
JavaCtx: Seamless Toolchain Integration for
Context-Oriented Programming∗

Guido Salvaneschi, Carlo Ghezzi and Matteo Pradella
DEEPSE Group

DEI, Politecnico di Milano
Piazza L. Da Vinci, 32

Milano, Italy
{salvaneschi, ghezzi, pradella}@elet.polimi.it

ABSTRACT
Context-oriented programming is an emerging paradigm address-
ing at the language level the issue of dynamic software adapta-
tion and modularization of context-specific concerns. In this pa-
per we propose JAVACTX, a tool which employs coding conven-
tions to generate the context-aware semantics for Java programs
and subsequently weave it into the application. The contribution
of JAVACTX is twofold: the design of a set of coding conventions
which allow to write context-oriented software in plain Java and
the concept of context-oriented semantics injection, which allows
to introduce the context-aware semantics through standard aspect-
oriented programming. Both of these points allow to seamless inte-
grate JAVACTX in the existing industrial-strength appliances and so
ease the development of context-oriented software in consolidated
industrial settings.

Keywords
Context-oriented programming, Context, Self-adaptive software,
Aspect-oriented programming.

1. INTRODUCTION
Context adaptation has been playing an increasingly important

role in computer science, mainly because of emerging fields such
as ubiquitous computing and autonomic computing. Ubiquitous
computing [34] refers to anywhere and any time access to data
and computing resources and requires mobile devices to adapt to
continuously changing environmental and internal conditions such
as connection bandwidth or battery power availability. Autonomic
computing [24] refers to systems which overcome ever growing
maintenance complexity through self-managing capabilities and re-
quire only high-level goal-oriented human guidance.

From a software engineering perspective, the design and the im-
plementation of context-adaptable software is challenging, since
adaptation must be performed at run time and context-specific be-

∗This research has been funded by the European Community’s
IDEAS-ERC Programme, Project 227977 (SMSCom).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP’11, July 25, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0891-5/11/07 ...$10.00.

haviors typically crosscut the main modularization directions of the
application. The problem has been tackled at different abstrac-
tion levels, and the proposed solutions encompasses approaches
based on software architectures [32], middlewares [27], aspect-
oriented programming [15], and computational reflection [31]. At
the language level, context-oriented programming (COP) [23] was
recently proposed as a solution specifically targeting the dynamic
adaptation and modularization issues of context adaptation.

Current COP implementations include a number of dynamic lan-
guages for which constructs leading context awareness can be im-
plemented leveraging computational reflection [17]. COP has been
introduced in statically typed languages with ContextJ [9], succes-
sively extended and currently one of the most mature COP imple-
mentations. ContextJ is an extension of the Java language with
COP-specific constructs, such as a with statement that activates
contextual adaptation in the dynamic extent of the scoped code
block. Most current COP Java extensions [9, 33] employ source-to-
source compilers which map the contextual code to standard Java,
rearranging the source structure in order to implement the context
adaptation features.

Extending the language to introduce COP constructs leads to an
elegant and essential syntax which perfectly fits the needs of con-
text adaptation. However, the arising of great difficulties as a con-
sequence of adding new language constructs is well known and has
been referred as the problem of tyrannical constructs [14]. The
issues introduced by language extensions, are especially relevant
for those languages which require the addition of new keywords
and source-to-source recompilation to be extended, since usually
in the development process, beside compilers, a number of tools
is employed in order to accomplish various support tasks and the
problem of language compatibility with existing tools arises.

For example, IDEs are usually aware of language syntax and se-
mantics in that they perform a whole of support tasks such as online
incremental building, eager warning for compilation errors, syn-
tax highlighting and content assist. Making them compatible with
a language extension requires the development of plugins, which
can be a non-trivial task in terms of both the initial effort and the
post-release software maintenance if the reference quality levels
are industrial-strength standards. The situation is even worse for
those appliances such as test coverage suites of performance profil-
ers which were not designed for extensibility and should be made
aware of the new language. In the best scenario, since the result
of their execution on the rearranged code produces meaningless re-
sults for the user, a tool-specific facility should be developed map-
ping the analysis results performed on the generated code back to
the original one.

