent style. Another difference
is that AOP, COP and metaprogramming augment the semantics of the base language,
while agent-based languages enforce an ad-hoc semantics that for convenience can in-
terface with a general purpose language. An interesting line for future research is to
bridge the gap between those paradigms and making the features provided by both
available in the same language.

The tuple-based programming model focuses on accessing data in a distributed sys-
tem in a flexible and compact way [Gelernter 1985]. Tuple spaces provide a repository
of tuples that can be accessed to publish data. Clients can retrieve data via pattern
matching. Tuple-based models have been successfully applied to a number of adap-
tive scenarios, including sensor networks [Whitehouse et al. 2004], mobile applica-
tions [Murphy et al. 2006] and bio-inspired computing [Menezes and Tolksdorf 2003].
Recently, tuple-based models have been used to support context-aware adaptation and
situated computing. In the TOTA approach [Mamei and Zambonelli 2009], tuples auto-
matically propagate in the network according to user-defined patterns and agents can
access the close tuples to tune their behavior. A similar approach [Viroli et al. 2011]
proposes chemically-inspired tuple spaces. This solution supports pervasive applica-
tions by modeling computational patterns based on proximity, competition and situat-
edness. Compared to the programming paradigms presented in this paper, tuple-based
models position more closely to adaptive middlewares, while AOP, COP and metapro-
gramming focus on abstractions that enrich a language to support adaptation.

6. CONCLUSIONS
In this paper, we discussed the main language-level approaches used to implement
self-adaptive systems, namely metaprogramming, AOP and COP. We presented the
main contributions and we compared the advantages of each solution. We also identi-
fied a number of research challenges that call for further investigation.

As we observed, self-adaptation may be achieved in different ways and at differ-
ent levels. We focused here on linguistic mechanisms that provide explicit support to
self-adaptation. At this stage, it would be hard to provide conclusive arguments re-
garding the benefits we achieve through the use of specific linguistic support. This
will only be possible through practical use and empirical observation of application
developments. We argue, however, that the current evolution of the technology favors
language-level techniques. For example, sensor networks and mobile devices are more
and more widespread. These devices usually have a relatively simple programming
model, and applications are not large. In this scenario, architectural solutions like
component-based adaptation are overkilling. In addition, in the last few years, we ob-
served a concentration in the mobile area around only few platforms. Those platforms
are based on a set of libraries and a common language, typically Java or Objective-C.
This homogeneity can further promote the use of standard language-level means to
support dynamic adaptation.

We envisage an interesting research direction in combining the advantages of the
techniques presented in this paper. With a few exceptions (e.g. [Sadjadi et al. 2004]),
the language-level mechanisms described in this paper have been applied in isolation.
However, considerable advantages can be achieved by the contamination of paradigms.
For example, obliviousness is a fundamental property of AOP to support interception
without modifying the base code. This feature is fundamental to add autonomic ca-
pabilities to legacy code. This approach can be coupled with COP explicit activation,
which appears more natural when adaptation is designed upfront.

Another interesting hybridization can be envisaged with design patterns [Gamma
et al. 1993]. Mixing patterns via dedicated language syntax is not a recent idea. For
example, the Iterator pattern is a successful case of hybridization between patterns

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:24 G. Salvaneschi et al.

and language abstractions. Library programmers apply standard patterns to provide
access to collections, and client programmers can rely on language constructs to access
data at a higher level of abstraction. A combination of COP and patterns could benefit
from the conciseness of COP dedicated language support and the familiarity that most
developers have with patterns.

REFERENCES
APPELTAUER, M., HAUPT, M., AND HIRSCHFELD, R. 2010. Layered method dispatch with INVOKE-

DYNAMIC: an implementation study. In Proceedings of the 2nd International Workshop on Context-
Oriented Programming. COP ’10. ACM, New York, NY, USA, 4:1–4:6.

APPELTAUER, M., HIRSCHFELD, R., HAUPT, M., LINCKE, J., AND PERSCHEID, M. 2009. A comparison
of context-oriented programming languages. In COP ’09: International Workshop on Context-Oriented
Programming. ACM, New York, NY, USA, 1–6.

APPELTAUER, M., HIRSCHFELD, R., HAUPT, M., AND MASUHARA, H. 2011. ContextJ: Context-oriented
programming with Java. Information and Media Technologies 6, 2, 399–419.

