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Abstract Malware analysts, and in particular antivirus vendors, never agreed
on a single naming convention for malware specimens. This leads to confusion
and difficulty—more for researchers than for practitioners—for example, when
comparing coverage of different antivirus engines, when integrating and system-
atizing known threats, or comparing the classifications given by different detectors.
Clearly, solving naming inconsistencies is a very difficult task, as it requires that
vendors agree on a unified naming convention. More importantly, solving incon-
sistencies is impossible without knowing exactly where they are. Therefore, in
this paper we take a step back and concentrate on the problem of finding incon-
sistencies. To this end, we first represent each vendor’s naming convention with
a graph-based model. Second, we give a precise definition of inconsistency with
respect to these models. Third, we define two quantitative measures to calculate
the overall degree of inconsistency between vendors. In addition, we propose a fast
algorithm that finds non-trivial (i.e., beyond syntactic differences) inconsistencies.
Our experiments on four major antivirus vendors and 98,798 real-world malware
samples confirm anecdotal observations that different vendors name viruses dif-
ferently. More importantly, we were able to find inconsistencies that cannot be
inferred at all by looking solely at the syntax.

1 Introduction
The current threat landscape is characterized by money-driven campaigns [1] mainly
spread through drive-by download [2], more than by self-replicating code. Classic poly-
morphic viral engines gave way to multiple layers of packing, obfuscation, recompilation,
and advanced self-update mechanisms. As a consequence, a rising number of unique
malware specimens, often mutated versions of known malware, spurred a transforma-
tion in the mechanisms of action of antiviruses, which rely more and more on generic
signatures and heuristics [3].

Because of historical reasons and vendor-specific policies, malware naming has never
followed any conventions [3] (e.g., vendors and researchers used to name viruses based
on characteristic they found interesting). Unfortunately, naming inconsistencies are a real
problem when trying to correlate useful data across different antiviruses. Even simple
problems such as comparing top-ten threat lists are in turn very difficult1. Consequently,
researchers have concentrated on solving inconsistencies and proposed both pragmatic
approaches (e.g., VGrep, Wild List 2) and new naming conventions (e.g., CARO 3).

1 http://infosecurity-us.com/view/6314/malware-threat-reports-fail-to-add-up
2 http://www.sunbelt-software.com/ihs/alex/vb_2007_wildlist_
paper.pdf

3 http://www.people.frisk-software.com/˜bontchev/papers/naming.
html
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However, finding and understanding naming inconsistencies is a necessary (and
missing) step before solving them. To address this, we extend the notion of “consistency”
presented in [4], and propose a systematic approach for quantifying and finding inconsis-
tencies. By observing these inconsistencies, and armed with the knowledge of a vendor’s
detection methodology, an expert can investigate the inconsistencies.

We experimentally identify a number of strong inconsistencies, confirming that the
problem is deep and structural. Also, we show that inconsistencies are not uniformly
spread across different antiviruses (i.e., some vendors are more consistent, while others
are wildly different). Last, we find large groups of inconsistently-labeled samples which
cannot be made consistent in any sensible way.

In summary, we make the following contributions:

– We define a systematic technique to create simple yet effective graph-based models
of vendors’ naming conventions (§3.2) by means of which we formally define the
concept of consistency, weak inconsistency and strong inconsistency (§3.3).

– We propose two quantitative measures that evaluate the overall degree of inconsis-
tency between two vendors’ naming conventions (§3.3) and, more importantly, we
define a simple algorithm that finds the inconsistent portions of graph model.

– We describe the results obtained by applying the proposed techniques on a real-world
dataset comprising 98,798 unique malware samples, scanned with four real antivirus
products, visualize and analyze consistencies, strong and weak inconsistencies (§4),
and briefly explain how these can be solved (§3.3).

2 Malware Naming Inconsistencies
Although variants of viruses and worms were relatively common, they tended to form
just a small tree of descendants. Therefore, even with different conventions (e.g., calling
a child “virus.A” as opposed to “virus.1”), such trees were easy to match across different
vendors (e.g., with VGrep4). Even polymorphic viruses did not pose a serious chal-
lenge in this scheme. An effort to standardize names was CARO, which proposed
the following naming convention: <type>://<platform>/<family name>-
.<group name>.<length>.<sub variant><devolution><modifiers>.
However, this effort was unsuccessful. Even if it had been, a standard syntax would
solve just a subset of the problem, without reconciling different family or group names
between vendors.

The CME initiative5 tried to deal with the problem by associating a set of different
specimens to a single threat, but the approach proved to be unfeasible. At the same
time, most malware authors began to use malware kits, and to borrow or steal code
from each other. As a result, many samples may descend from a mixture of ancestors,
creating complex phylogenies that are not trees anymore, but rather lattices. This, in
turn, motivated the evolution of antivirus engines, which now rely on generic signatures
including behavior-based techniques inspired by anomaly detection approaches. Con-
sequently, correlating the outcomes of different antiviruses is even more complex [5].
For instance, in [4] signature-based antiviruses are compared with behavioral classifiers

4 http://www.virusbtn.com/resources/vgrep/index.xml
5 http://cme.mitre.org/cme/
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by means of consistency (i.e., similar samples must have similar labels), completeness
and conciseness of the resulting detection. This work has highlighted the presence of
a non-negligible number of inconsistencies (i.e., different labels assigned to similar
samples).

