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ABSTRACT
Software applications are increasingly situated in a world
where context changes continuously. At the same time, ap-
plications need to provide continuous service, and the ser-
vice provided often needs to change in order to adapt to
the new contexts. Context-aware adaptation can be greatly
facilitated by using programming languages that natively
support high-level features to deal with contexts, context
changes, and context-aware behaviors. Although context-
oriented programming has been around for a while, most
existing efforts focus on incorporating context-oriented fea-
tures in languages that are not primarily oriented to concur-
rency, distribution, and dynamic reconfiguration. These fea-
tures, however, characterize most pervasive context-aware
situations. In this work, we illustrate how context-aware
programming primitives may introduced in the parallel and
distributed Erlang programming language. We also present
an extended example, which illustrates the benefits of us-
ing our extension (ContextErlang) to design context-aware
pervasive applications.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Object-oriented
Programming ; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms
Languages, Design
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1. INTRODUCTION
The need for a complex system to dynamically adapt to

a changing context is becoming common to a wide range of
scenarios. Managing context-awareness became especially
critical with the advent of mobile and ubiquitous comput-
ing applications. Since context-depending behaviors typi-
cally crosscut the system functionalities, managing context-
dependent features in a systematic and effective way became
a key software challenge.

The problem of dynamic software adaptation to respond
to context changes has been mainly tackled so far from a
software architecture standpoint [9, 20, 24, 14, 23]. This
paper investigates instead a different and complementary
approach by focusing on programming language support.
Context-Oriented Programming (COP) [18] has been recently
proposed as a viable approach and language-level support
for context management. Although the natural application
of COP is in ubiquitous systems [6], because of the strong
influence of context on the behavior of such applications,
so far a lot of work has been done with languages that are
not specifically aimed at highly distributed and concurrent
programming.

The contribution of this work is the introduction of context-
oriented programming techniques in a language that natively
supports distribution and concurrency and the investiga-
tion of the effectiveness of the approach to support dynamic
context-aware adaptation. Specifically, we introduce COP
in the concurrent and distributed Erlang programming lan-
guage [1]. Erlang comes with the OTP platform, which
provides a rich set of libraries supporting reliable, large-
scale, distributed, dynamically evolvable applications. We
propose a solution for code aggregation across the crosscut-
ting concerns of contexts and for the key features of dy-
namic variation activation, dynamic variation composition,
and variation transmission, that naturally fits the standard
architecture of the Erlang/OTP applications. The result-
ing ContextErlang enables the development of COP systems
with a high degree of availability, thanks to the well known
fault-tolerance features provided by the OTP architecture.

The paper is organized as follows. In Section 2 we intro-
duce COP and its main features. In Section 3 we analyze
related work. Section 4 presents Erlang and the OTP plat-
form. ContextErlang is presented in Section 5. An extended
illustrative example is in Section 6. The conclusions and fu-
ture work are discussed in Section 8.



2. CONTEXT-ORIENTED PROGRAMMING
COP addresses the need for applications to behave differ-

ently accordingly to the changing run-time context in which
they are embedded. This goal is achieved by providing the
abstractions that enable application context-awareness with-
out hard-wired conditional statements spread over the ap-
plication code [10]. Because context dependency is a cross-
cutting concern for a system, one of the key elements of
COP deals with modularization in stating the partition of
programs into behavioral variations.

COP provides means for the dynamic activation and com-
position of such behavioral variations [4]. Behavioral varia-
tions are grouped in layers, which are first-class entities that
can be referenced at run time. The adaptation to a context
is obtained through layer activation. Ad-hoc language con-
structs ensure that the partial definitions inside the layer are
activated at run time and thus can influence the behavior of
the program accordingly.

COP has a certain degree of similarity with Aspect-Oriented
Programming [19], which may be viewed as a general term
indicating a family of approaches that support modulariza-
tion of cross-cutting concerns. A discussion of the difference
between the two approaches can be found in [10] and [18].

3. RELATED WORK
As mentioned earlier, software engineering research in the

area of context-aware software mostly addressed the issues
of dynamic adaptation from a software architecture view-
point, both exploring the architectural styles that best sup-
port adaptation and the mechanisms that can be exploited
to achieve adaptation, given a specific architectural model
or a specific style. For example, [20] shows how the C2 ar-
chitectural style enables dynamic evolution. C2 introduces
a sharp distinction between computation and communica-
tion and constrains communication among components to
minimize their inter-dependencies. Components can con-
sume data from only one connector and produce output
data only on one connector. Connectors, instead, can ac-
commodate any number of components or other connectors.
Every communication is carried out in an asynchronous way
through connectors. Adaptation can be carried out without
suspending computation, and is achieved through addition
or removal of components.