APPELTAUER, M., HIRSCHFELD, R., MASUHARA, H., HAUPT, M., AND KAWAUCHI, K. 2010. Event-
specific software composition in context-oriented programming. In Software Composition, B. Baudry
and E. Wohlstadter, Eds. Lecture Notes in Computer Science Series, vol. 6144. Springer Berlin / Hei-
delberg, 50–65. 10.1007/978-3-642-14046-4.

ARACIC, I., GASIUNAS, V., MEZINI, M., AND OSTERMANN, K. 2006. An overview of CaesarJ. In Trans-
actions on Aspect-Oriented Software Development I, A. Rashid and M. Aksit, Eds. Lecture Notes in
Computer Science Series, vol. 3880. Springer Berlin / Heidelberg, 135–173.

AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L., KUZINS, S., LHOTÁK, J., LHOTÁK, O., DE MOOR, O.,
SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. 2005. Optimising AspectJ. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and implementation. PLDI ’05. ACM, New
York, NY, USA, 117–128.

BACHARA, P., BLACHNICKI, K., AND ZIELINSKI, K. 2010. Framework for application management with
dynamic aspects J-EARS case study. Inf. Softw. Technol. 52, 67–78.

BARESI, L., DI NITTO, E., AND GHEZZI, C. 2006. Toward open-world software: Issue and challenges. Com-
puter 39, 10, 36–43.

BELLIFEMINE, F. L., CAIRE, G., AND GREENWOOD, D. 2007. Developing Multi-Agent Systems with JADE
(Wiley Series in Agent Technology). John Wiley & Sons.

BLAIR, G. S., COULSON, G., ANDERSEN, A., BLAIR, L., CLARKE, M., COSTA, F., DURAN-LIMON, H., FITZ-
PATRICK, T., JOHNSTON, L., MOREIRA, R., PARLAVANTZAS, N., AND SAIKOSKI, K. 2001. The design
and implementation of Open ORB 2. IEEE Distributed Systems Online 2.

BOCKISCH, C., ARNOLD, M., DINKELAKER, T., AND MEZINI, M. 2006. Adapting virtual machine techniques
for seamless aspect support. SIGPLAN Not. 41, 10, 109–124.

BOCKISCH, C., KANTHAK, S., HAUPT, M., ARNOLD, M., AND MEZINI, M. 2006. Efficient control flow quan-
tification. In Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications. OOPSLA ’06. ACM, New York, NY, USA, 125–138.

BOLLERT, K. 1999. On weaving aspects. In Workshop on Aspect-oriented Programming, ECOOP’99.
BONER, J. 2004. AspectWerkz - dynamic AOP for Java. In Proceedings of the 3rd international conference

on Aspect-oriented software development. AOSD’04.
BORDINI, R. H., HÜBNER, J. F., AND VIEIRA, R. 2005. Jason and the Golden Fleece of agent-oriented pro-

gramming. In Multi-agent programming: languages, platforms and applications., R. H. Bordini, M. Das-
tani, J. Dix, and A. E. F. Seghrouchni, Eds. Number 15 in Multiagent Systems, Artificial Societies, and
Simulated Organizations. Springer, New York, 3–37.

BRICHAU, J. AND HAUPT, M. 2005. Survey of aspect-oriented languages and execution models. Tech. Rep.
AOSD-Europe-VUB-01, AOSD-Europe. May.

BRUNETON, E., LENGLET, R., AND COUPAYE, T. 2002. ASM: A code manipulation tool to implement adapt-
able systems. In In Adaptable and extensible component systems.

BULL, J. M., SMITH, L. A., WESTHEAD, M. D., HENTY, D. S., AND DAVEY, R. A. 1999. A methodology for
benchmarking Java Grande applications. In Proceedings of the ACM 1999 conference on Java Grande.
JAVA ’99. ACM, New York, NY, USA, 81–88.

BULL, J. M., SMITH, L. A., WESTHEAD, M. D., HENTY, D. S., AND DAVEY, R. A. 2000. A benchmark suite
for high performance Java. Concurrency: Practice and Experience 12, 6, 375–388.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:25

CAPRA, L., EMMERICH, W., AND MASCOLO, C. 2003. CARISMA: Context-aware reflective middleware sys-
tem for mobile applications. IEEE Transactions on Software Engineering 29, 10, 929–945.

CHAN, A. T. S. AND CHUANG, S.-N. 2003. MobiPADS: A reflective middleware for context-aware mobile
computing. IEEE Trans. Softw. Eng. 29, 12, 1072–1085.