In this work we propose JAVACTX1, an alternative lightweight
solution to language extension and direct source-to-source trans-
formation, employing the use of coding conventions and ad-hoc
generated aspects to support context-oriented features. JAVACTX

is a library and a tool that receives in input plain Java written ac-
cording to a set of coding conventions and automatically generates
the aspects and the classes implementing the contextual semantics.
The aspects can be subsequently woven using a standard aspect
compiler and leaving the original code untouched. We refer to this
phase as contextual semantics injection.

With JAVACTX, the programmer develops COP applications us-
ing plain and still semantically valid Java code. The injection of
the contextual semantics is not disruptive in the sense that only in-
tervenes in method dispatching, without deeply altering the code
structure like a source-to-source compiler can do. At the cost of
using an aspect compiler, this allows to overcome the limitations
above and makes the development of COP applications easier and
seamlessly integrated with existing appliances.
The main contribution of this paper is the design and implemen-
tation of JAVACTX. The results we achieved in our work are the
following:

• Introduction of the concept of contextual semantics injec-
tion, which allows COP as a programming methodology sup-
ported by an automatically generated aspect library rather
than a language extension.

• Integration of context-oriented programming concepts with
plain Java through a set of coding conventions and compati-
bility of the context-anabled code with existing development
tools, such as IDEs, test coverage analyzers and performance
profilers.

• Efficient implementation based on aspect-oriented program-
ming with no additional overhead for non-contextual classes
and methods.

The paper is organized as follows. In Section 2 we discuss the
basic concepts of JAVACTX and present the details of its usage and
implementation. Section 3 shows a general evaluation of the tool,
encompassing integration with existing appliances and a perfor-
mance evaluation. Section 4 discusses the related work. Section
5 draws some conclusions and presents future research.

2. JAVACTX OVERVIEW
In this section we present the key concepts of JAVACTX lying be-

hind its design and implementation: contextual semantics injection,
adoption of plain Java and source structure preservation. Hereafter
we illustrate the coding conventions that are required to express the
context-aware facilities in a JAVACTX application. Regarding this
concern, our general approach in the design of the coding conven-
tions was to keep the COP introduction as less intrusive as possible,
while clearly indicate in the code where the contextual semantics
comes into play. Finally we discuss some implementation details.

Contextual Semantics Injection. The activation of behavioral
variations requires to change the semantics of methods dispatching,
since a method call must be rerouted according to the active layers
and to the partial definitions declared in the target object. This re-
sult cannot be directly achieved adding a library to plain Java code.
JAVACTX generates the machinery which implements the contextual
semantics as a separate package containing aspects and class def-
initions. Finally the compilation with an aspect compiler weaves
1Available at http://home.dei.polimi.it/salvaneschi/javactx

.class

Contextual
Semantics

Aspect
Compiler .class

JavaCtx
Library

JavaCtx

Executable Java
Bytecode

Figure 1: The JAVACTX compilation process.

the contextual semantics into the application (Figure 1).

Plain and Valid Java Code. JAVACTX comes with a set of coding
rules which allow to express COP constructs in plain Java. JAVACTX

conventions include prescriptions for the names of partial method
definitions, layers declarations and context-adaptable classes. At
the cost of a small burden in the code this allows to take advantage
of the context-adaptation facilities without recurring to a language
extension. This design choice is a necessary premise for seamless
integration with existing Java appliances. A direct, despite minor,
advantage is to ensure IDE support without special-syntax aware
plugins.

Even before the weaving of the contextual semantics, the code
written according to the JAVACTX coding conventions is semanti-
cally valid and executable. The execution unfolds across only the
basic version of each method and the contextual directives that ac-
tivate the eventual behavioral variations are simply ignored.