Other interesting examples of dynamically adaptable ar-
chitectures are the Rainbow framework [14] and the planning-
based approach presented by [23]. Architectural solutions
supporting self-adaptation, inspired by other natural do-
mains (such as biology or physics), are also currently inves-
tigated. For example, [7] investigates an architectural style
for large networks, based on a formal mathematical study
of crystal growth. Di Nitto et al. [13] study a set of the
most relevant bio-inspired principles that may be applied to
achieve dynamic self-adaptation. Cavallaro et al. [8] present
an approach for designing self-adaptive service-oriented ap-
plications based on self-matching components called service
tiles. Taylor et al. [24] analyze different architectural styles
from an evolution and adaptation viewpoint, trying to un-
derstand how and how much the system’s behavior can be
changed.

This paper addresses the problem of dynamic context-
aware software adaptation from a programming language
viewpoint, which provides a different–yet complementary–

perspective. Context-aware programming has been recently
explored, mostly within the functional programming lan-
guages community, starting from the pioneering work on
ContextL by P. Costanza [10, 11, 12]. ContextL is an ex-
tension of CLOS (the Common Lisp Object System) and
built on top of the CLOS Meta-object Protocol. In Con-
textL, a language entity can be declared to exist only inside
a certain layer. When the layer is explicitly activated, the
related entities are visible in the activation scope, and they
can be referred from code and participate in code execution.
Classes, generic functions, methods, and the values bound
to certain slots can be defined inside layers. When a layer
is activated, the associated entities interact with the other
CLOS entities to enable context-aware behavior. For ex-
ample, if a layer containing a class is activated, that class
takes part in the inheritance chain and becomes part of the
method dispatching mechanism.

A different solution is adopted by AmOS [15], a prototype-
based object system built on top of Common Lisp and in-
dependent from CLOS. In AmOS, for any method call, ap-
plicable target methods are firstly looked up in the current
activation, then in further enclosing lexical scopes. As the
top level activation scope is reached, rather than stopping
and returning an error, search continues in a graph of context
objects delegating to each other. A context-manager thread
can change dynamically the delegation relationships among
context objects in order to achieve a context-dependent be-
havior.

COP is also explored in the context of existing script-
ing languages. ContextPy [22] is a Python implementation
of COP that directly moves the concepts of layers and dy-
namic layer activation to the Python language. PyContext
[25] is another COP framework for Python. It provides an
extension to the concept of method layers to support im-
plicit activation of layers, and proposes dynamic variables as
mechanisms to access context-dependent state. Implementa-
tions in other programming languages such as Smalltalk [17],
Ruby [21], JavaScript and Groovy [2], or Java [18, 5] have
been also developed. A fairly complete comparison of the ex-
isting languages with a performance evaluation of the avail-
able solutions can be found in [4].

Our current work pushes COP techniques into the dis-
tributed, concurrent, and functional programming language
Erlang. The result is a very promising tool for the de-
sign and implementation of dynamically adaptable, context-
aware software systems.

4. ERLANG AND THE OTP PLATFORM
Erlang [1] is a general-purpose functional programming

language and concurrent runtime system designed at the Er-
icsson Computer Science Laboratory since 1986 and released
under an open source license in 1998. While the language
provides the basic functionalities for software development,
practically any Erlang application is based on the OTP plat-
form which is a powerful library and a set of procedures for
structuring real-world applications.

Erlang is based on some strong features: single assign-
ment, dynamic typing, and an actor model for concurrency.
It provides support for writing distributed programs, since
processes can be distributed over different machines. Many
features of this language such as concurrent processes, schedul-
ing, memory management, distribution or networking are
commonly associated with operating systems and middle-



wares, rather than to programming languages. Here is a
short list of its most appreciated features.

• Concurrency - Erlang processes are extremely lightweight,
have no shared memory, and communicate by asyn-
chronous message passing. Erlang supports applica-
tions with a large number of concurrent processes. No
requirements for concurrency support are expected from
the host operating system.

• Distribution - Erlang is designed to run over a virtual
machine (thus independently from the underlying op-
erating system) in a distributed environment. An Er-
lang virtual machine is called a node and a distributed
system is a network of nodes. Communication is trans-
parent with respect to distribution.