However, as of today, no complete and reliable method exists to find inconsistencies.
Therefore, before consolidating malware names, we first need to quantify and spot them
precisely.

3 Finding Naming Inconsistencies
We hereby describe a two-phase, practical approach to build a high-level picture of in-
consistencies in malware naming conventions across a given set of antivirus products or
vendors (henceforth named “vendors” for simplicity). Our goal is to spot inconsistencies
that go beyond well-known syntactic differences. Given a list of unique samples, our
method produces a qualitative comparison, finds subsets of samples labeled inconsis-
tently, and produces two quantitative indicators of the degree of inconsistency.

Phase 1 (modeling) For each vendor, we model malware names according to structural
similarity between their labels (§3.2).

Phase 2 (analysis) We compare the aforesaid models quantitatively by means of a set
of structural and numerical indicators (§3.3).

For instance, when patterns such as “-backdoor”, “.backdoor.”, “-backdoor-
dialer”, or “backdoor.dialer” are found, we assume that, according to the
vendor under examination, the samples are all characterized by being “backdoors”, and
thus Phase 1 organize them in the same group. In other words, we model each vendor
by means of the groupings induced by its naming convention. In Phase 2, two vendors
are considered consistent if they both group samples together in the same manner,
regardless of the actual labeling. For instance, a group comprising sample m1 (labeled
as “foo-backdoor”) and sample m2 (labeled as “bar-backdoor”) is consistent
with a group comprising the same exact samples labeled as “blah-trojan” and
“foobar-trojan”, respectively.

3.1 Types of Inconsistency

We define two different types of inconsistencies:

Weak inconsistency: One vendor divides the set of samples into more groups, whereas
the other vendor groups them all together, thus creating a “one-to-many” mapping

as opposed to one or more “one-to-one” mappings . This inconsistency is weak
as it descents from the different granularities adopted by vendors).

Strong inconsistency: Vendors spread samples in multiple groups, such that there is
no mapping between the groups .

In §3.3 we further formalize these definitions by means of models constructed in Phase 1,
and define a fast algorithm to identify them.

3.2 Phase 1: Naming Convention Modeling

We use a simple, top-down hierarchical approach (§3.2) to transform the initial set of
malware samples into nested sub-sets, such that each (sub-)set contains only samples
labeled with similar string patterns. Patterns are extracted offline for each vendor (§3.2).



Pattern Extraction Our technique is centered around four pattern classes, marked with
angular brackets (i.e., <class>):

<type> distinctive activity of the malicious code (e.g., “backdoor”, “worm”, or “dialer”,
“packed”, “tool”).

<family> name of a specific malware family (e.g., “Conficker”, “Mudrop”, “Fokin”,
“Allaple”).

<platform> operating system (e.g., “W32”, “WNT”) or language interpreter (e.g., “JS”, “PHP”).
<version> malicious code version (e.g., “B” and “D” in labels “PHP:IRCBot-B” and “PHP:IRCBot-D”),

or information to disambiguate “releases” or signatures (e.g., “gen”, “gen44”,
“damaged”).

This small, generic set of pattern classes allows to analyze several vendors. New classes
can be added and extend our approach to virtually any vendor. Our analysis on real
samples revealed that each class can contain either one simple pattern or a hierarchy:

Simple pattern: occurrence of a string of a given class, e.g., <type> = Trojan. Usu-
ally, <platform> and <family> occur as simple patterns (e.g., <platform>
= Win32|PHP).

Hierarchy: occurrence of more simple patterns of the same class, e.g., <type1>
= “Trojan” and <type2> = “Dropper” are both of class <type>. For ex-
ample, when vendors specify both a threat type and sub-type, this leads to hier-
archies of simple patterns, denoted as concatenated simple patterns in order of
precedence, e.g., <type> = <type1>/<type2>/<type3>, <version> =
<version1>/<version2>. We use the slash separator just to describe our
results, though it by no means reflects any syntax.

Simple patterns can be constructed either manually, from a handful of labels, or by
leveraging automatic inference tools to derive the most probable syntax of a given set of
strings for subsequent manual revision. However, as manual revision would be required
anyway to ensure accurate results, we opt for a heuristic approach (detailed in §3.2),
that allows us to extract the patterns in a semi-automatic fashion. Hierarchies of patters
of the same class are ordered with respect to their relative frequency of appearance.
For instance, given one vendor and simple patterns <typeX> and <typeY>, X < Y
if <typeX> occurs more than <typeY> on a given set of malware sample. If they
have the same frequency, the hierarchy is replaced by a simple pattern <type>, which
contains the common substring between <typeX> and <typeY>.

Tree-based Models Given a set M of labeled samples, we run the following procedure
for each vendor on a given set of patterns. We consider one class of patterns at time.