Code Structure Preservation. The weaving of the contextual se-
mantics does not alter the code structure of the existing applica-
tion. This feature makes JAVACTX different with respect to existing
source-to-source approaches which map the code of the contextual
application to a standard Java model, without taking any particu-
lar care of preserving its structure. For example a parameter ref-
erencing the current context is added to each method or method
names are changed to redirect the original call to a synthetic proxy
method.

In JAVACTX method calls are intercepted and rerouted according
to the active layers. Rerouting occurs inside the code automati-
cally generated by the tool. After rerouting, the actual method im-
plementing the behavioral variation is executed, leaving its body
and signature untouched. Interestingly, a local modification to the
method body not involving contextually-dispatched calls does not
even require to regenerate the contextual semantics.

Code structure preservation is important in the achievement of
compatibility with existing appliances. The tools usually employed
in support of the development process are still usable, thanks to
the following facts: the context-enabled code is valid Java, and the
original methods are effectively called with calls rerouted from out-
side the object (See Figure 2). In Section 3 we show an evaluation
of how JAVACTX can be used in the Eclipse workbench with a code
coverage analyzer and a performance profiler.

2.1 Using JavaCtx

2.1.1 Layered Classes
The classes for which a contextual semantics has to be generated

must be explicitly marked. This is accomplished by adding the
@LayeredClass annotation, which informs the JAVACTX engine the
class contains partial methods definitions which requires context
aware dispatching.

Figure 2: Context-driven method dispaching in JAVACTX. Par-
tial definitions are left untouched, while the call is rerouted
from outside the object.

In order to keep the definitions of partial methods clean, we do
not use the names of the layers including the whole package qual-
ification, but the programmer defines local names for the layers
referred in the definitions (see the next paragraph). The annota-
tion parameters express the mapping from class-local layer names
used in partial methods definitions inside the class to globally-
scoped package-qualified layer names. For example in Figure 3
the class Person is declared as layered. Layers myprj.layers.A,
myprj.layers.B and myprj.inner.layers.C are available in par-
tial methods definitions respectively as ALayer, BLayer and CLayer.

2.1.2 Partial Method Definitions
According to the requirement that JAVACTX code must be valid

Java, each partial definition has a unique method identifier in the
class. We adopted the code convention that partial method defini-
tions declared in a certain layer have the name of the base method
ending with the class-local name of the layer in which this par-
tial method definitions are declared. This allows not to break the
Java convention that method names must be distinct inside the same
class. For example in Figure 3 three partial definitions are de-
clared for the print method: in the myprj.layers.A layer, in the
myprj.layers.B layer and in the myprj.inner.layers.C layer.
JAVACTX automatically detects those methods for which a partial
definition is declared, and generates the contextual semantics ac-
cordingly. Other methods, even inside a class marked @LayedClass
are dispatched by the standard Java mechanism.

A fundamental point is how to express the proceed call, which is
not a Java keyword. The JAVACTX coding convention is that a call
to the base method in the syntactic scope of a partial method defini-
tion is dynamically dispatched across the remaining active layers.
We point out that this convention does not constitute a limitation
nor introduces any ambiguity in the code; instead it expresses the
proceed directive in an elegant and clean way. All the invocations
to the basic method in the syntactic scope of the partial definition
and performed on the current object are dynamically dispatched to
the subsequent active layers, and therefore there is no possible am-
biguity with a direct call to the basic method. On the other hand
we argue that it is conceptually wrong to have a partial method that
directly invokes the basic method without any contextual dispatch-
ing. Using a call to the base method to express proceed has also
the consequence that since the signature of the dynamically chosen
partial method definition must be the same of the base method, the
type correctness of the proceed call is directly ensured by the Java
compiler.