• Robustness - Erlang support for fault-tolerant systems
is proved by a well known history of high availability
communication systems. This is achieved through the
structure of the Erlang applications, where some pro-
cesses work as monitors. Processes in a distributed
system can be configured to fail-over to other nodes
in case of failures and automatically migrate back to
recovered nodes.

• Hot code upgrade - Usually code upgrade in a system
implies a downtime during which the upgrade is per-
formed. Erlang was created with telecommunications
systems in mind, which cannot be stopped for soft-
ware maintenance. Erlang allows program code to be
changed in a running system. During the transition,
both old code and new code can coexist. It is thus
possible to install bug fixes and upgrades in a running
system with limited or no interference with the run-
ning application. This feature is key to long-lives and
ever-running pervasive systems.

Erlang comes with the so called OTP (Open Telecom Plat-
form), which is a set of libraries and procedures used for
implementing fault-tolerant, large-scale, distributed appli-
cations. Complete tools are available such as a web and
FTP server, a CORBA Object Request Broker, and the dis-
tributed Mnesia database.

The OTP documentation is based upon the OTP De-
sign Principles, which is a set of rules for how to structure
an Erlang application in terms of process interaction, code
modularization and overall architecture. An Erlang/OTP
application should follow the pattern of a supervision tree
(see Figure 1). In this model processes are structured in
a hierarchical fashion and are divided in two sets: workers
and supervisors. Workers are processes which perform com-
putations (e.g. servers are workers), while supervisors are
processes whose role is monitoring the behavior of workers.
For example a supervisor can restart a worker if it crashes.
This design principle is the base for designing fault-tolerant
applications in Erlang.

The concept of behavior is also central in OTP. The basic
idea is that in a supervision tree many processes enact simi-
lar patterns. For example, workers are typically servers that
exchange messages, or event handlers such as error loggers,
while the supervisors only differ with respect to the pro-
cesses they supervise. The OTP generalizes these common
patterns and gives a ready implementation of the generic
structure (i.e., in OTP jargon, the behavior), while the user
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Figure 1: The general structure of an Erlang/OTP
application. Internal nodes of the tree represent su-
pervisors. Leaves represent workers.

has to implement only the specific part that exports a prede-
fined set of functions (the so called callback module). These
are standard behaviors provided by Erlang/OTP:

• gen_server for implementing the server of a client-
server architecture.

• gen_fsm for finite state machines.

• gen_event for event handling functionalities.

• supervisor for a supervisor module in a supervision
tree.

This kind of code structuring makes programs easier to
understand by other programmers, and prescribes a general
architecture that should be common to all OTP applica-
tions. In the case of a server, the behavioral module pro-
vides functionalities for message passing, error handling and
fault-tolerance, while the callback module implements the
actual actions the server has to perform when a request is
issued.

A simplified example of a behavior module for a generic
server and a callback module are shown in Figure 2. The
server manages message passing with the clients, receiving
messages and sending back the answer. Call messages are
used for synchronous requests, while cast messages are the
asynchronous ones (i.e. the client just sends a request but
does not wait for an answer). Of course, generic modules
in real applications typically support features such as error
handling, process monitoring, hot code replacement or fault
tolerance and are thus much more complex. The callback
module contains the actual implementation of each single
functionality. A client usually calls a function on the server
using the API exposed by the callback module (it is an OTP
convention that the callback module defines both the call-
back and the API functions), for example:

server:alloc(Item, Key).

Otherwise, the server can be called directly by using its reg-
istered name (in this case simply server):

gen_server:call(server, {alloc, Item, Key}).



When a client performs a call to the server, procedure call
is turned into a message which is sent to and then handled
by the server, waiting in a receive loop. Note that although
only two functions are shown due to space reason, the code
in a complete callback module does not add any particular
complexity to the example given, being a simple collection
of back-end functions, because all the advanced features are
implemented in the generic component.

5. CONTEXT ORIENTED PROGRAMMING
IN ERLANG

COP is generally considered as an extension of object-
oriented programming [4]. Being Erlang a functional lan-
guage, we had to adapt the required COP paradigm to its
functional model. However, inside an Erlang system a sort
of object-oriented structure can be seen in the fact that its
architecture is made of several autonomous entities that typ-
ically hold a state and exchange messages during processing.

In an OTP-compliant application, as we have seen before,
these components are made of a generic part and a call-
back module. While the callback module implements the
specific functionalities of the component, and it is directly
influenced by a context change, the functionalities associ-
ated with the generic module, such as message management,
error handling, or fault tolerance, are in general not context-
dependent. A ContextErlang application is designed as a set
of components, each made of a single behavior module and
several callback modules. Each callback module is used to
implement a behavioral variation for the component and it
is bound at run time to the behavior module.