We first split the initial set of labels according to <type>. For ex-
ample, given <type> = “Backdoor|Trojan”, the samples labeled
as Backdoor.Perl.Shellbot.cd, Backdoor.PHP.Shellbot.v
and Backdoor.PHP.Shellbot.t fall in the same sub-
set, whereas Trojan-Downloader.Win32.Fokin.da,
Trojan-Dropper.Win32.Mudrop.fkt and Trojan-Dropper.Win32.Mudrop.jts
fall in a different one. If the vendor under consideration adopts hierarchical patterns, this
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Figure 1: Example output of Phase 1 on a set M with seven samples.
For instance, C1 = {{m1,m2,m3}, {m4,m5,m6,m7, }} and C2−4 =
{{m3}, {m6,m7}, {m4,m5}, {m1,m2,m3}, {m1,m2}}. Note that, <type>
comprises /<type1>/<type2>/.

step is repeated for each sub-pattern. Continuing the above example, the trojan samples
are separated in two different sub-sets.

When a (sub-)set can be split no further according to the same pattern class,
we consider the <family>. In our example, the only possible split is by means
of “Fokin” and “Mudrop”, as “Shellbot” induces no splits. Then the first set
is split in two sub-sets, one containing only Backdoor.Perl.Shellbot.cd and
one with Backdoor.PHP.Shellbot.t Backdoor.PHP.Shellbot.v. Further
splits are performed according to the different <version> patterns (if any). More pre-
cisely, “.v” and “.t” forms two sub-sets as well as “.fkt”, and “.jts” do.

We stop when the latest pattern class has been considered. In our example, the
procedure ends after one split induced by the <version>. At each split, we store the
links between the sets thus constructing a tree, rooted in the initial set, as exemplified in
Fig. 1.

Definition 1 (Naming Tree). Given a set M of malware names, we define naming tree
the output of Phase 1, which is Cd(M) ⊂ ℘(M), where d is either: (1) a number that
indicates the depth in the tree, e.g., C1, (2) an interval between depths in the tree, e.g.,
C1−2, or (3) a mnemonic expression (M is omitted when implicit from the context).

In Fig. 1, C1 = {{m1,m2,m3}, {m4,m5,m6,m7, }} and C2−4 =
{{m3}, {m6,m7}, {m4,m5}, {m1,m2,m3}, {m1,m2}}. The whole tree is
C = C0 = C0(M) = {M}, or Cv, where v is the vendor under exam-
ination. We indicate portions of the naming tree with mnemonic expres-
sions; for instance, “/*/<family>/*” denotes the portion of naming
tree corresponding to the <family>, that are C3 = C(/∗/<family>/∗) =
{{m1,m2,m3}, {m4,m5}, {m6,m7}}. Actual substrings can be used as well:
C/Backdoor/∗ = {{m1,m2,m3}}. A hierarchy of patterns always refer to the lowest
depth. For instance, C2 = C(/∗/<type2>/∗) = {{m1,m2,m3}, {m4,m5}, {m6,m7}}.
Implementation Details



Pattern Extraction: The extraction procedure is run for each vendor and takes (1) a
set of malware labels L and (2) an a small set of separators, [/:.-_!] (this can be
customized easily by analyzing the frequency of symbols in the labels corpus). The
algorithm iteratively breaks labels into substrings. At each iteration an operator reviews
a set of candidate substrings and assign them to an appropriate pattern class. Pattern
classes are initially empty, e.g., <type> = ‘’. At the i-th iteration a random, small (e.g.,
10) subset of labels Li ⊆ L is selected and labels are broken into substrings according
to separators. Then, the operator assigns each unique substring to the appropriate class.
For example, if Win32, Allaple, Trojan, and PHP are found, the appropriate class
is updated, i.e., <platform>i = Win32|PHP, <type>i = Trojan, <family>i =
Allaple. All substrings extracted from each label in Li must be assigned to exactly
one class. Labels with at least one substring not assigned to any class are postponed
for subsequent analysis (and removed from Li). Alternatively, the operator can add
new separators as needed to handle the current subset of labels. When labels in Li are
covered, L is reduced by removing all the labels that can be parsed with the existing
patterns. Then, the next random sample Li+1 ⊆ L\Li is drawn (Li+1 may include
postponed labels). The runs until L = ∅.

The larger each random sample size is, the faster and more accurate this procedure
becomes, also depending on the operator’s experience. However, this procedure needs to
be ran only once per vendor and, more importantly, the time and effort required decrease
from vendor to vendor, as patterns can be reused (e.g., family and platforms recur across
vendors with minimal variations). In real-world examples, a minority of labels may
deviate from the patterns (e.g. when labels are handwritten by malware analysts).

Singletons: Consider patterns <version> = v|t and a set {m1,m2}, where m1

= Backdoor.PHP.Shellbot.v, m2 = Backdoor.PHP.Shellbot.t. A split
would produce two sub-sets {m1}, {m2}.

To one end, one outlier is not representative of the pattern, e.g., “t” or “v”. To the
other hand, since our goal is to analyze consistency, we expect that, if two vendors are
consistent, they would produce similar sets, also including “outliers”. For this reason, to
take into account both the observations, sets of size below a certain threshold, To, are
labeled with a special pattern, <misc> that encode such “uncertainty”.