2.1.3 Layer Declaration
Layers are standard Java classes extending the Layer class pro-

vided by the JAVACTX library. The only convention regarding layers
declaration is that the class must declare an id field, marked with
the public, static and final modifiers:

import cop.Layer

public class A extends Layer {
public static final id = new A();

}

This allows to refer to the layer A with the compact notation A.id
and to treat layers as singleton objects without further burden. The
convention is due to the precise design choice to enforce type co-
herence among COP entities. Layers compare in the code as objects
of type Layer, which is a natural approach in an OO system. The
option of using a notation like A.class adopted by other Java COP
extensions [11], instead, leads to the counterintuitive situation that
layers appear in the code as objects of type class instead of type
Layer.

2.1.4 Layer Activation
Layers are activated by the invocation of the withActiveLayers

static method on the Ctx class, which exposes the JAVACTX API
and is the entry point for accessing all the context-related facilities.
Like the Layer class, Ctx is part of the cop package provided by
JAVACTX.

Cxt.withActiveLayers(layers);
... // Adapted block

Ctx.end();

In line with other COP languages, the layer to activate can be
known only at run time, which is especially useful in case of ex-
ternal, sensor based context providers, which dynamically decides
layer activation. The resulting code is structured like
withActiveLayer(contextProvider.getActiveLayers()). Ctx im-
plements different flavors of the withActiveLayers(...) method,
which for example can accept an Iterable of layers to activate.
The other basic constructs of COP implementations, such as the
Ctx.withoutLayers method are available as well.

The coding conventions require that the programmer calling a
directive to the Ctx class is responsible to assure that it is followed
by a Ctx.end() call in the scope of the same codeblock. This con-
vention is necessary in order to syntactically delimit the effect of
a layer activation and enforce the dynamic extent activation policy.
Despite this being probably the more obliging of the rules required
by JAVACTX, it is comparable (yet simpler) to code conventions im-
posed by widespread programming frameworks, e.g. conventions
for memory allocation in Cocoa [1]. Moreover, due to its purely
syntactic nature, static checking is straightforward.

As already mentioned, layer activation have consequences only
after contextual semantics injection. If the contextual semantics has
not been woven yet, the calls to the Ctx class simply have no effect.

2.2 Implementation Details
We implemented JAVACTX as a source analyzer and code gen-

erator written in Java. The tool leverages Java annotations pro-
cessing to detect those classes in the classpath that require to be
augmented with the contextual semantics. Java reflection is used
to detect Layer declarations and partial method definitions. For the
code generation phase we employed Apache Velocity [3], a specifi-
cation language and fast template rendering engine. The templates
are parametrized with reference objects defined in the Java code;

@LayeredClass({
"ALayer => myprj.layers.A",
"BLayer => myprj.layers.B",
"CLayer => myprj.inner.layers.C"

})
public class Person {

public String printALayer(String s){
String r = print(s);
return "A" + r;

}

public String printBLayer(String s){
String r = print(s);
return "B" + r;

}

public String printCLayer(String s){
String r = print(s);
return "C" + r;

}

public String print(String s){
return r + "Base";

}
}

Figure 3: Layered class declaration and partial method defini-
tions in JAVACTX.

after the information for reference instantiation is collected from
the codebase, the parameters are filled with the actual values and
the templates are instantiated. The generated code includes stan-
dard Java classes and aspects, which are woven by the AspectJ 5
compiler. For what concerns the aspects generation, the design of
JAVACTX was led by the constraint of avoiding join points which can
result in excessive performance penalties due to runtime conditions
evaluation.

A final remark regards concurrency. Since COP dynamic activa-
tion requires per control flow variation activation and each thread
must adapt independently, the generated code internals employ
ThreadLocal references for active layers.

3. EVALUATION
We evaluated the integration of JAVACTX in the development toolchain

experimenting its usage in the Eclipse workbench combined with
the Eclemma [5] and the YourKit [7] plugins. For what concerns
the user experience with Eclipse, it does not degrade with JAVACTX,
and IDE functionalities, e.g., content assist, coding-time errors warn-
ing and continuous compilation, work correctly.