We refer to these different callback modules as variations.
A variation contains the declarations of all the functions
which implement a behavioral change; these functions take
effect when the variation is activated. Activation occurs
when the variation is dynamically bound to the application.
It is worth noticing that the behaviors and the whole super-
visor tree structure do not change during the execution even
if a variation activation occurs. What changes according to
the context is only the lower part of each leaf of the super-
visor tree (i.e. the variation), which is referenced on-the-fly.

In order to clarify our approach we give a concrete exam-
ple of our ideas. We suppose that a mobile phone may re-
ceive signals from an access point or from the other phones.
Occasionally, it can work as a “bridge”: if another phone
is out of the range of the access point, the first phone can
receive the signal from the access point and forward it to
the other phone. Of course, this behavior is not necessarily
always desired, for example because for security reasons the
phone might not trust other phones.

We can model this scenario from a context perspective
view. Message receiving is not influenced by the external
context because both the messages directed to the phone and
messages for the other phones must be handled. However,
after message reception, context-awareness comes into play.
Depending on the external context, the phone can adopt
a “cooperative behavior” in which it acts as a bridge, or a
“selfish behavior” in which the phone ignores all the incom-
ing messages that are not directed to it. As mentioned, the
selfish behavior mode is selected in an untrusted situation.
It can also be selected in a context where the battery level
of the phone acting as a bridge is below a certain thresh-
old. In the application, this scenario can be modeled by a

component phone that is context-aware. phone includes a
generic module implementing the receive loop and waiting
for incoming messages; this module is the context-invariant
part of the component. The “cooperative” and “selfish” be-
haviors can be modeled as variations of the phone compo-
nent, which are callback modules associated to the generic
module. After a message reception, the generic module in-
vokes a callback module for message processing. When the
cooperative_variation is active, messages are forwarded
to the proper destination, when selfish_variation is ac-
tive, messages directed to the phone itself are processed and
other messages are dropped. The switch from one behav-
ior to the other is obtained through a variation activation,
which is driven by the phone itself on the basis of a cer-
tain policy. When a variation activation occurs, the generic
module of the phone component remains the same; a differ-
ent callback module (i.e. a variation) is referenced on-the-fly
by the generic module.

While in the previous example we showed a case with only
one variation per component at a time involved
(cooperative_variation or selfish_variation), a set of
variations can be activated on a component: the resulting
effect is a combination of the features implemented by the
different variations. This case is discussed in the sequel.

The introduction of variations is part of our proposal for
adding COP features to Erlang/OTP. Variations represent
the behavioral changes at the component level. The activa-
tion of a variation triggers a modification that affects only a
single leaf of the supervision tree. However, in general, the
reaction of the application to an external context change can
require that more than one component is adapted. We ad-
dress this issue introducing in ContextErlang the concept of
layer. In our solution a layer indicates the set of variations
which are activated on each component of the application in
reaction to a certain external context change. We indicate
this application-wide change that involves a set of compo-
nents as a layer activation.

A well known point addressed by COP is code modulariza-
tion with respect to context adaptation. Two options have
been proposed in literature [18]: the modularization along
layers, that groups behavioral variations associated with the
same layer, or along classes, which fragments each layer by
putting its elements in the related classes. Since Erlang is
not an OO language, the previous classification cannot be
applied strictly. However the modularization along classes
is probably more suitable to describe ContextErlang vari-
ations because in ContextErlang the application is modu-
larized in component and the behavior of each component
can be modified by component-specific variations. Note that
while a variation is specific for a given component, variation
activation (see Section 5.1) is done on per-process base, since
there can be different processes running different instances
of the same component.

While ContextErlang variations are component-specific,
ContextErlang layers are application-wide behavioral adap-
tations. This is in conformance with COP layers which are
first class entities that can affect different elements of an ap-
plication. For example in ContextJ each class defines how
its instances react to a layer activation; when a context is
activated all the objects in the activation scope adapt them-
selves according to the what specified by their class. Con-
textErlang layers are built on top of the variations, because
each layer is mapped on a set of variations for each specific



-module(gen_server).

...

loop(Mod, State) ->

receive

{call, From, Request} ->

{Response, State2} =

Mod:handle_call(Request, State),

From ! {Mod, Response},

loop(Mod, State2);

{cast, Request} ->

State2 = Mod:handle_cast(Request, State),

loop(Mod, State2)

end.