For example, /Backdoor/Shellbot/PHP/ identifies the set {m1,m2},
whereas the label /Backdoor/Shellbot/<misc>/ identifies {m3}. Note that,
more miscellaneous sets may exist at the same depth.

Named Depth: For different vendors, a named depth (e.g., “<family>”), may corre-
spond to different numerical depths. Therefore, while constructing the naming trees we
construct the mapping between numerical and named depths.

3.3 Phase 2: Comparing Vendors

We compare two vendors A,B by means of their naming trees CA,CB (Def. 1). We first
calculate two indicators (§3.3) that quantify the degree of inconsistency between naming
conventions between vendors; and then we spot inconsistencies (§3.3).

Naming trees are hierarchies of sets. However, we compare sets derived by “cutting”
naming trees at a given depth d, omitted for simpler notation: CA = CAd and CB = CBd .



Quantitative Comparison We define the naming convention distance, which expresses
the overall difference between the naming conventions of A and B, and the scatter
measure, which expresses the average number of sets of one vendor that are necessary to
cover each set of the other vendor (and vice versa).

Definition 2 (Naming convention distance). The naming convention distance between
vendors A and B is defined as the average distance between their sets.

D(CA,CB) :=
1

2


∑
c∈CA

δ(c,CB)

|CA|
+

∑
c∈CB

δ(c,CA)

|CB |

 (1)

δ(c,C′) = minc′∈C′ d(c, c′) being the minimum diff. between c ∈ C and any set of C′.

The denominator is such that D(·, ·) ∈ [0, 1], and d(c, c′) = 1− J(c, c′) ∈ [0, 1], where
J(c, c′) is the Jaccard index. A similar distance was used to measure the similarity
between sets of overlapping trees of sets [6].

Definition 3 (Scatter Measure). The scatter measure between vendors A and B is
defined as the average number of sets in each vendor’s model that are necessary to cover
one set drawn from the other vendor’s model (and vice-versa). More formally:

S(CA,CB) :=
1

2


∑
c∈CA

|Γ (c,CB)|

|CA|
+

∑
c∈CB

|Γ (c,CA)|

|CB |

 (2)

where Γ (c,C′) is the scatter set.

Definition 4 (Scatter set). The scatter set of c by C′ is Γ (c,C′) := {c′ ∈ C′ | c ∩ c′ 6=
∅}.

In other words, Γ contains sets of C′ (e.g., model of vendor B) that have at least one
element (e.g., malware sample) in common with a given c ∈ C (e.g., model of vendor
A). As CA and CB are partitioned, |Γ (c,C′)| is the number of sets of C′ that build c.

Structural Comparison We recognize the inconsistencies defined in §3.1. To this end,
trees at a given depth are first represented as undirected graphs with cross-vendor edges,
and then searched for inconsistent sub-graphs. This comparison applies only when CA

and CB are partitioned into flat sets. Therefore, only for this analysis, we assume that
sets are drawn from trees at leaf depth (i.e., <version n>), representative of the whole
label.

Definition 5 (Linked Naming Trees). Given CA and CB the linked naming tree is an
undirected graph GAB := 〈VAB ,EAB〉, where V = CA ∪ CB and EAB = {(c, c′) | c ∈
CA, c′ ∈ CB ∧ c ∩ c′ 6= ∅}.
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Figure 2: Instances of consistencies GABCC , weak inconsistencies GABWI and strong incon-
sistencies GABSI , i.e., connected components of the linked naming tree GAB of vendors A
vs. B. Each vertical line represents a malware sample.

In other words, GAB encodes the links between sets of labeled samples. Given a set c of
samples labeled by A, and a set c′ of samples labeled by B, we set an edge from c to
c′ only if c′ has at least one sample in common with c. In §3.3 we extend this concept
with edges weighted proportionally to the number of samples shared between c and c′.
Therefore, we reduce the problem of recognizing inconsistencies to finding connected
components of GAB , for which efficient algorithms (e.g., [7]) exist. The connected
components are then analyzed automatically to distinguish among:

Consistency (CC) (Fig. 2a) The connected component has two sets with the same
samples (samples of A may have different labels than samples of B).

Weak Inconsistency (WI) (Fig. 2b) The connected component contains only one set
c ∈ VA = CA, and all sets c′ ∈ VB = CB are its subsets c′ ⊂ c. In this case, vendor
B adopts more fine-grained naming convention than vendor A. Despite CA and CB

are not identical, vendors disagree only on the amount of information in each label.
Strong Inconsistency (SI) The connected component contains more than one set for

each vendor (e.g., for sets c′1, c1, c
′
2, c2 in Fig. 2c). As sets are partitions of the

entire set of malware samples, there must be at least four sets c1, c2 ∈ VA = CA,
c′1, c

′
2 ∈ VB = CB such that the following condition holds: c1

⋂
c′1 6= ∅∧c2

⋂
c′2 6=

∅ ∧ c′2 ∩ c1 6= ∅. In other words, the sets share some samples without being all
subsets of each other. The inconsistency, which includes all sets of the connected
component, is caused by inherently different naming conventions. Once found, these
inconsistencies can be solved by fusing, say, c1 with c2.