CHARFI, A. AND MEZINI, M. 2004. Aspect-oriented web service composition with AO4BPEL. In Web Ser-
vices, L.-J. Zhang and M. Jeckle, Eds. Lecture Notes in Computer Science Series, vol. 3250. Springer
Berlin / Heidelberg, 168–182.

CHIBA, S. 1995. A metaobject protocol for C++. In Proceedings of the tenth annual conference on Object-
oriented programming systems, languages, and applications. OOPSLA ’95. ACM, New York, NY, USA,
285–299.

CIBRÁN, M. A., VERHEECKE, B., VANDERPERREN, W., SUVÉE, D., AND JONCKERS, V. 2007. Aspect-
oriented programming for dynamic web service selection, integration and management. World Wide
Web 10, 3, 211–242.

COSTANZA, P. AND D’HONDT, T. 2008. Feature descriptions for context-oriented programming. In Software
Product Lines, 12th International Conference (SPLC). 9–14.

COSTANZA, P. AND HIRSCHFELD, R. 2005. Language constructs for context-oriented programming: an
overview of ContextL. In Proceedings of the 2005 symposium on Dynamic languages. DLS ’05. ACM,
New York, NY, USA, 1–10.

COSTANZA, P. AND HIRSCHFELD, R. 2007. Reflective layer activation in contextL. In SAC ’07: Proceedings
of the 2007 ACM symposium on Applied computing.

COSTANZA, P., HIRSCHFELD, R., AND DE MEUTER, W. 2006. Efficient layer activation for switching context-
dependent behavior. In Proceedings of the 7th joint conference on Modular Programming Languages.
JMLC’06. Springer-Verlag, Berlin, Heidelberg, 84–103.

COURBIS, C. AND FINKELSTEIN, A. 2005. Towards aspect weaving applications. In Proceedings of the 27th
international conference on Software engineering. ICSE ’05. ACM, New York, NY, USA, 69–77.

DAHM, M. AND BERLIN, F. U. 1998. Byte code engineering with the BCEL api. Tech. Rep. B-17-98, Freie
Universitt Berlin - Institut fr Informatik.

DASTANI, M. 2008. 2APL: a practical agent programming language. Autonomous Agents and Multi-Agent
Systems 16, 3, 214–248.

DAVID, P.-C. AND LEDOUX, T. 2006. An aspect-oriented approach for developing self-adaptive fractal com-
ponents. In Proceedings of the 5th international conference on Software Composition. SC’06. Springer-
Verlag, Berlin, Heidelberg, 82–97.

DAWSON, D., DESMARAIS, R., KIENLE, H. M., AND MÜLLER, H. A. 2008. Monitoring in adaptive systems
using reflection. In Proceedings of the 2008 international workshop on Software engineering for adaptive
and self-managing systems. SEAMS ’08. ACM, New York, NY, USA, 81–88.

DENYS, G., PIESSENS, F., AND MATTHIJS, F. 2002. A survey of customizability in operating systems re-
search. ACM Comput. Surv. 34, 450–468.

DOWLING, J., SCHÄFER, T., CAHILL, V., HARASZTI, P., AND REDMOND, B. 2000. Using reflection to support
dynamic adaptation of system software: A case study driven evaluation. In Proceedings of the 1st OOP-
SLA Workshop on Reflection and Software Engineering: Reflection and Software Engineering, Papers
from OORaSE 1999. Springer-Verlag, London, UK, 169–188.

DURR, P., STAIJEN, T., BERGMANS, L., AND AKSIT, M. 2005. Reasoning about semantic conflicts between
aspects. In Proceedings of the European Interactive Workshop on Aspects in Software 2005.

ELIASSEN, F., ANDERSEN, A., BLAIR, G. S., COSTA, F., COULSON, G., GOEBEL, V., IVIND HANSEN, KRIS-
TENSEN, T., PLAGEMANN, T., RAFAELSEN, H. O., SAIKOSKI, K. B., AND YU, W. 1999. Next generation
middleware: Requirements, architecture, and prototypes. In In Proceedings of the 7 th IEEE Workshop
on Future Trends in Distributed Computing Systems. IEEE Computer Society Press, 60–65.

ENGEL, M. AND FREISLEBEN, B. 2005. Supporting autonomic computing functionality via dynamic operat-
ing system kernel aspects. In Proceedings of the 4th international conference on Aspect-oriented software
development. AOSD ’05. ACM, New York, NY, USA, 51–62.