...

call(Name, Request) ->

Name ! {call, self(), Request}.

...

-module(server).

%----------------

% API functions

alloc(Item, Key) ->

gen_server:call(?MODULE, {alloc, Item, Key}).

free(Key) ->

gen_server:call(?MODULE, {free, Key}).

...

%---------------------

% Callback functions

handle_call({alloc, Item, Key}, State) ->

do_alloc(Item, Key, State).

handle_cast({free, Key}, State) ->

do_free(Key, State).

...

Figure 2: A simplified behavioral part of a generic server (left) and its callback module (right).

component. When a layer is activated, the activation affects
all the related components of the system: a context man-
ager maps the layer activation on the variations that must
be activated for each component.

As a final remark, we notice that our notion of context is
the complete set of behavioral variations that are activated
at a given instant inside the application. Because variation
activations are the way each module reacts to a layer acti-
vation, the context of the application can be seen as the set
of the active variations of each component of the system, or,
with an application perspective, as the active layers.

Since more than one variation at a time can be active in
a component, in the next sections we describe how multiple
variations interact in changing the behavior of a component.
Also, we show how variations can be provided to the com-
ponents of a remote Erlang node so that those components
can be enabled to react to unforeseen situations.

5.1 Dynamic variation activation
A key feature of context-oriented programming is the run

time activation and composition of behavioral variations of
an application. This can be achieved in various ways, for ex-
ample by dynamically changing the delegation relationship
between objects [16] or the inheritance relationships among
classes [10]. However solutions for context activation lever-
aging on run time change of inheritance relationships and
dynamic method dispatching are typically OO-based, and
clearly not applicable in the Erlang language.

While in the OTP design principles a single callback mod-
ule is associated with each component of the application,
in our solution we allow different callback modules to be
used at the same time by the same component. Since we
implement variations as callback modules, we have a se-
quence of variations that affect the component behavior at
the same time, and this sequence depends on the external
context. A variation starts by affecting the behavior of the
application when is activated. Variation activation occurs
when an external component (i.e. a context manager) sends

a change_variations request to a context-enabled process
stating explicitly which variations must be active.

When the behavior module receives a call request, the
corresponding function to be executed is searched inside
the ordered sequence of the active variations. The com-
position logic is given by the lookup algorithm inside our
modified “context-oriented” behavior modules. Being each
variation implemented as a different callback module, the re-
sulting code organization meets the requirements of context-
oriented programming in partitioning the application code
according to the context crosscutting concern.

The ordered sequence of variations results in a simple com-
position schema in which variations are arranged hierarchi-
cally, in a stack. The function to be called for a given mes-
sage is searched in the top-of-stack variation: if the search
is successful then the call is performed, otherwise the search
goes on over the subsequent variations down along the stack.
Variations aimed at managing more general contexts are ar-
ranged at the bottom of the stack, while more specific vari-
ations are in the upper part of the stack and thus they have
precedence in call dispatching. The idea of searching over
the modules is used here only to better explain our model; in
the implementation, a list of the context-enabled functions
exported from the variation is kept into a data structure,
and subsequently used for function dispatching.

The stack solution enables a simple set of desirable behav-
iors. First of all a variation can overload functions declared
in other (more generic) variations by simply being placed in
an upper part of the stack. Function overriding can be ob-
tained in the same manner implementing the new version of
the function in an upper variation. Adding new capabilities
to a module is straightforward: if a function declared in a
variation is not located anywhere else in the variation stack,
the presence of that context simply adds that function to
the capabilities of the component. Consider the following
situation, which illustrates the bindings established when a
certain context is entered and how the function calls issued
by agents are resolved accordingly.



-module(variation1).

-behavior(context_gen_server)

...

handle_call({funA}, State) ->

io:format("[variation1]: funA executed~n"),

Reply = ok,

{reply, Reply, State};

handle_call({funB}, State) ->

io:format("[variation1]: funB executed~n"),

Reply = ok,

{reply, Reply, State};

...

-module(variation2).

...

handle_call({funA}, State) ->

io:format("[variation2]: funA executed~n"),

Reply = ok,

{reply, Reply, State};

handle_call({funB}, State) ->

io:format("[variation2]: funB executed~n"),

Reply = ok,

{reply, Reply, State};

handle_call({funC}, State) ->

io:format("[variation2]: funC executed~n"),

Reply = ok,

{reply, Reply, State};

...