Implementation Details

Scatter Set Coverage: Our implementation incorporates a measure of coverage, σ, in
scatter sets Γ (c,C′) (Def. 4), defined as σ(Γ ) := |c ∩

⋃
c′|/|c|%, where the union is

calculated for any c′ ∈ Γ (c,C′). The coverage quantifies the percentage of samples
in c (e.g., a set of vendor A) shared with the union of scatter sets derived from C′

(e.g., a set tree of vendor B). Scatter sets can be selected by their σ, and thus, given a
threshold Tσ ∈ [0, 100], the minimum scatter set of c with respect to C′ can be selected
as Γ̂Tσ : @Γ (c,C′) for σ(Γ ) ≥ Tσ ∧ |Γ | < |Γ̂ |: The smallest scatter set that covers c of
at least Tσ .



Weighted Linked Naming Trees: The edges of the linked naming trees (Def. 5) are
weighted with the following weighting function:

W (c, c′) := max

{
|c ∩ c′|
|c|

%,
|c ∩ c′|
|c′|

%

}
,∀(c, c′) ∈ EAB (3)

Each edge encodes the degree of “overlapping” between two sets c and c′ originated
from A and B, respectively. Note that, our normalization ensures that weights quantify
the actual fraction of c shared with c′, regardless of the size of c′, which can be dispro-
portionally larger than c (and vice-versa). Our analysis can be thus parametrized by a
threshold TW ∈ [0, 100], used to convert weighted graphs into graphs by pruning edges
e = (c, c′) below TW , i.e., W (c, c′) < TW .

4 Experimental Measurements
Microsoft V1 <type>:<plat>/<family>[.gen[!<ver1>]|<ver2>] 4,654 labels

Antiy V2 <type>.<plat>/<family>[.<ver1>.<ver2>] 23,603
Kaspersky V3 <type>/<plat>.<family>[.gen] 2,122

Avast V4 <plat>/<family>[-gen|-<ver>] 4,350

These naming conventions cover the vast majority of the samples. These vendors are good
candidates because the “richness” of their naming convention allows a granular analysis,
which spans from <type> to <version>. Adding more vendors is computationally
feasible, although the number of unique couples drawn from the set of vendors would
grow quickly. Therefore, from a presentation perspective, this may yield cluttered and
confusing diagrams. Given that our goal in this paper is to evaluate our method and show
that it finds structural inconsistencies, as opposed to simply quantifying them, using four
vendors, totaling six comparisons, seems sufficient and actually clearer.

Vendor V4 includes no <type>. We manually analyzed this case and discovered
that the <family>, which is instead present in the syntax, is seldom used also to hold
information about the threat type (e.g., “Malware”, “Dropper”, “Trojan” in Fig. 4). As
this happens quite seldom, it is reasonable to consider it as part of the semantic of the
naming convention. For this reason, only for vendor V4, we safely consider threat type
and family name at the same level of importance. Note that, other vendors handle this
exception by assigning <family> = “generic”.

Dataset: Our dataset M, generated on Sep 13, 2010, comprises 98,798 distinct mal-
ware samples identified by their hashes. We derived the labels LV1 ,LV2 ,LV3 ,LV4 via
VirusTotal, an online service which allows to scan samples with multiple vendors simulta-
neously. We selected a set of 98,798 samples recognized by the majority of the four main
vendors. Frequent labels in the datasets include, for instance, “TrojanSpy:Win32/-
Mafod!rts”, “Net-Worm.Win32.Allaple.b”, “Trojan/Win32.Agent.gen”,
“Trojan:Win32/Meredrop”, “Virus.Win32.Induc.a”. A minority of labels
deviates from these conventions. For example, in V4 only eight labels (0.00809% of
the dataset) contain “gen44” instead of “gen”. Similarly, five labels (0.00506% of
the dataset) of V2 contain a third version string. Other cases like the “@mm” suffix in
V1 labels (101 labels, about 0.10223% of the dataset) fall outside the above convention.
From a purely syntactic point of view, these cases are similar to the presence of keywords
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(c) V2 (d) V4

Figure 3: Visual comparison of naming trees of each vendor.

that often mark special samples (e.g., “packed”). We handled this handful of outliers
manually.

Phase 1 was run on the dataset to create a model, i.e., naming tree, for each vendor,
CV1 ,CV2 ,CV3 ,CV4 . Next, quantitative and structural analysis of Phase 2 have been run.
The outcome of this experimentation is presented and discussed in the remainder of this
section, after a brief visual overview of the naming trees.

4.1 Naming Tree Visual Comparison

Different naming conventions induce naming trees that are structurally dissimilar, as
evident even at a high level (Fig. 3): V4 splits samples very early in many sub-sets based
on their <family>, whereas other vendors use finer conventions and form sparser trees.