Eclemma is a Java code coverage appliance for the Eclipse plat-
form, internally based on the EMMA [2] code coverage tool. Eclemma
adds an execution mode to the Eclipse projects or unit tests, which
collects coverage information. The results are both available in
the form of analysis reports and source highlighting. We setup a
project executing all the methods of each class and with all the
partial methods definition proceed up to the base method. We ran
Eclemma both before and after the contextual semantics injection,
activating with an initial withActiveLayers call, every available
layer. As expected, before the injection only the base methods were
marked as executed, while after the injection Eclemma correctly
highlights also all the partial definitions.

YourKit is a commercial Java performance profiler. Among the
other analysis features such as memory leaks detection, it shows the
time spent in the execution of each method of a call stack. In this
case the use of JAVACTX resulted not completely transparent, since

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0 1 2 3 4 5

m
il
li
se
c.

Number of active layers

Java
ContextJ
JavaCtx

Figure 4: Performance evaluation of JAVACTX: time required
to execute 107 method calls in function of the number of active
layers.

the calls performed in the machinery implementing the contextual
dispatching, such as the aspects intercepting the original call, are
displayed to the user. However this does not invalidate nor alter
the clearness of the analysis since after the spurious calls due to
aspect weaving, either the partial definition or the original method
is correctly reported with the estimated performance.

3.1 Performance
According to Gregor Kiczales, aspects were considered the “15%

solution”, in the sense that you will use it for about 15% of a typ-
ical project [4]. For real-world sized projects it seems reasonable
that a similar consideration holds also for COP. Therefore it is of
great importance that the natural performance overhead introduced
by COP with context-driven dispatching not only is as low as possi-
ble, but is also limited to the portion of code actually context-aware,
without performance impacts on the rest of the codebase. This was
one of the cornerstone design requirements for JAVACTX. As a result
non context-aware method calls are not influenced by the contex-
tual semantics and do not incur in any performance penalty.

We experimented the performance of JAVACTX2 calling a con-
textually dispatched method for which five partial definitions exist
in different layers. All the partial definitions execute a proceed
statement. We evaluated the time spend by 107 calls to the method
varying the number of active layers (and therefore of involved par-
tial definitions) both for JAVACTX and ContextJ. We compared this
results with a similar setup in plain Java, with six methods each
calling the next one up to a base one and changing the method ini-
tially called. The choice of comparing JAVACTX against ContextJ
is that it is the fastest COP Java implementation available and cur-
rently one of the fastest COP languages [8, 33].

To allow the JVM to perform optimizations, each measure was
taken with a dry run before the real test. The results are reported in
Figure 4. Not surprisingly the performance are rather worse than
ContextJ which can rely on code rearrangement and does not pay
the overhead of aspects interception. However even with a test
which focuses on pure method dispatching, which is the part of the
execution that more intensively is slowed down by context aware-
ness, the performance results are comparable. We ran our exper-
iments on a machine equipped with an Intel Core 2 Quad Q9550,
4GB RAM, Windows XP SP2, Java 6 and AspectJ 5.

2The code used for the performance experiments is available at the
website: http://home.dei.polimi.it/salvaneschi/javactx

3.2 Current Limitations
Many COP languages support before and after methods. The

current version of JAVACTX supports only around methods, but could
be easily extended. Clearly this is not a serious limitation, as around
methods are the most general form. However using the simplest
form appropriate for the task more clearly expresses the program-
mer’s intent.

Another current limitation of JAVACTX is the lack of a reflection
API allowing to inspect active layers and possibly to reflectively
change the current layer configuration. While these features were
already explored in literature [10], it is not clear to us how powerful
such an API should be in terms of direct access to layer activation
in order to be both useful and not potentially unsafe. For this reason
we believe that such advanced functionalities deserve further rea-
soning and we left the implementation of such API for the future
after deeper experimenting with applications.