Figure 3: The code of the callbacks modules variation1 and variation2, simplified for better readability. The
behavior attribute is declared in the callback module that provides the initialization and the cleanup functions.

Figure 3 shows an example of the concepts seen so far.
Suppose that variation1 implements the functions funA()

and funB(), and only variation1 was activated in compo-
nent agent.

%% In an external context manager

[agent:change_context([variation1]).]

agent:funA().

agent:funB().

agent:funC().

$>[variation1]: funA executed

$>[variation1]: funB executed

$>Error: funC not exported

Since variation1 contains an implementation of both funA

and funB and variation1 is the only variation present in
the component, functions funA and funB are directly called.
The call to funC fails because such function is not present.
Now suppose that another component that manages the con-
text switches in the system adds a new variation2 on top
of variation1 (Figure 4). Let us assume that variation2

implements funC() and its own version of funB(). While
the component behaves the same upon receiving a request
for the execution of funA(), the definition of funB() in
variation2 overrides the one in variation1. The following
fragment illustrates the context-dependent bindings estab-
lished in the new situation.

%% In an external context manager

[agent:change_context([variation2, variation1]).]

agent:funA().

agent:funB().

agent:funC().

$>[variation1]: funA executed

$>[variation2]: funB executed

$>[variation2]: funC executed

When funA is called, variation2 is searched for the func-
tion, but the search fails. The search continues in lower

 Variation1
   + funA
   + funB

 Variation2
   + funB
   + funC

 Variation1
   + funA
   + funB

BEHAVIOR

BEHAVIOR

)

Figure 4: The activation of variation2 over varia-
tion1. The resulting module implements the union
of the functions in the two variations. Functions
with the same signature implemented in both vari-
ations are taken from the upper variation.

variations, and succeeds in variation1. The same happens
with funB, but it is immediately found in variation2, so
this version is executed. The call to funC is now performed
because it is implemented in variation2.

5.2 Variation Composition
Context composition is not only obtained through the

context-stack mechanism in the sense that the behavior ex-
posed by a component comes from the arrangement of all
the active variations, but it also provided by the proceed()

call from inside a callback function. proceed() calls the sub-
sequent eligible callback function in the context-stack. Sup-
pose that a function f() is implemented in different vari-
ations of the stack: only the first one is called because of
the mechanism described previously. However, if inside the
called version of the function a call to proceed() is per-
formed, the stack is searched for the next variation imple-
menting f() and that implementation is called.

The following example is taken and adapted from [18].
Suppose that a component person is part of the system,
whose callback module person_base_variation implements
a display function that simply shows some information:



-module(person_base_variation).

...

handle_call({display}, From, State) ->

io:format("[Person] Name: John; Surname: Smith"),

Reply = ok,

{reply, Reply, State};

...

The module employment_variation implements a display

function that prints some data related to the employment
and make use of the proceed() call:

-module(employment_variation).

...

handle_call({display}, From, Tab) ->

proceed(),

io:format("[Employer] Name: aFirm;

City: London"),

Reply = ok,

{reply, Reply, Tab}.

...

When invoking display on the component person, the
call is dispatched to person_base_variation which is the
only callback module available. After the first call to display,
an external component activates the “employment” varia-
tion. Now, the call to display is dispatched to the “em-
ployment” variation because it is the first one in the vari-
ation stack. When in employment_variation, proceed()

is called, the next variation in the stack implementing the
display function is searched and display is called.

person:display().

%% In an external context manager

[person:change_context(

[employment_variation,

person_base_variation, person]).]

person:display().

$>[Person] Name: John; Surname: Smith

$>

$>[Person] Name: John; Surname: Smith

$>[Employer] Name: aFirm; City: London

By using this feature, one may add functionalities to an
existing function simply by introducing a new variation that
wraps the calls to the function. In this sense proceed() is
similar to the call to super() in object-oriented languages
that performs calls to the same method implemented by a
parent class.

5.3 Variation Transmission
A component of the system could reach a state in which

it cannot cooperate usefully with the other components be-
cause it is not able to manage either the interaction with
them or with the environment. In other words the compo-
nent could lack the support for the context that it is re-
quired to manage. Note that the notion of context may
include both the interaction with other components, and
events coming from the environments.

Because of Erlang’s dynamic code loading, the actual bind-
ing between a fully-qualified call (i.e. a call with the syntax
module:function()) and the module implementing the call

is done at run time. Therefore variations can be dynamically
loaded during system execution.