For ease of visualization, in Fig. 4 we extracted a slice of 50 samples from one set (i.e.,
classified as packed-Klone by V3, used as a comparison baseline). Vendor V1 spreads
the same samples onto 8 sets, including worm, trojan, and pws subsets. Also, a
separate subset holds samples not even considered malicious by V1. This example, drawn
from a real dataset, also shows that the labels’ granularity varies across vendors. For
instance, V1, which adopts a granularity of 1 to 3, splits worms (depth 1) in Pushbots
and Miscellaneous (depth 2)6. Instances of the same behavior occur in V2, with

6 In this example, singletons are visualized as such, but actually contain more than one sample;
this is because we sliced a set of 50 samples from a full naming tree.
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Figure 4: A flat set extracted from V3’s naming tree cut at <family> depth. Other
vendors group the same set of samples differently. Only one baseline set is shown,
although the same behavior can be observed also with other baselines, i.e., V1, V2, V4.
depths of 1 to 4, and V4, with depth is 1. We now analyze these “visual” discrepancies
thoroughly.

4.2 Singletons and “not detected” Samples

Certain values of TW may yield isolated singletons (i.e., singletons from one vendor
with no corresponding sets in the counterpart). Depending on the structure of the linked
naming trees, by varying TW , these nodes may either link to another single node (i.e.,
consistency), or to several nodes (i.e., inconsistency). Optimistically, we could count
them as consistencies because, for a certain, low value of TW , at least one linked set
exists. On the other hand, we could consider such nodes as potential inconsistencies.
Due to this inherent ambiguity, we ignore singleton nodes to avoid biased results.

During pattern extraction, we treat samples that are not detected as malicious by
one vendor as labels containing only a <type n> string. These are not exactly naming
inconsistencies, as they depend on detection accuracy more than on naming structures.



Indeed, they can originate from false positives or false negatives. These nodes link to
several other sets, and thus spur a minority of very large inconsistencies—possibly up
to the whole graph. This may bias the quantitative comparison. Hence, we removed
such sets from the following analysis. More precisely, the scatter measure discussed in
§4.3 ignores the scatter sets originating from these sets. Similarly, the linked naming
trees (Def. 5) used for structural comparison, discussed in §4.3, was pruned by removing
“not detected” sets (i.e., nodes). Also, for consistency with the choice of excluding
singleton nodes, we also removed nodes only connected to such nodes.

4.3 Quantitative Comparison

Naming Convention Distance Fig. 5a summarizes the distance for each unique couple
of vendors A vs. B, quantifying the overall inconsistency between the vendors’ naming
conventions. The overall consistency is higher (i.e., distance is lower) at <version n>
depth than at <family> depth, and is also higher at <family> than at <type>
depth. Interestingly, this contradicts the intuitive conjecture that lower levels in the
naming tree would exhibit progressively lower consistency. Also, vendors V2 and V3
are remarkably more consistent than the other couples, especially at <family> depth.
These two vendors exhibit small structural inconsistencies as also noted in §4.3.

Scatter Measure The scatter measure how elements of one set of vendor A are dis-
tributed (i.e., scattered) onto (multiple) sets of vendorB (and viceversa). We calculate the
scatter measure at different values of coverage, σ(Γ ), of the scatter set (i.e., the set of sets
in CB that corresponds to the set c ∈ CA under examination, and vice versa). We do this
from A to B and vice versa, and vary a threshold Tσ . Therefore, we calculate S(CA,CB)
for Tσ ∈ {1%, 5%, 10%, . . . , 95%, 100%}. Low values of Tσ lead to lower, optimistic,
values of S(·, ·), reflecting the existence of small scatter sets, which are selected even if
they cover only a slight portion of the set under examination. Contrarily, higher values
of Tσ unveil the real scatter sets, that are those with substantial overlapping.

Fig. 5(b–d) summarizes the results of this experiment for each couple of vendors
at different “cuts” of the naming trees: d ∈ {<type n>,<family>,<version n>}.
As expected from previous analysis (yet contradicting intuitive presuppositions), the
scatter measure decreases at lower depths, except for V2 vs. V3, which reveal their overall
consistency, especially at <family> level—as we concluded from Fig. 5a.

Another interesting comparison is V1 vs. V3, which, according to Fig. 5a, show
remarkable distance and thus can be considered different from one another. First, Fig. 5(b–
d) confirms this conclusion. In addition, these vendors tend to have divergent scatter
measures (for increasing values of Tσ), especially at <type n> depth (Fig. 5b), thus
revealing that they disagree more on threat types than on versions. Interestingly, this
cannot be inferred by observing their grammars, which look similar at a first glance.
Manual examination reveals that V1 and V3 agree on the use of the keyword ‘‘.gen’’
to indicate the use of “generic” malware signatures. A negligible minority of samples
are labeled with an additional progressive number (e.g., ‘‘.gen44’’) by V3, which
cannot be safely considered as proper version of the malware.

Structural Comparison The connected components of the linked naming trees, GAB ,
constructed by connecting corresponding sets between CA and CB (as described in §3.3)
are good spots for finding consistencies, weak inconsistencies or strong inconsistencies.
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Figure 5: Naming convention distance (a) at different depths of the naming trees, and
scatter measure (b–d) between each two vendors at different values of Tσ . Relatively high
distance between vendors is observed. Notably, the depth (e.g., <type>, <family>)
negligibly influences the distances, except for V2 vs V3, which exhibit slightly more
similarity in terms of <version>. At Tσ = 1.0%, the scatter measure is optimistic as
almost no coverage is required to find matching sets between vendors; at Tσ = 100%
the comparison is realistic because, in order to match sets between vendors, complete
coverage is required. On average, almost every vendor have sets that scatter onto 2–5
sets of another vendor. Vendors V2 vs. V3 exhibit a steady scatter measure within 1–4,
confirming their high degree of consistency according to the naming distance (a).