4. RELATED WORK
Context-oriented programming have been firstly proposed in the

pioneering work of Costanza and Hirschfeld [13] on ContextL, an
extension of Common Lisp based on the CLOS metaobject pro-
tocol [26]. Over the years several COP extensions of existing lan-
guages have been proposed, such as Python, Ruby, Smalltalk, Sche-
me, Javascript and others. A fairly complete review of these works
with a performance comparison can be found in [8]. Ambience [21],
originally proposed simultaneously with ContextL, is a context-
aware object system for Lisp based on prototypes and multimeth-
ods for context-driven dispatching.

Statically typed languages with limited reflective capabilities are
less flexible, so it is harder to define COP extensions for them.
ContextJ* was a first attempt, which directly reproduced the COP
extensions in Java [23], but exhibiting limited performances and a
rather complex syntax. ContextLogicAJ [11] was a prototype based
that lead to the development of ContextJ [9]. The approach used in
JavaCtx has similarity to the one of ContextLogicAJ, since both are
based on aspects. However to the best of our knowledge, Context-
LogicAJ has been considered simply a prototype for ContextJ. Con-
textJ was the first Java COP extension which actually implemented
the COP constructs through a source-to-source compiler. Interest-
ingly, it offers a rich reflection API which allows to inspect the con-
textual entities and their current activation state. JCOP [10] is an
extension of ContextJ that supports declarative variation activation
defined on an enabling condition, in a way similar to conditional
pointcuts in AOP. This feature reduces the need for the developer
to specify variation activation explicitly through with statements.

EventCJ [33] is a Java-based COP language whose design was
driven by motivations similar to JCOP’s: context change triggered
by events. EventCJ allows to declare context transition rules: the
firing of an event can trigger the automatic (de)activation of a set
of layers. Beside the usual per control flow activation mechanism,
EventCJ pushes the adaptation capabilities of COP applications to
the object level, in that layer activation can be triggered indepen-
dently on each single object.

ContextErlang [19, 20] is a context-oriented version of the Er-
lang language, based on the integration of the actor concurrency
model, originally proposed by Hewitt [22], with the COP paradigm.
ContextErlang agents exchange special context-change messages
that trigger adaptation on the other agents. Therefore some fea-
tures which require ad-hoc techniques in thread-based languages,
such as event driven context switch or asynchronous variations ac-
tivation, are managed automatically.

The context-oriented paradigm has some similarities with AOP.

Both propose a solution that allows the programmer to cope with
the issue of crosscutting concerns. However while AOP mainly fo-
cuses on effective code modularization, COP focuses on dynamic
activation and composition of behavioral variations. Dynamic AOP
shares with COP the idea of run time activation of a code unit im-
plementing some variation to the basic flow of the application. Dy-
namic AOP have been implemented in several research frameworks
such as Prose [29], JAC [28] and AspectWerkz [12]. AspectJ [25]
has some dynamic activation facilities as well. For example the
cflow pointcut allows to execute an advice only if another point-
cut is in the given control flow and the target pointcut expresses a
condition on the run time of the target of the method call. However
not all of these features are available in other industrial-strength
AOP frameworks. For example the Spring AOP pointcut model [6]
does not support cflow pointcuts. The main difference between
these technologies and COP is that they generally address the issue
of run time activation of crosscutting functionalities, while COP
introduces language constructs specifically designed to tackle the
problem of context adaptation.

Event-based programming [16] is a programming paradigm spe-
cifically introduced for managing reactive behavior. It relies on
the idea of implicit invocation [18] and introduces language-level
features to express events and notifications. Event-based languages
differ form contextual languages in that they directly trigger actions
rather than layers recombination and behavioral adaptation. How-
ever advanced features of event-based languages can be used to
implement a form of behavior combination similar to AOP. For ex-
ample Ptolemy [30] allows to associate closures to events, that are
subsequently executed by the event receiver. Therefore the overall
behavior of the application is a dynamic combination of the behav-
iors of the caller and of the callee.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented JAVACTX, a Java COP extension specif-

ically aimed at easing the development of context-aware applica-
tions through the concept of contextual semantics injection, that al-
lows a seamless integration with existing tools. Our future research
directions are the following.