A complex Erlang system can be distributed over several
different machines, each of which can execute one or more
Erlang nodes. After a context change, if the behavior of a
component of the system must be modified by activating a
variation currently unavailable on that node, the variation
can be simply sent by a context manager and loaded on-the-
fly. This is done by performing the following call:

context:send_variation(node@host, newVariation)

After that, the new variation can be activated, thus af-
fecting the behavior of the node. Remote activation is done
via the rpc call:

rpc:call(node@host,component,

change_variation,[newVariation,groudVariation])

In certain scenarios, a system must be able to react also
to a sequence of events that was not originally considered,
when the system was built or deployed. So, it is important
to design a solution that is able to adapt to such unpredicted
situation. The variation transmission feature is clearly vital
to this end, since it is possible now to design and build ap-
plications in which the required behavior is not completely
stated at deployment time.

6. AN EXTENDED SCENARIO
In this section we consider an emergency scenario in which

we apply the concepts presented before. This scenario is
part of a set of use cases that are being used to validate
our research results in the area of self-managing situational
computer applications [3]. A mountaineer, during a climb,
falls off a cliff and is severely injured. He has a mobile phone
he can use to contact a base station asking for help. The
base station is not meant to manage rescue operations, so it
contacts an emergency management center. The mountain
is rigged up with sensors (e.g. webcams, or to detect condi-
tions that may lead to landslides or avalanches), and all the
sensors, the base station, and the instrumentation taken by
the rescue people are able to communicate with each other.

In normal conditions, the sensors interact with tourists,
for example to send them data or turistic information. Also
the sensors are devoted to collect meteorological data. This
“normal context” can be simply modeled using a
tourist_service variation and a meteo_info variation.
These variations are both active and implement different
functions, exposing an overall behavior which is the union of
the available functions. When a request for help is received,
the whole system switches to an “emergency context”, be-
cause all the components must behave in a different manner.
In fact all the sensors now must cooperate in order to facil-
itate the rescue and the base station must coordinate them
and manage the communication with the rescue team. For
example, if one of the sensors were in fact a videocamera,
it could act as a remote “eye” for the emergency manage-
ment center to localize the mountaineer. It is reasonable
that in order to concentrate all the resources in the rescue
operations, request from a tourist could be served during
this phase. The switch from the “normal context” to the
“emergency context” can be achieved deactivating the
tourist_service and the meteo_info variations activat-
ing an emergency variation each component of the system.



For example the sensor_emergency_rescue variation on the
sensors is able to manage the requests from the base sta-
tion and from a rescue team aimed at collecting information
useful for the rescue operations. Instead a request from a
tourist is simply discarded with a service not available an-
swer. A situation can be envisaged in which, in addition to
the rescue team dispatched by the emergency management
center, help can be found in the rescue area in the form of
other mountaineers. The phones in the hands of the moun-
taineers are obviously not equipped with all the applications
that can be useful in an emergency context. For example in
this context a phone should directly interact with the phones
of other rescuers, acting as a bridge for a low signal from
the injured mountaineer and the base station. However a
rescue-bridge variation cannot be simply activated on the
phone but it must be sent to the phone by the base station
and then activated on-the-fly on the phone.

The application might also look for trusted people in the
vicinity of the rescue area, who also happen to have the ca-
pability to help the injured mountaineer (e.g. because they
are doctors). In this case the phone should help the rescuer
to locate the mountaineer, or provide medical support to the
occasional rescuer. For example the phone could load an ap-
plication that receives messages from the base station that
guide him to the position of the injured person. This can
be obtained through the remote loading of a rescue_guide

variation that simply displays an arrow that shows to the
occasional rescuer the direction to follow to find the injured
mountaineer. In case of availability of good communications
facilities, an additional broad_band_rescue_guide variation
can be activated on top of the previous one. Some functions
are redefined in the upper variation resulting in the over-
riding of the bottom variation functions. For example a
display function can now draw an entire map on the screen
of the phone instead of a simple arrow. Similar considera-
tions are valid for an application that helps the occasional
rescuer to provide some medical support, where instructions
can be simply textual, the voice of a remote operator, or
some support of images and animations can be available if
the bandwidth gets broader and the associate variations are
subsequently activated.