As shown in Fig. 2, consistencies contain exactly two nodes (i.e., sets), whereas weak
and strong inconsistencies comprise several nodes. Weak inconsistencies are 1-to-N
relationships, where N indicates the granularity of one vendor with respect to the other,
and by no means indicate a “badness” of an inconsistency. For example, a 1-to-3 weak
inconsistency, simply means that one vendor uses 3 different labels, whereas the other
vendor groups same malware samples in one set. Contrarily, strong inconsistencies
are M -to-N relationships, and M or N are good indicators of the significance of
the inconsistency: The more nodes are present in a connected component, the more
complex the web of relationships between labels is. In general, many small, strong
inconsistencies are better than one big, strong inconsistency: Small inconsistencies can
be easily visualized, analyzed, and reduced to weak inconsistencies (e.g., by removing
one or two nodes, or by fusing sets). We kept track of the size of the components that
yield strong inconsistencies at different values of TW ∈ {0%, 10%, 20%, 40%}, that is,
we removed edges with weight below TW from the weighted graphs. At TW = 0 the
comparison is irrealistic, as outliers may create spurious links, not reflecting the overall
characteristic of naming conventions, thus leading to the wrong conclusion that many



(a) Average size of strong inconsistencies.
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Figure 6: Number of structural consistencies compared to strong and weak inconsis-
tencies for different values of the edge weight threshold, TW (see §3.3). For strong
inconsistencies, the average number of inconsistent sets (i.e., those forming the graph’s
connected component) is reported. Note that, several small inconsistencies are preferable
(because easier to analyze and resolve) as opposed to one, large inconsistency.

strong inconsistencies exist. Also, high values (e.g., TW > 50%) may produce biased
(optimistic) conclusions, as relevant relations between naming conventions are excluded.

Fig. 6a shows the average size of strong inconsistencies: V2 vs. V3 are once again
the most consistent vendors, with the lowest average size of strong inconsistencies (i.e.,
from 18.1 to 70.6). In Fig. 6(b–e), V2 vs. V3 show the highest number of consistencies
(for TW < 40%) and inconsistencies, thus their graph is well-fragmented in many small
consistencies and many small inconsistencies.

Although inconsistencies are generally more infrequent than consistencies, the num-
ber of strong inconsistencies is significant. This is exacerbated by the average size of
strong inconsistencies, which is quite high. For instance, even at TW = 40% some
vendors have strong inconsistencies comprising up to 53.6 nodes on average. Comparing
this observation with Fig. 5(b–d) (scatter measures), we note that the average number of
sets that are scattered (across vendors) onto multiple sets is rather low. However, despite
scatter is quite limited (e.g., less than 5 sets for some vendors), it often yields strong
inconsistencies, because it occurs both from A to B and vice versa.
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Figure 7: A real instance of a weak inconsistency (a) and strong inconsistency (b) between V2 and
V3, which are the best-matching found. Interestingly, this randomly-selected weak inconsistency
shows a case of name specialization, i.e., V2 uses more fine-grained labels than V3.

5 Limitations
The pattern extraction step of Phase 1 may require manual intervention to decide the
most appropriate class (e.g., <type>, <family>) for each encountered pattern. How-
ever, we implemented the extraction algorithm described in §3.2.1 and 3.2.3 once and
adapted it for each vendor with minimal variations, mainly due to the heterogeneity of
the <type> pattern class. Even without vendor support, we were able to cut down the
number of manually-analyzed labels to a few tenths. To overcome this limitation en-
tirely, community efforts or substantial support from antivirus vendors would be needed,
but even as it is, the process is completely feasible.

Also, our technique provides a static snapshot of each vendor’s naming convention,
at a given point in time. As reported in [4], malware naming conventions may change
over time and, in addition, malicious code with new labels is unleashed with a relatively
high frequency by the miscreants. To overcome this limitation, the structural models
could be modified to incorporate a notion of “evolution” of a naming convention and
quantitative measures should account be updated accordingly. Interestingly, this would
allow to create and analyze a series of snapshots over time and, possibly, to support
researchers at predicting future threats’ trends.

Last, a limitation of our experiments, and by no means of the proposed technique, is
due to the fact that VirusTotal uses command-line antivirus engines, which may have dif-
ferent detection capabilities from their GUI-based equivalent, as observed in [4]. How-
ever, the importance of VirusTotal in our experiments is that it allowed us to query a quite
extensive collection of malware samples, ranked by the number of times each sample has
been scanned, which reflects the degree of “interest” around a virus.

6 Conclusions
Our proposed method is useful for finding inconsistencies as well as for comparing clas-
sifications (e.g., a ground truth vs. a classification produced by a novel approach being
tested) by means of the number of inconsistencies contained.