First, we plan to strengthen the JAVACTX set of available features,
implementing at least part the advanced functionalities, for exam-
ple context-specific reflection.

Second, we intend to take advantage of JAVACTX for a consid-
erable effort in the development of context-aware applications, in
the wide scope of the ERC project SMSCom (Self Managing Situ-
ated Computing) we are participating in, with the aim to evaluate
the COP paradigm in real-world middle-sized projects. Situational
indicates that software behaves according to the evolving situation
in which it operates, in the case of COP this is clearly provided by
the context. Developing and running situational software imposes
a paradigmatic shift from a conventional development, to new sce-
nario in which bits of applications are composed in possibly unpre-
dictable ways. COP appears to be a natural approach for developing
this kind of applications.

Lastly, we plan to use JAVACTX as a testbed for experimenting
new constructs that allow context adaptation to be more effective
and easy to implement.

6. REFERENCES
[1] http://developer.apple.com/library/mac/#documentation/

Cocoa/Conceptual/MemoryMgmt/MemoryMgmt.html.
[2] http://emma.sourceforge.net/index.html.
[3] http://velocity.apache.org/.

[4] http://www.ddj.com/architect/184414845.
[5] http://www.eclemma.org/.
[6] http://www.springsource.org/.
[7] http://www.yourkit.com/.
[8] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and

M. Perscheid. A comparison of context-oriented
programming languages. In COP ’09: International
Workshop on Context-Oriented Programming, pages 1–6,
New York, NY, USA, 2009. ACM.

[9] M. Appeltauer, R. Hirschfeld, M. Haupt, and H. Masuhara.
ContextJ: Context-oriented programming with Java. In
Proceedings of the JSSST Annual Conference 2009, Shimane
University, Matsue, Shimane, Japan, September 16, 2009.

[10] M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and
K. Kawauchi. Event-specific software composition in
context-oriented programming. In B. Baudry and
E. Wohlstadter, editors, Software Composition, volume 6144
of Lecture Notes in Computer Science, pages 50–65.
Springer Berlin / Heidelberg, 2010.
10.1007/978-3-642-14046-4.

[11] M. Appeltauer, R. Hirschfeld, and T. Rho. Dedicated
programming support for context-aware ubiquitous
applications. In UBICOMM ’08: Proceedings of the 2008
The Second International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, pages
38–43, Washington, DC, USA, 2008. IEEE Computer
Society.

[12] J. Bon. Aspectwerkz - dynamic AOP for Java. In AOSD
2004.

[13] P. Costanza and R. Hirschfeld. Language constructs for
context-oriented programming: an overview of ContextL. In
Proceedings of the 2005 symposium on Dynamic languages,
DLS ’05, pages 1–10, New York, NY, USA, 2005. ACM.

[14] S. Davis and G. Kiczales. Registration-based language
abstractions. In Proceedings of the ACM international
conference on Object oriented programming systems
languages and applications, ONWARD!’10, pages 754–773,
New York, NY, USA, 2010. ACM.

[15] M. Engel and B. Freisleben. Supporting autonomic
computing functionality via dynamic operating system
kernel aspects. In Proceedings of the 4th international
conference on Aspect-oriented software development, AOSD
’05, pages 51–62, New York, NY, USA, 2005. ACM.

[16] P. Eugster and K. R. Jayaram. Eventjava: An extension of
java for event correlation. In Proceedings of the 23rd
European Conference on ECOOP 2009 — Object-Oriented
Programming, Genoa, pages 570–594, Berlin, Heidelberg,
2009. Springer-Verlag.

[17] J. Ferber. Computational reflection in class based
object-oriented languages. SIGPLAN Not., 24:317–326,
September 1989.