EPIFANI, I., GHEZZI, C., MIRANDOLA, R., AND TAMBURRELLI, G. 2009. Model evolution by run-time pa-
rameter adaptation. In Proceedings of the 31st International Conference on Software Engineering. ICSE
’09. IEEE Computer Society, Washington, DC, USA, 111–121.

GAMMA, E., HELM, R., JOHNSON, R. E., AND VLISSIDES, J. M. 1993. Design patterns: Abstraction and
reuse of object-oriented design. In Proceedings of the 7th European Conference on Object-Oriented Pro-
gramming. ECOOP ’93. Springer-Verlag, London, UK, UK, 406–431.

GELERNTER, D. 1985. Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7, 1, 80–112.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:26 G. Salvaneschi et al.

GHEZZI, C., PRADELLA, M., AND SALVANESCHI, G. 2011. An evaluation of the adaptation capabilities in
programming languages. In Proceedings of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. SEAMS ’11. ACM, New York, NY, USA, 50–59.

GONZÁLEZ, S., CARDOZO, N., MENS, K., CÁDIZ, A., LIBBRECHT, J.-C., AND GOFFAUX, J. 2010. Subjective-
C: Bringing context to mobile platform programming. In Proceedings of the International Conference on
Software Language Engineering. Eindhoven, The Netherlands.

GONZÁLEZ, S., MENS, K., AND HEYMANS, P. 2007. Highly dynamic behaviour adaptability through proto-
types with subjective multimethods. In Proceedings of the 2007 symposium on Dynamic languages. DLS
’07. ACM, New York, NY, USA, 77–88.

GOWING, B. AND CAHILL, V. 1995. Making meta-object protocols practical for operating systems. In Object-
Orientation in Operating Systems, 1995., Fourth International Workshop on. 52 –55.

GRACE, P., BLAIR, G., AND SAMUEL, S. 2003. ReMMoC: A reflective middleware to support mobile client
interoperability. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE,
R. Meersman, Z. Tari, and D. Schmidt, Eds. Lecture Notes in Computer Science Series, vol. 2888.
Springer Berlin / Heidelberg, 1170–1187.

GREENWOOD, P. AND BLAIR, L. 2003. Using dynamic aspect-oriented programming to implement an auto-
nomic system. Tech. rep., Proceedings of the 2003 Dynamic Aspect Workshop (DAW04 2003), RIACS.

GREENWOOD, P. AND BLAIR, L. 2006. Transactions on aspect-oriented software development II. Springer-
Verlag, Berlin, Heidelberg, Chapter A framework for policy driven auto-adaptive systems using dynamic
framed aspects, 30–65.

HAUPT, M. AND MEZINI, M. 2004. Micro-measurements for dynamic aspect-oriented systems. In Object-
Oriented and Internet-Based Technologies, M. Weske and P. Liggesmeyer, Eds. Lecture Notes in Com-
puter Science Series, vol. 3263. Springer Berlin / Heidelberg, 277–305. 10.1007/978-3-540-30196-77.

HAUPT, M., MEZINI, M., BOCKISCH, C., DINKELAKER, T., EICHBERG, M., AND KREBS, M. 2005. An exe-
cution layer for aspect-oriented programming languages. In Proceedings of the 1st ACM/USENIX inter-
national conference on Virtual execution environments. VEE ’05. ACM, New York, NY, USA, 142–152.

HELLERSTEIN, J. L. 2009. Configuring resource managers using model fuzzing: a case study of the .NET
thread pool. In Proceedings of the 11th IFIP/IEEE international conference on Symposium on Integrated
Network Management. IM’09. IEEE Press, Piscataway, NJ, USA, 1–8.

HEWITT, C., BISHOP, P., AND STEIGER, R. 1973. A universal modular actor formalism for artificial in-
telligence. In IJCAI’73: Proceedings of the 3rd international joint conference on Artificial intelligence.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 235–245.

HIRSCHFELD, R. 2003. AspectS - aspect-oriented programming with Squeak. In Revised Papers from the In-
ternational Conference NetObjectDays on Objects, Components, Architectures, Services, and Applications
for a Networked World. NODe ’02. Springer-Verlag, London, UK, UK, 216–232.

HIRSCHFELD, R., COSTANZA, P., AND NIERSTRASZ, O. 2008. Context-oriented programming. Journal of
Object Technology 7, 3.

HSIEH, W., FIUCZYNSKI, M., GARRETT, C., SAVAGE, S., BECKER, D., AND BERSHAD, B. 1996. Language
support for extensible operating systems. In In Proceedings of the Workshop on Compiler Support for
System Software. 127–133.