Our experiments extended the previous results with interesting findings. First, we
identified a number of cases of strong inconsistencies between classifications, demon-
strating that the problem is structural, and not just in syntactic differences. A non-
intuitive result is that, when a vendor’s set is inconsistently mapped onto several sets
of another vendor, trying to map back those sets to the first vendor spreads the inconsis-
tencies even further. In other words, there is no guarantee that we will be able to identify
a closed subset of malware on both sides that can be mapped consistently.

Our analysis shows that some vendors apply classifications that are completely in-
coherent (not just syntactically), but even between those who apply comparable classifi-
cations, inconsistencies are prevalent, and meaningfully mapping cannot be established.
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Figure 7: A real instance of a weak inconsistency (a) and strong inconsistency (b) between V2 and
V3, which are the best-matching found. Interestingly, this randomly-selected weak inconsistency
shows a case of name specialization, i.e., V2 uses more fine-grained labels than V3.

5 Limitations
The pattern extraction step of Phase 1 may require manual intervention to decide the
most appropriate class (e.g., <type>, <family>) for each encountered pattern. How-
ever, we implemented the extraction algorithm described in §3.2.1 and 3.2.3 once and
adapted it for each vendor with minimal variations, mainly due to the heterogeneity of
the <type> pattern class. Even without vendor support, we were able to cut down the
number of manually-analyzed labels to a few tenths. To overcome this limitation en-
tirely, community efforts or substantial support from antivirus vendors would be needed,
but even as it is, the process is completely feasible.

Also, our technique provides a static snapshot of each vendor’s naming convention,
at a given point in time. As reported in [4], malware naming conventions may change
over time and, in addition, malicious code with new labels is unleashed with a relatively
high frequency by the miscreants. To overcome this limitation, the structural models
could be modified to incorporate a notion of “evolution” of a naming convention and
quantitative measures should account be updated accordingly. Interestingly, this would
allow to create and analyze a series of snapshots over time and, possibly, to support
researchers at predicting future threats’ trends.

Last, a limitation of our experiments, and by no means of the proposed technique, is
due to the fact that VirusTotal uses command-line antivirus engines, which may have dif-
ferent detection capabilities from their GUI-based equivalent, as observed in [4]. How-
ever, the importance of VirusTotal in our experiments is that it allowed us to query a quite
extensive collection of malware samples, ranked by the number of times each sample has
been scanned, which reflects the degree of “interest” around a virus.

6 Conclusions
Our proposed method is useful for finding inconsistencies as well as for comparing clas-
sifications (e.g., a ground truth vs. a classification produced by a novel approach being
tested) by means of the number of inconsistencies contained.

Our experiments extended the previous results with interesting findings. First, we
identified a number of cases of strong inconsistencies between classifications, demon-
strating that the problem is structural, and not just in syntactic differences. A non-
intuitive result is that, when a vendor’s set is inconsistently mapped onto several sets
of another vendor, trying to map back those sets to the first vendor spreads the inconsis-
tencies even further. In other words, there is no guarantee that we will be able to identify
a closed subset of malware on both sides that can be mapped consistently.

Our analysis shows that some vendors apply classifications that are completely in-
coherent (not just syntactically), but even between those who apply comparable classifi-
cations, inconsistencies are prevalent, and meaningfully mapping cannot be established.

(b) Strong inconsistency.

Figure 7: A real instance of a weak inconsistency (a) and strong inconsistency (b)
between V2 and V3, which are the best-matching found. This randomly-selected weak
inconsistency shows a case of name specialization, where V2 uses finer labels than V3.
Examples of Found Inconsistencies: Fig. 7 shows two representative, real cases of
strong and weak inconsistencies between A = V2 and B = V3, for TW = 0%. As
mentioned in §3.3, weak inconsistencies indicate different granularities used by the
vendors’ labels that, in the lucky case of Fig. 7a, are easy to recognize. However,
strong inconsistencies are less trivial to spot by comparing labels, as shown in Fig. 7b:
This strong inconsistency is difficult to find by analyzing the labels, also because it
involves multiple families (e.g., NetCat belongs to two different types: riskware
and remoteadmin for the same vendor).

5 Conclusions
Our method is useful for finding inconsistencies as well as for comparing classifications
(e.g., a ground truth vs. a classification produced by a novel approach being tested) by
means of the number of inconsistencies contained. A non-intuitive result is that, when
a vendor’s set is inconsistently mapped onto several sets of another vendor, trying to
map back those sets to the first vendor spreads the inconsistencies even further. In other
words, there is no guarantee that a closed subset of malware on both sides that can be
mapped consistently exists. This also entails, in our point of view, that any usage of such
classifications as a ground truth for clustering techniques or other automated analysis
approaches should be carefully evaluated.

Future work may address the fact that pattern extraction sometimes requires manual
intervention to assign string patterns to appropriate. However, without vendor support,
we had to manually analyze only a few tenths of labels. This limitation could be mitigated
with community-driven efforts. Also, as malware naming conventions may change over
time, we should incorporate a notion of “evolution” of a naming convention.
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