If the injured mountaineer does not have a phone, the sen-
sors distributed in the area can be used to find him using a
camera installed on each sensor. The base station can send
a request for the presence of a man in the area of vision of
the sensor. The sensor_emergency_rescue variation con-
tains a find_man function that analyzes the pictures taken
by the sensor and can answer to the request of the base
station. However in presence of fog, the sensor cannot be
sure that there is a man near it or simply a shadow. This
scenario can be addressed with the use of a variations com-
position. A foggy_search_man variation can be activated on
top of the sensor_emergency_rescue variation. When the
request from the base station arrives, it is dispatched to the
upper variation, that tries to detect the presence of a man
calling proceed() (i.e. activating the find_man function in
the lower variation). Because of the presence of uncertainty
in this knowledge, instead of simply returning the answer
to the base station, the nearest sensors are queried for the
presence of a man. The foggy_search_man variation can
implement an agent that starts a negotiation algorithm so
that the decision of the presence of the man is the result of
a voting phase. When an agreement is achieved, the answer

is given back to the base station.

7. IMPLEMENTATION AND
PERFORMANCE

We implemented our COP extension to the Erlang/OTP
platform as an OTP behavior module context_gen_srv. It
provides all the functionalities of a gen_server extended
with the variation activation and composition described in
the previous paragraphs.

We implemented context awareness in the gen_server be-
havior because we believe that this is the most influenced
by context issues among the OTP behaviors, since external
context impacts on the way a request is managed. How-
ever as a future work we plain to consider if it is sensible a
context-aware version of the other OTP behaviors.

The programmer is expected to simply implement the
variation modules that can be dynamically activated dur-
ing execution. None of the callback modules implementing
different variations has a privileged role. This means that
in principle all the behaviors of the component can be put
in dynamically activated variations. In any case one of the
variations must contain an init function, which is expected
to initialize the process and the code_change function used
for hot code replacement. It is probably a good practise
to keep one callback module almost unchanged, and imple-
ment these functions inside that “ground” variation. More-
over while a module implemented through a generic behav-
ior can be directly called from clients through a registered
name, it is common in the OTP design principles to put in
the callback module the API calls that wraps the calls t the
server. Therefore a client simply invokes a function on the
callback module and the callback modules interacts with the
server. According to this paradigm, the “ground” callback
module should expose the functions exported by all the be-
haviors, hiding the interaction with the server. This is of
course no option if a variation is sent to a node at run time
(see Section 5.3) and adds some new callback functions.

Our implementation introduces a performance overhead,
because a function call requires to be dispatched over the
several active variations. We give two evaluations of the
performance of our system. In the first case we consider a
context_gen_server that receives a function call with five
active variations with only the last variation implementing
the required function. The cost of this call is compared with
a call to an OTP generic server with a single callback module
implementing the function (Table 1, first row).

In the second case we analyze the overhead introduced by
the proceed() call. We consider five active variations; when
the top one is called it calls proceed() on the
context_gen_server which dispatches the call to the next
variation. The process is repeated up to the call to the
last variation which simply returns. This implementation is
compared with the same five variations simply calling each
other without any “smart” dispatching mechanism (Table 1,
second row).

The results show that the introduction of the variations
mechanism introduces a significant overhead, which is in line
with other COP implementations [4]. However the tests
were executed on a first implementation and a wide space
for optimization is available, such as implementing the func-
tion lookup using an hash table. All tests were done on
desktop hardware (Intel Core 2 Duo T9500 2.60GHz with



OTP ContextErlang
Mean Median Mean Median

Proceed Test 16 18 34 32
Call Test 8 8 19 18

Table 1: Performance Evaluation of ContextErlang
compared with a pure OTP implementation. All
values are in microseconds.

4GB RAM).

8. CONCLUSION AND FUTURE WORK
This work presented an approach for Context Oriented

Programming in Erlang, called ContextErlang. COP pro-
vides support for the implementation of applications whose
behavior depends on the context in which they are execut-
ing. Erlang is an industrial-strength programming language
for the development of distributed fault-tolerant systems. It
is therefore natural to combine them to satisfy the typical
requirements of distributed, ubiquitous, and adaptive appli-
cations. We have introduced COP in Erlang through the
concepts of dynamic variation activation, dynamic variation
composition and variation transmission. In the future we
plan to continue with the development of ContextErlang,
covering all the OTP behaviors and realizing an infrastruc-
ture for context-aware applications based on ContextErlang.

At present our prototype implementation works under the
hypothesis that context-change messages are issued by some
components of the system that actually manage the context
status of the system. An aspect yet to be clearly investigated
is how structure, model, and obtain in practice contextual
information from the environment. As far as these issues are
concerned, our approach provides a simple yet strong foun-
dation upon which we plan to build and integrate possible
solutions defined in the related literature.
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