HUEBSCHER, M. C. AND MCCANN, J. A. 2008. A survey of autonomic computing – degrees, models, and
applications. ACM Comput. Surv. 40, 7:1–7:28.

ITOH, J.-I., LEA, R., AND YOKOTE, Y. 1995. Using meta-objects to support optimisation in the Apertos
operating system. In Proceedings of the USENIX Conference on Object-Oriented Technologies (COOTS).
USENIX Association, Berkeley, CA, USA, 11–11.

JANIK, A. AND ZIELINSKI, K. 2010a. Aaop-based dynamically reconfigurable monitoring system. Inf. Softw.
Technol. 52, 380–396.

JANIK, A. AND ZIELINSKI, K. 2010b. Adaptability mechanisms for autonomic system implementation with
aaop. Softw. Pract. Exper. 40, 209–223.

KAMINA, T., AOTANI, T., AND MASUHARA, H. 2010. Designing event-based context transition in context-
oriented programming. In Proceedings of the 2nd International Workshop on Context-Oriented Program-
ming. COP ’10. ACM, New York, NY, USA, 2:1–2:6.

KAMINA, T., AOTANI, T., AND MASUHARA, H. 2011. EventCJ: a context-oriented programming language
with declarative event-based context transition. In Proceedings of the tenth international conference on
Aspect-oriented software development. AOSD ’11. ACM, New York, NY, USA, 253–264.

KEPHART, J. O. 2005. Research challenges of autonomic computing. In Proceedings of the 27th international
conference on Software engineering. ICSE ’05. ACM, New York, NY, USA, 15–22.

KEPHART, J. O. AND CHESS, D. M. 2003. The vision of autonomic computing. Computer 36, 41–50.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:27

KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND GRISWOLD, W. 2001. An
overview of AspectJ. In ECOOP 2001 – Object-Oriented Programming, J. Knudsen, Ed. Lecture Notes in
Computer Science Series, vol. 2072. Springer Berlin / Heidelberg, 327–354. 10.1007/3-540-45337-718.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-M., AND IR-
WIN, J. 1997. Aspect-oriented programming. In European Conference on Object-Oriented Programming
(ECOOP) , Jyväskylä, Finland. Number 1241 in Lecture Notes in Computer Science. Springer-Verlag.

KICZALES, G. AND RIVIERES, J. D. 1991. The Art of the Metaobject Protocol. MIT Press, Cambridge, MA,
USA.

KON, F., COSTA, F., BLAIR, G., AND CAMPBELL, R. H. 2002. The case for reflective middleware. Commun.
ACM 45, 33–38.

KOPPEN, C. AND STORZER, M. 2004. PCDiff: Attacking the fragile pointcut problem. In European Interac-
tive Workshop on Aspects in Software (EIWAS), K. Gybels, S. Hanenberg, S. Herrmann, and J. Wloka,
Eds.

KRAHN, R., LINCKE, J., AND HIRSCHFELD, R. 2012. Efficient layer activation in ContextJS. In Conference
on Creating, Connecting and Collaborating through Computing (C5), IEEE., Ed. Institute for Creative
Technologies, University of Southern California, Playa Vista, California, USA.

KRAMER, J. AND MAGEE, J. 2007. Self-managed systems: an architectural challenge. In 2007 Future of
Software Engineering. FOSE ’07. IEEE Computer Society, Washington, DC, USA, 259–268.

LADDAD, R. 2009. AspectJ in Action: Enterprise AOP with Spring Applications 2nd Ed. Manning Publica-
tions Co., Greenwich, CT, USA.

LAMM, E. 2001. Component libraries and language features. In Ada-Europe, D. Craeynest and
A. Strohmeier, Eds. Lecture Notes in Computer Science Series, vol. 2043. Springer, 215–228.

LEDOUX, T. 1997. Implementing proxy objects in a reflective ORB. In ECOOP’97 Workshop on CORBA:
Implementation, Use and Evaluation.

LINCKE, J., APPELTAUER, M., STEINERT, B., AND HIRSCHFELD, R. 2011. An open implementation for
context-oriented layer composition in ContextJS. Sci. Comput. Program. 76, 12, 1194–1209.

MADANY, P. W., ISLAM, N., KOUGIOURIS, P., AND CAMPBELL, R. H. March 1992. Reification and reflection
in C++: An operating systems perspective. Tech. rep., University of Illinois at Urbana-Champaign.