[18] D. Garlan and D. Notkin. Formalizing design spaces:
Implicit invocation mechanisms. In Proceedings of the 4th
International Symposium of VDM Europe on Formal
Software Development-Volume I: Conference Contributions -
Volume I, VDM ’91, pages 31–44, London, UK, 1991.
Springer-Verlag.

[19] C. Ghezzi, M. Pradella, and G. Salvaneschi. Programming
language support to context-aware adaptation - a case-study
with Erlang. Software Engineering for Adaptive and
Self-Managing Systems, International Workshop, ICSE 2010.

[20] C. Ghezzi, M. Pradella, and G. Salvaneschi. Context oriented
programming in highly concurrent systems. In COP ’10:
International Workshop on Context-Oriented Programming,
co-located with ECOOP 2010, Maribor, Slovenia, 2010.

[21] S. González, K. Mens, and P. Heymans. Highly dynamic
behaviour adaptability through prototypes with subjective
multimethods. In DLS ’07: Proceedings of the 2007
symposium on Dynamic languages, pages 77–88, New York,
NY, USA, 2007. ACM.

[22] C. Hewitt, P. Bishop, and R. Steiger. A universal modular
ACTOR formalism for artificial intelligence. In IJCAI’73:
Proceedings of the 3rd international joint conference on
Artificial intelligence, pages 235–245, San Francisco, CA,
USA, 1973. Morgan Kaufmann Publishers Inc.

[23] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3), Mar. 2008.

[24] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36:41–50, 2003.

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of aspectJ. In J. Knudsen,
editor, ECOOP 2001 – Object-Oriented Programming,
volume 2072 of Lecture Notes in Computer Science, pages
327–354. Springer Berlin / Heidelberg, 2001.

[26] G. Kiczales and J. D. Rivieres. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, USA, 1991.

[27] T. Liu and M. Martonosi. Impala: a middleware system for
managing autonomic, parallel sensor systems. In
Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming, PPoPP ’03,
pages 107–118, New York, NY, USA, 2003. ACM.

[28] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A
flexible solution for aspect-oriented programming in Java. In
A. Yonezawa and S. Matsuoka, editors, Reflection, volume
2192 of Lecture Notes in Computer Science, pages 1–24.
Springer, 2001.

[29] A. Popovici, G. Alonso, and T. Gross. Just-in-time aspects:
efficient dynamic weaving for Java. In Proceedings of the
2nd international conference on Aspect-oriented software
development, AOSD ’03, pages 100–109, New York, NY,
USA, 2003. ACM.

[30] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantified, typed events. In J. Vitek, editor, ECOOP 2008 –
Object-Oriented Programming: 22nd European Conference,
Paphos, Cyprus, volume 5142 of Lecture Notes in Computer
Science, pages 155–179, Berlin, July 2008. Springer-Verlag.

[31] S. M. Sadjadi, P. K. Mckinley, B. H. C. Cheng, and R. E. K.
Stirewalt. TRAP/J: Transparent generation of adaptable Java
programs. In In Proceedings of the International Symposium
on Distributed Objects and Applications (DOA’04), Agia,
2004.

[32] R. N. Taylor, N. Medvidovic, and P. Oreizy. Architectural
styles for runtime software adaptation. In WICSA/ECSA 09,
2009.

[33] K. Tetsuo, A. Tomoyuki, and H. Masuhara. EventCJ: A
context-oriented programming language with declarative
event-based context transition. In Proceedings of the 10nd
international conference on Aspect-oriented software
development, AOSD ’11, 2011.

[34] M. Weiser. Hot topics-ubiquitous computing. Computer,
26(10):71 –72, Oct. 1993.

	Introduction
	JavaCtx overview
	Using JavaCtx
	Layered Classes
	Partial Method Definitions
	Layer Declaration
	Layer Activation

	Implementation Details

	Evaluation
	Performance
	Current Limitations

	Related work
	Conclusions and Future Work
	References