MAES, P. 1987. Concepts and experiments in computational reflection. In Conference proceedings on Object-
oriented programming systems, languages and applications. OOPSLA ’87. ACM, New York, NY, USA,
147–155.

MAMEI, M. AND ZAMBONELLI, F. 2009. Programming pervasive and mobile computing applications: The
TOTA approach. ACM Trans. Softw. Eng. Methodol. 18, 4, 15:1–15:56.

MASUHARA, H., MATSUOKA, S., WATANABE, T., AND YONEZAWA, A. 1992. Object-oriented concurrent re-
flective languages can be implemented efficiently. In Conference on Object-oriented programming sys-
tems, languages, and applications. OOPSLA ’92. ACM, New York, NY, USA, 127–144.

MCKINLEY, P. K., SADJADI, S. M., KASTEN, E. P., AND CHENG, B. H. C. 2004. Composing adaptive soft-
ware. Computer 37, 56–64.

MENEZES, R. AND TOLKSDORF, R. 2003. A new approach to scalable Linda-systems based on swarms. In
Proceedings of the 2003 ACM symposium on Applied computing. SAC ’03. ACM, New York, NY, USA,
375–379.

MURPHY, A. L., PICCO, G. P., AND ROMAN, G.-C. 2006. LIME: A coordination model and middleware
supporting mobility of hosts and agents. ACM Trans. Softw. Eng. Methodol. 15, 3, 279–328.

NAGY, I., BERGMANS, L., AND AKSIT, M. 2004. Declarative aspect composition. In Software-engineering
Properties of Languages for Aspect Technologies, SPLAT! Held in conjunction with the Third Interna-
tional Conference on Aspect-Oriented Software Development (AOSD 2004), March 22-26 2004, Lan-
caster UK.

NAGY, I., BERGMANS, L., AND AKSIT, M. 2005. Composing aspects at shared join points. In Proceedings
of International Conference NetObjectDays, NODe2005, Lecture Notes in Computer Science. Springer-
Verlag, 69.

NICOARA, A., ALONSO, G., AND ROSCOE, T. 2008. Controlled, systematic, and efficient code replacement
for running Java programs. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008. Eurosys ’08. ACM, New York, NY, USA, 233–246.

OKAMURAY, H., ISHIKAWAYY, Y., AND TOKOROY, M. November 1992. AL-1/D: A distributed programming
system with multi-model reflection framework. In Workshop on New Models for Software Architecture.

OREIZY, P., MEDVIDOVIC, N., AND TAYLOR, R. N. 1998. Architecture-based runtime software evolution.
In ICSE ’98: Proceedings of the 20th international conference on Software engineering. IEEE Computer
Society, Washington, DC, USA, 177–186.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

0:28 G. Salvaneschi et al.

OREIZY, P., MEDVIDOVIC, N., AND TAYLOR, R. N. 2008. Runtime software adaptation: framework, ap-
proaches, and styles. In Companion of the 30th international conference on Software engineering. ICSE
Companion ’08. ACM, New York, NY, USA, 899–910.

PAWLAK, R., SEINTURIER, L., DUCHIEN, L., AND FLORIN, G. 2001. JAC: A flexible solution for aspect-
oriented programming in Java. In Reflection, A. Yonezawa and S. Matsuoka, Eds. Lecture Notes in
Computer Science Series, vol. 2192. Springer, 1–24.

PAWLAK, R., SEINTURIER, L., DUCHIEN, L., FLORIN, G., LEGOND-AUBRY, F., AND MARTELLI, L. 2004.
JAC: An aspect-based distributed dynamic framework.

POPOVICI, A., ALONSO, G., AND GROSS, T. 2003. Just-in-time aspects: efficient dynamic weaving for Java.
In Proceedings of the 2nd international conference on Aspect-oriented software development. AOSD ’03.
ACM, New York, NY, USA, 100–109.

POPOVICI, A., GROSS, T., AND ALONSO, G. 2002. Dynamic weaving for aspect-oriented programming. In
Proceedings of the 1st international conference on Aspect-oriented software development. AOSD ’02.
ACM, New York, NY, USA, 141–147.

RAO, A. S. 1996. AgentSpeak(L): BDI agents speak out in a logical computable language. In Proceedings of
the 7th European workshop on Modelling autonomous agents in a multi-agent world: agents breaking
away. MAAMAW ’96. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 42–55.

RASHID, A., MOREIRA, A., AND ARAÚJO, J. 2003. Modularisation and composition of aspectual require-
ments. In Proceedings of the 2nd international conference on Aspect-oriented software development.
AOSD ’03. ACM, New York, NY, USA, 11–20.

REDMOND, B. AND CAHILL, V. 2006. Supporting unanticipated dynamic adaptation of application be-
haviour. In ECOOP 2002 - Object-Oriented Programming, B. Magnusson, Ed. Lecture Notes in Com-
puter Science Series, vol. 2374. Springer Berlin / Heidelberg, 29–53. 10.1007/3-540-47993-79.

RHO, T., APPELTAUER, M., LERCHE, S., CREMERS, A. B., AND HIRSCHFELD, R. 2011. A context manage-
ment infrastructure with language integration support. In Proceedings of the 3rd International Work-
shop on Context-Oriented Programming. COP ’11. ACM, New York, NY, USA, 3:1–3:6.

RIVARD, F. 1996. A new smalltalk kernel allowing both explicit and implicit metaclass programming. In
Workshop ”Extending the Smalltalk Language”, OOPSLA’96.

ROMAN, M., KON, F., AND CAMPBELL, R. 1999. Design and implementation of runtime reflection in commu-
nication middleware: the dynamicTAO case. In Electronic Commerce and Web-based Applications/Mid-
dleware, 1999. Proceedings. 19th IEEE International Conference on Distributed Computing Systems
Workshops on. 122 –127.

ROSE, J. R. 2009. Bytecodes meet combinators: invokedynamic on the JVM. In Proceedings of the Third
Workshop on Virtual Machines and Intermediate Languages. VMIL ’09. ACM, New York, NY, USA,
2:1–2:11.

SADJADI, S. M., MCKINLEY, P. K., AND CHENG, B. H. C. 2005. Transparent shaping of existing software
to support pervasive and autonomic computing. In Proceedings of the 2005 workshop on Design and
evolution of autonomic application software. DEAS ’05. ACM, New York, NY, USA, 1–7.

SADJADI, S. M., MCKINLEY, P. K., CHENG, B. H. C., AND STIREWALT, R. E. K. 2004. TRAP/J: Transparent
generation of adaptable Java programs. In Proceedings of the International Symposium on Distributed
Objects and Applications (DOA’04), Agia.

SALEHIE, M. AND TAHVILDARI, L. 2009. Self-adaptive software: Landscape and research challenges. ACM
Trans. Auton. Adapt. Syst. 4, 14:1–14:42.

SALVANESCHI, G., GHEZZI, C., AND PRADELLA, M. 2011a. Context-oriented programming: A programming
paradigm for autonomic systems. CoRR abs/1105.0069.

SALVANESCHI, G., GHEZZI, C., AND PRADELLA, M. 2011b. JavaCtx: seamless toolchain integration for
context-oriented programming. In Proceedings of the 3rd International Workshop on Context-Oriented
Programming. COP ’11. ACM, New York, NY, USA, 4:1–4:6.

SALVANESCHI, G., GHEZZI, C., AND PRADELLA, M. 2012a. Context-oriented programming: A software en-
gineering perspective. Journal of Systems and Software 0, –.

SALVANESCHI, G., GHEZZI, C., AND PRADELLA, M. 2012b. ContextErlang: introducing context-oriented
programming in the actor model. In Proceedings of the 11th annual international conference on Aspect-
oriented Software Development. AOSD ’12. ACM, New York, NY, USA, 191–202.

SATO, Y., CHIBA, S., AND TATSUBORI, M. 2003. A selective, just-in-time aspect weaver. In Proceedings of
the 2nd international conference on Generative programming and component engineering. GPCE ’03.
Springer-Verlag New York, Inc., New York, NY, USA, 189–208.

SÉGURA-DEVILLECHAISE, M., MENAUD, J.-M., MULLER, G., AND LAWALL, J. L. 2003. Web cache prefetch-
ing as an aspect: towards a dynamic-weaving based solution. In Proceedings of the 2nd international
conference on Aspect-oriented software development. AOSD ’03. ACM, New York, NY, USA, 110–119.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

An Analysis of Language-Level Support for Self-Adaptive Software 0:29

SHARIFI, A., SRIKANTAIAH, S., MISHRA, A. K., KANDEMIR, M., AND DAS, C. R. 2011. Mete: meeting end-
to-end QoS in multicores through system-wide resource management. SIGMETRICS Perform. Eval.
Rev. 39, 1, 13–24.

SHOHAM, Y. 1993. Agent-oriented programming. Artif. Intell. 60, 1, 51–92.
SHOHAM, Y. AND LEYTON-BROWN, K. 2008. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical

Foundations. Cambridge University Press, New York, NY, USA.
SMITH, B. C. 1984. Reflection and semantics in lisp. In 11th ACM SIGACT-SIGPLAN symposium on Prin-

ciples of programming languages. POPL ’84. ACM, New York, NY, USA, 23–35.
SPINCZYK, O., GAL, A., AND SCHRÖDER-PREIKSCHAT, W. 2002. AspectC++: an aspect-oriented extension to

the c++ programming language. In Proceedings of the Fortieth International Conference on Tools Pacific:
Objects for internet, mobile and embedded applications. CRPIT ’02. Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 53–60.

STROUD, R. J. AND WU, Z. 1996. Using Metaobject Protocols to Satisfy Non-Functional Requirements. In
Advances in Object-Oriented Metalevel Architectures and Reflection, C. Zimmerman, Ed.

SUVÉE, D., VANDERPERREN, W., AND JONCKERS, V. 2003. JAsCo: an aspect-oriented approach tailored for
component based software development. In Proceedings of the 2nd international conference on Aspect-
oriented software development. AOSD ’03. ACM, New York, NY, USA, 21–29.

TARR, P., OSSHER, H., HARRISON, W., AND SUTTON, JR., S. M. 1999. N degrees of separation: multi-
dimensional separation of concerns. In Proceedings of the 21st international conference on Software
engineering. ICSE ’99. ACM, New York, NY, USA, 107–119.

TATSUBORI, M., CHIBA, S., ITANO, K., AND KILLIJIAN, M.-O. 1999. OpenJava: A class-based macro system
for Java. In Reflection and Software Engineering. 117–133.

VANDERPERREN, W., SUVÉE, D., VERHEECKE, B., CIBRÁN, M. A., AND JONCKERS, V. 2005. Adaptive
programming in JAsCo. In Proceedings of the 4th international conference on Aspect-oriented software
development. AOSD ’05. ACM, New York, NY, USA, 75–86.

VASSEUR, A. 2004. Dynamic aop and runtime weaving for Java – how does AspectWerkz address it? In DAW
Dynamic Aspects Workshop. 135–145.

VIROLI, M., CASADEI, M., MONTAGNA, S., AND ZAMBONELLI, F. 2011. Spatial coordination of pervasive
services through chemical-inspired tuple spaces. ACM Trans. Auton. Adapt. Syst. 6, 2, 14:1–14:24.

WHITE, S., HANSON, J., WHALLEY, I., CHESS, D., AND KEPHART, J. 2004. An architectural approach to
autonomic computing. In Autonomic Computing, 2004. International Conference on. 2 – 9.

WHITEHOUSE, K., SHARP, C., BREWER, E., AND CULLER, D. 2004. Hood: a neighborhood abstraction for
sensor networks. In Proceedings of the 2nd international conference on Mobile systems, applications, and
services. MobiSys ’04. ACM, New York, NY, USA, 99–110.

WIN, B. D., VANHAUTE, B., AND DECKER, B. D. 2001. Security through aspect-oriented programming. In
Proceedings of the IFIP First Annual Working Conference on Network Security: Advances in Network
and Distributed Systems Security. Kluwer, B.V., Deventer, The Netherlands, 125–138.

WINIKOFF, M. 2005. JACK intelligent agents: An industrial strength platform. Multi-Agent Programming,
175–193.

XU, J., R, B., AND ZORZO, A. F. 1996. Implementing software-fault tolerance in C++ and Open C++: An
object-oriented and reflective approach. In in Proc. Int.Workshop on Computer Aided Design, Test, and
Evaluation for Dependability. 224–229.

YANG, Z., CHENG, B. H. C., STIREWALT, R. E. K., SOWELL, J., SADJADI, S. M., AND MCKINLEY, P. K.
2002. An aspect-oriented approach to dynamic adaptation. In Proceedings of the first workshop on Self-
healing systems. WOSS ’02. ACM, New York, NY, USA, 85–92.

YOKOTE, Y. 1992. The Apertos reflective operating system: the concept and its implementation. In confer-
ence proceedings on Object-oriented programming systems, languages, and applications. OOPSLA ’92.
ACM, New York, NY, USA, 414–434.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 0, No. 0, Article 0, Publication date: 2011.

